
Modeling Open Systems with Category Theory

Daniel Sinderson

May 2024

Introduction

Category theory studies composition. Given some kind of structural unit, how can I connect

them together, and what kind of connection between them makes sense.

By studying and abstracting notions of composition, category theory has created a lan-

guage for describing and working with structures of all sorts [5]. These include the bread-and-

butter of modern mathematics—from vector spaces and manifolds to orders and groups—

and, by extension, any scientific models that rely on them. In this language the details of a

particular field go out of focus and only its high level structure remains [9]. This is useful.

High levels of abstraction provide high levels of generality, and a general, common language

of how things are structured is useful for both organizing thought and sharing it.

In this paper we will be taking a look at the basics of category theory and its application

to the study of systems. We will see how to use category theory to build the specifications

for, and simulate the behaviors of, a dynamical system built from the composition of smaller,

simpler systems. Specifically, we will do this by modeling a gene transcription network as

the composition of individual differential equations. With even this introductory view of the

subject it should be easy to see the promise of this approach to ease thinking about, and

designing models for, the complicated systems that surround us and of which we are made.

Category Theory Basics

The first step to understanding category theory is to understand what a category is. If you’re

new to higher mathematics, it’s time to take a deep breath. This will seem like a lot.

1

Definition 1: Category

A category C is defined by the following:

1. C contains a collection of objects ob(C). We will denote that an object is in a

category using set notation: c ∈ C.

2. For any two objects a, b ∈ C there is a collection of morphisms, or arrows, between

those objects C(a, b) called the homset. This is short for “set of homomorphisms.”

We will denote an element f ∈ C(a, b) using function notation: f : a → b.

3. Every object a ∈ C has a morphism to itself ida : a → a called its identity. This

morphism doesn’t do anything. It’s like multiplying a number by 1.

4. For every two morphisms f : a → b and g : b → c there’s a third morphism

g ◦ f : a → c that is their composition. The circle is the symbol for function

composition and g ◦ f is read “g after f.”

a b

c

f

g
g◦f

These objects and morphisms are further constrained by the following properties:

1. (Unitality) Any morphism f : a → b can be composed with the identity mor-

phisms of a and b such that f ◦ ida = idb ◦ f = f .

a bida
f

idb

2. (Associativity) For any morphisms f : a → b, g : b → c, and h : c → d,

h ◦ (g ◦ f) = (h ◦ g) ◦ f . Since it doesn’t matter what order we apply the

morphisms, we write this h ◦ g ◦ f .

a b c d
f g h

g◦f

h◦g2

Let’s break this down a little bit. We have a collection of objects with connections

between them. We know that every object is connected to itself. And we know that if object

a is connected to b, and b is connected to c, then a is connected to c through b.1

We also know that the objects and connections follow two rules. First, that moving from

an object to that same object via the identity morphism doesn’t do anything (unitality).

And second, that no matter how you group moving along connections it always amounts

to the same trip (associativity). That’s it. Underneath the precise mathematical notation,

the concepts that a category encapsulate are honestly pretty simple. But from these humble

beginnings we are going to climb very high.

A Quick Note on Isomorphism

When most of us think of two things being the same in mathematics we think of equalities

like 1 + 1 = 2. But when thinking about whether two objects in a category are the same, a

more useful notion than equality is that of isomorphism. An isomorphism between objects

means that, while they may not be exactly the same, as in equality, there exists a way to

move back and forth between the two objects without losing any information.

A line segment of length x and a circle with a circumference of x are not equal objects,

but they are isomorphic objects. Imagine taking a string and gluing the ends together into

a circle, and then cutting that circle back into a string. I can do this same process with the

line segment and the circle, and I can do it as many times as possible, and still be moving

between the same two objects. This is the essence of isomorphism.

Which leads us to the following definition for an isomorphism in category theory.

Definition 2: Isomorphism

Two objects a, b in a category are isomorphic if there exists a morphism f : a → b for

which there is another morphism f−1 : b → a, called its inverse, such that f−1◦f = ida

and f ◦ f−1 = idb. Such a morphism is called an isomorphism.

a bida

f

f−1

idb

1For people with some background in math or logic this might be familiar as the transitive property.

3

Functors and Categories of Categories

Most mathematical structures have some way of mapping one instance of that structure

to another instance. Functions map sets to other sets. Linear transformations map vector

spaces to other vector spaces. And group homomorphisms map groups to other groups.

Since categories are a mathematical structure, it makes sense to ask if there exists a way to

map between them. Such a map would have to preserve all the things that make a category

a category: identity morphisms and composite morphisms, and the rules of unitality and

associativity. We call such a map between categories a functor.

Definition 3: Functor

A functor F : C → D is a map between categories C and D such that the following

hold:

1. For any object a ∈ C there is an object Fa ∈ D.

2. For any morphism f : a → b between objects a and b in C there is a morphism

Ff : Fa → Fb between objects Fa and Fb in D.

3. For all objects a ∈ C and Fa ∈ D, F ida = idFa.

4. For any composition of morphisms g ◦ f in C, F (g ◦ f) = Fg ◦ Ff in D.

There are some things to note here. The first is that, like sets and functions, the mapping

of objects from one category to another is unique. Every object in the source category maps

to exactly one object in the target category. The same goes for morphisms. The second thing

to note is that identity morphisms get mapped to identity morphisms and compositions get

mapped to compositions.

Let’s check that these rules are enough to preserve unitality and associativity. We will

check unitality first.

4

Proof 1: Preservation of Unitality

Let a functor F : C → D be given, with objects a, b ∈ C and morphism f : a → b.

F (idb ◦ f) = F idb ◦ Ff by the functor composition rule

= idFb ◦ Ff by the functor identity rule

= Ff by the definition of the identity

= Ff ◦ idFa by the definition of the identity

= Ff ◦ F ida by the functor identity rule

= F (f ◦ ida) by the functor composition rule

Thus the functor preserves unitality, since F (idb ◦ f) = F (f ◦ ida) = Ff . □

Now let’s check that associativity is preserved.

Proof 2: Preservation of Associativity

Let a functor F : C → D be given, with objects a, b, c, d ∈ C and morphisms f : a → b,

g : b → c, and h : c → d.

F (h ◦ (g ◦ f)) = Fh ◦ F (g ◦ f) by the functor composition rule

= Fh ◦ (Fg ◦ Ff) by the functor composition rule

= (Fh ◦ Fg) ◦ Ff by associativity in the category D

= F (h ◦ g) ◦ Ff by the functor composition rule

= F ((h ◦ g) ◦ f) by the functor composition rule

Thus the functor preserves associativity, since F (h ◦ (g ◦ f)) = F ((h ◦ g) ◦ f). □

With functors in our toolbox, it’s now possible to construct a category where the objects

themselves are categories and the morphism between them are functors. We call this category

Cat. This, along with our next step, will prove to be extremely powerful.

5

A Quick Note on Avoiding Paradox

For anyone who has taken a course in logic or set theory, that last paragraph might be

ringing some alarm bells. Whenever we have recursion in our structure like this there’s the

opportunity for paradox to sneak in. The category of categories is no exception.

To avoid the paradox of whether the category of categories contains itself2, category

theorists employ formal notions of “size” to differentiate distinct universes of categories or

by invoking a separation between sets and classes [6, 9]. These get pretty technical though,

so we will ignore them in this paper. For us, it will be enough to assume that whenever we

talk about a category whose objects are also categories, our object categories are in some

way “smaller” than the category that they’re a part of, and thus of a different type.3

Functor Categories and Natural Transformations

For our next, and last, step up into abstraction let’s talk about functor categories. Functor

categories are categories whose objects are functors and whose morphisms are maps called

natural transformations.

Since natural transformations map functors to other functors, we know that they must

preserve the essential “functor-ness” of functors. This “functor-ness” is a bit harder to pin

down than the “category-ness” that functors themselves preserve. We need to see what

natural transformations do to functors, but also what they do to the objects and arrows of

the categories that the functors are acting on.

2You know, because it’s a category.
3In general, this “smallness” will be that the category’s collection of objects forms a set, or that the

homset between any two objects forms a set.

6

Definition 4: Natural Transformation

A natural transformation α : F ⇒ G is a map between functors F : C → D and

G : C → D such that the following holds:

1. For each object c ∈ C, there is a morphism αc : Fc → Gc in D. These are called

the component morphisms of α.

2. For every morphism f : a → b in C, αb ◦ Ff = Gf ◦ αa. This is called the

naturality condition, and it preserves functoriality.

The naturality condition ensures that the following diagram commutes.

Fa Ga

Fb Gbαb

GfFf

αa

We can represent α with the following diagram.

C D

F

G

α

This definition is short, but underneath the brevity there’s an entire extra layer of stuff

to keep track. Let’s get a better idea of what this definition captures by using a picture.

7

C D

c y

C D

b

a x

F

G

g

f

k

α

Here we see two simple categories, C and D, two functors F (the dashed lines) and G

(the dotted lines) between them, and a natural transformation α that deforms F into G.

Let’s dig into this picture a bit and pick apart the functors and the natural transformation.

First, let’s note all the important mappings of the functors and the component morphisms

of the natural transformation.

Fa = x Fb = x Fc = y

Ff = idx Fg = k F (g ◦ f) = k

Ga = x Gb = y Gc = y

Gf = k Gg = idy G(g ◦ f) = k

αa : Fa → Ga αa = idx

αb : Fb → Gb αb = k

αc : Fc → Gc αc = idy

Next, let’s check that the functors preserve composition.4

F (g ◦ f) = k = k ◦ idx = Fg ◦ Ff ✓

4You should be able to convince yourself that they preserve identities.

8

G(g ◦ f) = k = idy ◦ k = Gg ◦Gf ✓

And now let’s look at the natural transformation α : F ⇒ G and make sure that it

satisfies the naturality condition for the morphisms f, g ∈ C.

αb ◦ Ff = k ◦ idx = Gf ◦ αa ✓

αc ◦ Fg = idy ◦ k = Gg ◦ αb ✓

Thankfully, everything is working as expected.

Natural transformations provide a way to deform one functor into another. Intuitively,

let’s say you have two sets of instructions for how to get from A to B: these are your

functors. Your natural transformation would then be a guide for how to switch from one set

of instructions to the other.

Duality

The last thing we will cover in this section is the very simple, and very powerful, property

of duality. Every category has an opposite category that we write as Cop. The objects in

this opposite category are exactly the same as in the original category, but every arrow is

turned around: its source becomes its target and its target becomes its source. Let’s look at

a simple example.

Let C be the category below.

C :=

a b c

d e

It’s opposite category, Cop, is the following.

Cop :=

a b c

d e

9

And that’s it. One reason duality turns out to be so powerful is that it doubles our effec-

tiveness. For every structure in a category, we get the dual structure essentially for free [3].

Duality also plays an important role in representability and the Yoneda lemma which are

major features of category theory that, unfortunately, we won’t have space for in this paper.

Structure between Categories

A category in isolation, like a set in isolation, doesn’t give us much. It’s only when we

begin adding relations and mappings between categories that the theory comes into its

own. These will include categorical versions of some familiar structures, like embeddings,

equivalence relations, and isomorphisms. But it will also include some structures that might

seem strange and perplexing at first, like adjunctions and monads.

Subcategories

Let’s start with the simplest structure first, that of a subcategory relation. Like any of the

other “sub-” relations from other fields of mathematics, the subcategory relation encapsulates

the notion of one category being in some way contained inside of another. This means that

the pattern of objects and morphisms that make up the subcategory are faithfully present

in the other category. Our first step will be to define this “faithfulness.”

Definition 5: Faithful Functor

A functor F : C → D is faithful if for each x, y ∈ C, the map C(x, y) → D(Fx, Fy) is

injective.

In other words, when a functor between categories is faithful, it means that every mor-

phism between objects x, y in the source category C is mapped to exactly one morphism

between Fx, Fy in the target category D. No morphisms in the source get collapsed into

the same morphism in the target. This doesn’t mean that objects can’t be collapsed. For

that we need another condition on our functor.

10

Definition 6: Injective on Objects

A functor F : C → D is injective on objects if for each x ∈ C, there is a unique y ∈ D
such that y = Fx.

With these two conditions we can define our subcategory relation.

Definition 7: Subcategory

A category C with a functor F : C → D that is both faithful and injective on objects

is a subcategory of the category D. A functor F of this type is called an embedding

of C into D.

Let’s take a look at this using the two small categories below with a functor F between

them.

C D

a b Fa Fb

c d Fc Fd y

F

You should be able to convince yourself that C is a subcategory of D using the definitions

of subcategory and functor above. As expected we get injectivity on morphisms and objects.

But what if we also have surjectivity on morphisms? To look into this let’s define another

property that a functor can have.

Definition 8: Full Functor

A functor F : C → D is full if for each x, y ∈ C, the map C(x, y) → D(Fx, Fy) is

surjective.

This gives us a stronger version of the subcategory relation called a full subcategory that

rejects any extraneous morphisms in the target category.

11

Definition 9: Full Subcategory

A category C with a functor F : C → D that is full, faithful, and injective on objects is a

full subcategory of the domain D. A functor F of this type is called a full embedding

of C into D.

Let’s take a look at an example by paring down our category D from the previous example.

C D

a b Fa Fb

c d Fc Fd y

F

Again, convince yourself that this is indeed a full embedding.

Equivalence Relations between Categories

Even more familiar than the subcategory relation, but less simple in the categorical context,

are equivalence relations. When comparing the “sameness” of categories there are several

relations we can define. In order of strictest to loosest these are equality, isomorphism, and

equivalence. Equality and isomorphism are actually quite simple.

Definition 10: Equality of Categories

Two categories are equal if they contain exactly the same objects and morphism.

Definition 11: Isomorphism of Categories – Subcategories

Two categories are isomorphic is they’re both subcategories of each other.

This is similar to the situation with sets where mutual subsets define an equality of sets.

By ensuring that every object and morphism in the source has a unique object and morphism

in the target that it gets mapped to under the embedding F : C → D and vice versa under

the embedding G : D → C, we ensure that our mappings between sets and objects are

bijective and that our categories are isomorphic.

Another way to define an isomorphism between categories is as an isomorphism in the

category of categories and functors, Cat.

12

Definition 12: Isomorphism of Categories – Category of Categories

Given two categories C,D ∈ Cat and a pair of functors F : C → D and G : D → C, C
and D are isomorphic if G ◦ F = idC and F ◦G = idD.

More useful than these is the notion of categorical equivalence and the notion of natural

isomorphism that it relies on.

Definition 13: Natural Isomorphism

A natural isomorphism is a natural transformation α : F ⇒ G where all of the

component morphisms of the transformation αc : Fc → Gc are isomorphisms.

Let’s try to get a handle on what this means by looking at the image we used to explore

natural transformations.

C D

c y

C D

b

a x

F

G

g

f

k

α

As before, the components of α are the following:

αa = idx

αb = k

αc = idy

Our task now is to figure out which, if any, of these component morphisms are isomorphism.

For both identity morphisms the answer is yes: idx ◦ idx = idx. In general, if you do nothing

13

and then do nothing again, you’ve still not done anything.5 The case is different for k. There

simply is no morphism from y to x in D that could be the inverse of k, so k cannot be an

isomorphism. This means our natural transformation α is not a natural isomorphism.

Let’s make a small addition and try again.

C D

c y

C D

b

a x

k−1

F

G

g

f

k

α

With this new diagram we’ve explicitly added an inverse of k, making it an isomorphism.

Since every component morphism of α is now an isomorphism, α itself is now a natural

isomorphism. With natural isomorphisms in hand we can define an equivalence between

categories.

Definition 14: Categorical Equivalence

Two categories C and D are equivalent, written C ≃ D, if there exist two functors

F : C → D and G : D → C with natural isomorphisms η and ϵ such that η : idC ∼= G◦F
and ϵ : idD ∼= F ◦G.

It might seem difficult to understand what’s going on beneath this definition. Let’s try

again using another property on functors.

Definition 15: Essentially Surjective Functor

A functor F : C → D is essentially surjective on objects if for every object y ∈ D there

exists an object x ∈ C such that Fx ∼= y.

5This is the kind of high-octane thinking that math opens up to us. Breathe it in.

14

Definition 16: Categorical Equivalence, revisited

Two categories C and D are equivalent if there exists a functor F between them that

is faithful, full, and essentially surjective on objects.

Let’s look more deeply at this functor and what each of its properties guarantees. Being

essentially surjective on objects means that every object in our target category has some

object from the source category that maps to it (up to isomorphism). The combination of

a full and faithful functor guarantees that for every set of morphisms between objects in

our source category will be isomorphic to the set of morphisms between the image of those

objects in the target category. In other words, we have an isomorphism between morphisms

and a surjection between objects (up to isomorphism). If we look at our full subcategory

example from above, are C and D equivalent?

C D

a b Fa Fb

c d Fc Fd y

F

We know that F is full and faithful by definition of a full subcategory. But it’s not surjective

on objects since there’s no object in C that maps to y, or anything isomorphic to y, in D.

Let’s make a quick modification so that our two categories can be equivalent.

C D

a b Fa Fb

c d Fc Fd y

F

Our collections of objects are now surjective up to isomorphism, so our functor is full,

faithful, and essentially surjective and our two categories are equivalent. Since categorical

equivalence is an equivalence relation we know that the relation must be reflexive, symmetric,

and transitive. It’s trivial to see that the relation is reflexive since the identity functor on

a category meets all of our requirements, so we know a category is always equivalent to

itself. But how about symmetry? Let’s look at this using our example categories above and

15

introduce a new functor G.

D C

u w Gu Gw

x z y Gx Gy = Gz

G

We can map y and z onto the same object G and keep the functor essentially surjective.

But is it still full and faithful? Naively we might think they aren’t, since idy, idz, and both

parts of the isomorphism between y and z all get mapped to idGy, which certainly doesn’t

seem injective. But G is full and faithful. Double checking that this is the case is a great

opportunity to see why full and faithful functors are defined in terms of homsets.

Proof 3: F is Full and Faithful

Given a functor G : D → C as defined above, for G to be full and faithful there

must be a bijection between the homset of any two objects in D and the homset of

their images in C. Since most of the objects and morphisms we are concerned with

above obviously meet this requirement by inspection, let’s focus on y, z ∈ D and the

isomorphism between them, which we will call f : y → z and f−1 : z → y, and their

images. Listing them out, we have the following homsets.

D(y, y) = {idy} ∼= {idGy} = C(Gy,Gy)

D(z, z) = {idz} ∼= {idGz} = C(Gz,Gz)

D(y, z) = {f} ∼= {idGy} = C(Gy,Gz)

D(z, y) = {f−1} ∼= {idGz} = C(Gz,Gy)

So even though we have four morphisms that are all getting mapped to a single identity,

each of the homsets individually is a singleton set in both the source and the target

categories, meaning that they’re all isomorphic, so our functor G is indeed full and

faithful. □

So we now know that categorical equivalence is reflexive and symmetric, but is it transi-

16

tive? To test this we will need another small category and another functor.

D E

u w Gu Gw m

x z y Gx Gz Gy

H

You should be able to convince yourself that D ≃ E and that C ≃ E using the same reasoning

we used for our initial equivalence C ≃ D.

Since categorical equivalence is reflexive, symmetric, and transitive we know that it does

define an equivalence relation.

Adjunctions

Another important relationship that can exist between categories is an adjunction. Adjunc-

tions are a generalization of categorical equivalence. Where an equivalence requires natural

isomorphisms, an adjunction gets by with natural transformations. What this means intu-

itively is that an adjunction is a way to encapsulate the notion of an imperfect inverse [5].

In an isomorphism or equivalence it’s possible to move from one category to the other and

then back and return to where you started (up to isomorphism of objects). In an adjunction

the guarantee is weaker: with each traversal an error accrues, but there is structure to it.

Let’s look at this with an example using the two functions below.

Z R R Z

x 2x x
⌈
1
2
x
⌉

f g

Here f multiplies by 2 and g divides by two and then rounds up to the nearest integer. Let’s

throw in some values of x and track it through our functions.

g(f(3)) = g(6) = 3 f(g(3)) = f(2) = 4

g(f(4)) = g(8) = 4 f(g(4)) = f(2) = 4

g(f(5)) = g(10) = 5 f(g(5)) = f(3) = 6

Clearly these aren’t isomorphisms: f(g(x)) isn’t always equal to x or to g(f(x)). But the

error is small and, more importantly, it’s structured. For any x ∈ Z and any y ∈ R, f(x) ≤ y

17

if and only if x ≤ g(y). The specific structure here isn’t important to us, only that there is

one.

Let’s make this precise now.

Definition 17: Adjunction

An adjunction between two categories C and D exists, written C ⊣ D, if there exist

two functors F : C → D and G : D → C with natural transformations η : idC ⇒ G ◦ F
and ϵ : F ◦G ⇒ idD such that the following diagrams commute.

F F ◦G ◦ F G G ◦ F ◦G

F G

F ·η

ϵ·F
idF

η·G

G·ϵ
idG

You may have noticed there’s something strange going on in the diagrams above. Each

of the objects is a functor and each of the morphisms is a natural transformation, but many

of the morphisms appear to be the result of some kind of composition of a functor and a

natural transformation. This operation is called whiskering. Whiskering is important for

understanding the adjunction definition above and for understanding monads in the next

section, so we will spend some time here to understand it.

Definition 18: Whiskering on the Right

Given functors F,G : C → D and H : D → E along with a natural transformation

α : F ⇒ G, if we whisker on the right we get a new natural transformation H · α :

(H ◦ F) ⇒ (H ◦G) with components (H · α)a = Hαa.

C D E C E

F

G

H

H◦F

H◦G

α H·α

18

Definition 19: Whiskering on the Left

Given functors F : C → D and G,H : D → E along with a natural transformation

α : G ⇒ H, if we whisker on the left we get a new natural transformation α · F :

(G ◦ F) ⇒ (H ◦ F) with components (α · F)a = αFa.

C D E C EF

H

G G◦F

H◦F

α α·F

The results of this operation are easier to see if we look at the triangle diagrams above

with the identity functors put in.

F ◦ idC F ◦G ◦ F idC ◦G G ◦ F ◦G

idD ◦ F G ◦ idD

F ·η

ϵ·F
idF

η·G

G·ϵ
idG

Let’s contrast our definition of adjunction to our definition of an isomorphism to help us

get some intuition about how they work. Given functors F : C → D and G,H : D → E , we

would have an isomorphism if G ◦ F = idC and F ◦ G = idD. But we don’t have this in an

adjunction. Instead we have the natural transformations η : idC ⇒ G◦F and ϵ : F ◦G ⇒ idD

and the triangle identities above. At a high level, these tell us that–while the compositions

don’t equal the identities–there is still a way to travel from the identities on our categories

to our compositions of functors. This traveling accrues an error now though: it’s no longer

reversible.

Monads

Our last relationship between categories, the monad, is explicitly a functor from a category

to itself6 rather than a relationship between arbitrary categories. Like an adjunction though,

a monad mutates the objects of the category it acts on in a non-reversible way: there’s some

loss of information that occurs that prevents an output from being uniquely identified with

an input. The connection between adjunctions and monads is actually quite deep. But

before we look into that, let’s see the standard definition.
6When the domain and codomain of a functor are the same category we often call it an endofunctor.

19

Definition 20: Monad

Given a category C, a monad on C is a functor M : C → C with the following two

natural transformations:

1. η : idC ⇒ M called the unit.

2. µ : M ◦M ⇒ M called the multiplication.

These natural transformation are required to make the following diagrams commute.

M ◦M ◦M M ◦M

M ◦M M

Mµ

µ

µ

µM

M M ◦M M

M

ηM Mη

µ
idMidM

For those with some experience with algebraic structures, this creates a monoidal

structure on the collection of endofunctors {M,M ◦ M,M ◦ M ◦ M, . . . } where the

monoidal unit is η and the monoidal product is µ.a

aThis is the reason for the oft maligned phrase that “monads are just monoids in the category of

endofunctors.”

As we mentioned before there’s a deep connection between adjunctions and monads.

Specifically, every adjunction gives rise to a monad G ◦ F : C → C where G is the right

adjoint functor and F is the left adjoint functor. We can think of this induced monad as the

impression or shadow left by the adjunction [9].7 Looking at this more rigorously we can

construct an alternate definition.

7Specifically the impression left on the codomain of the right adjoint.

20

Definition 21: Monad Induced by an Adjunction

Every adjunction F ⊣ G induces a monad G ◦ F : C → C where the unit is the

natural transformation η : idC ⇒ G◦F and the multiplication is the whiskered natural

transformation G · ϵ · F : G ◦ F ◦G ◦ F ⇒ G ◦ F .

Monads often show up in applied settings when the notion of a side-effect or additional

structure on outputs is required. In the context of categorical systems theory, monads make

it possible to compose nondeterministic sytems.

Structure within Categories

We will now look at the kinds of structures that we can find within a category. We call these

structures universal properties. The general theory of universal properties is rich, but it’s

also very abstract and, unfortunately, outside of the scope of this paper [9]. Instead, we will

focus on two specific examples of a universal property that are important to the theory we

explore later on: terminal objects and products.

Terminal Objects

A terminal object in a category is an object that has exactly one morphism to it from every

other object in the category. It’s the Rome of a category: all roads lead to it.

Definition 22: Terminal Object

Let t ∈ C be given. Then t is a terminal object in C if the following hold:

1. For all x ∈ C, there is exactly one morphism f : x → t.

2. For any other object t′ in C that meets condition (1), there exists a unique

isomorphism g : t → t′.

Note here that a terminal object in a category is unique up to unique isomorphism and

not strictly unique: as long as there’s a unique isomorphism between them, there can be an

infinite number of terminal objects in the category. This is in fact the case in the category

Set of sets and functions where all singleton sets {∗} are terminal. If we think about this it

21

should make sense. For any set S there is exactly one function f : S → {∗}: the function

that sends all elements in S to ∗. This includes any other singleton set {−}. And since both

singletons have the same cardinality and since f is surjective we know that this one function

between them is an isomorphism.

Also note that not every category has a terminal object. For instance the category below

has no object that has a morphism to it from every other object.

a b

c d

The existence of a terminal object is not a given in a category, but is structure that some

categories have that tells us something about them. The same is true for products.

Products

Products in category theory are different than the products of two numbers that we are used

to, though it is related in a very generalized way. A product in a category is an object with

morphisms from it to two other objects that is in some precise way the “simplest” or “best”

such object. This is vague, but take the product of integers 3 ∗ 5 = 15 as an example. In

this case, 15 is the simplest number such that both 3 and 5 are among its divisors. Contrast

this to 30 which does have 3 and 5 as divisors, but also 2. This extra divisor is superfluous

and makes 30 a worse candidate for 3 ∗ 5 than 15. Let’s see this in diagram form.

30

15

3 5

x÷2

x÷5 x÷3

(x÷2)÷3(x÷2)÷5

Now let’s make this precise in the general case.

22

Definition 23: Product

Let a, b, v ∈ C and morphisms f : v → a and g : v → b be given.

v

a b
f g

The object v is a product of a and b if the following holds:

• For any other object x with morphisms f ′ : x → a and g′ : x → b, there is a

unique morphism k : x → v such that f ◦ k = f ′ and g ◦ k = g′.

This means the following diagram commutes:

x

v

a b
f g

g′f ′ k

This condition ensures that the object v is the universal or canonical object satisfying

the pattern, with the morphisms of any other such object being able to be written as a sort

of embellishment of the morphisms from v.

In Set the categorical product is exactly the Cartesian product of sets a×b = {(x, y) | x ∈
a and y ∈ b}, and f and g are the projections f : (x, y) 7→ x and g : (x, y) 7→ y. Like in

our integer example above there are other candidates, say the object (a × b) × c, but all of

these other candidates will have a unique factorization to the Cartesian product: they all

have extra stuff. Again we can see the example of (a× b)× c in a diagram.

(a× b)× c

a× b

a b

((x,y),z)7→(x,y)

(x,y)7→x (x,y)7→y

((x,y),z)7→(x,y) 7→y((x,y),z)7→(x,y)7→x

23

It turns out that the category of categories also has products, and they are very similar

to the cartesian product of sets or the external direct product of groups.

Definition 24: The Product of Categories

Given two categories C and D, their product is a new category C×D defined as follows.

1. A collection of objects (c, d) where c ∈ C and d ∈ D.

2. For any two objects (c, d), (c′, d′) ∈ C × D, a collection of morphisms

(f, g) : (c, d) → (c′, d′) where f : c → c′ is a morphism in C and g : d → d′ is a

morphism in D.

3. Identity morphisms id(c,d) = (idc, idd).

4. And composition of morphisms done by composing the morphisms component-

wise, so (h, j) ◦ (f, g) = (h ◦ f, j ◦ g).

We can see how this is similar to the external direct product in the way that the structures

are redefined component-wise, and thus how the product category inherits its structure from

its underlying categories. This product of categories is central to our next section.

Adding Structure to Categories

The last piece of category theory we need before moving on to how this all relates to the

theory of systems is the notion of a monoidal category. Much like we can add additional

structure on a set, we can do the same with a category. For instance, if we take a set S and

add a binary operation ∗ : S × S → S that’s associative and has a unit we get a structure

called a monoid. If we do something similar and slightly more complicated to a category, we

get a monoidal category.

24

Definition 25: Monoidal Categories

A category C is monoidal if the following exist.

1. A functor ⊗ : C × C → C called the monoidal product.

2. An object 1 ∈ C called the unit.

3. A natural isomorphism α : (a⊗ b)⊗ c ⇒ a⊗ (b⊗ c) called the associator, with

components αx,y,z : (x⊗ y)⊗ z → x⊗ (y ⊗ z).

4. A natural isomorphism λ : 1 ⊗ a ⇒ a called the left unitor with components

λx : 1⊗ x → x.

5. A natural isomorphism ρ : a ⊗ 1 ⇒ a called the right unitor with components

λx : x⊗ 1 → x.

All of the above must exist such that the following two diagrams, called the triangle

identity and the pentagon identity, commute.

(x⊗ 1)⊗ y x⊗ (1⊗ y)

x⊗ y

ρx⊗idy
idx⊗λy

αx,y,z

((w ⊗ x)⊗ y)⊗ z (w ⊗ x)⊗ (y ⊗ z)

(w ⊗ (x⊗ y))⊗ z

w ⊗ ((x⊗ y)⊗ z) w ⊗ (x⊗ (y ⊗ z))

αw,x,(y⊗z)

α(w⊗x),y,z

αw,x,y⊗idz

αw,(x⊗y),z

idw⊗αx,y,z

We can create a special kind of monoidal category, called a cartesian category, with two

additional properties.

25

Definition 26: Cartesian Monoidal Category

A monoidal category C is cartesian when its monoidal product is its categorical product

and its monoidal unit is its terminal object. This obviously means that C must contain

all products and have a terminal object.

An example of this would be Set, where the monoidal product is the Cartesian product

and the monoidal unit is the singleton set.

Categorical System Theory

Systems are everywhere in science and engineering. Whether discrete or continuous, deter-

ministic or stochastic, all such systems have two things in common: states that they can

be in, and rules for how the system’s current state changes [8]. These two features alone

describe what are called closed systems. Closed systems are systems that don’t interact with

others or with an outside environment that they’re a part of. This is a hobbling limitation.

In order to open these systems up, we need to give them an interface. We need them to

be able to accept inputs that shape the way they evolve, and we need them to be able to

expose some part of their current state to their surrounding environment. This is the gift

that category theory will give us. By opening our systems up, we open them to the power

of composition. We can connect them.

The Category LensC

Given a cartesian category, it’s possible to construct a new category of systems whose states

are drawn from the objects of your base category and whose rules for updating their state

are drawn from the morphism of your base category. We call this category LensC, where

C is the base category. The objects in this category are called arenas and the morphisms

between them are called lenses [8].

26

Definition 27: Lenses

Given a cartesian category C and objects A−, A+, B−, B+ ∈ C, a lens consists of a

passforward map f : A+ → B+ and a passback map f# : A+ × B− → A− between

two arenas as follows: f#

f

 :

A−

A+

 ⇆

B−

B+

For our purposes we will be sticking to one such cartesian category: the category of lenses

over the category of Euclidean spaces and smooth functions, LensEuc.

Definition 28: The Category LensC

Given the cartesian category C, the category LensC has the following properties.

1. A collection of objects called arenas. An arena

A−

A+

 is a pair of objects in C.

2. For each pair of arenas a collection of morphisms

f#

f

 :

A−

A+

 ⇆

B−

B+

called lenses.

3. For each arena an identity lens

 π2

idA+

 :

A−

A+

 ⇆

A−

A+

 where the passback

map π2 is the projection π2 : A
+ × A− → A−.

27

Definition: The Category LensC, cont.

4. For any two compatible lenses a composite lens as follows:f#

f

 :

A−

A+

 ⇆

B−

B+

g#

g

 :

B−

B+

 ⇆

C−

C+

g#

g

 ◦

f#

f

 :

A−

A+

 ⇆

C−

C+

such that the passforward map is defined as a+ 7→ g(f(a+)), and the passback

map is defined as (a+, c−) 7→ f#(a+, g#(f(a+), c−)).

LensC is also a monoidal category with the monoidal product being defined as follows.

1. The monoidal unit is the arena

1

1

.

2. Given lenses

f#

f

 :

A−

A+

 ⇆

B−

B+

 and

g#

g

 :

C−

C+

 ⇆

D−

D+

, the

monoidal productf#

f

⊗

g#

g

 :

A− × C−

A+ × C+

 ⇆

B− ×D−

B+ ×D+

such that the passforward map is defined as (a+, c+) 7→ (f(a+), g(c+)) and the

passback map is defined as ((a+, c+), (b−, d−)) 7→ ((f#(a+, b−)), g#(c+, d−)).

Note that since C is cartesian, this means that 1 is the terminal object in C and A−×C−

is the categorical product of objects A− and C− in C.

Case Study: Modeling Transcription Networks

To test out this formalism with a real world example, we will be modeling a small portion

of the transcription network of the e. coli bacterium. Specifically we will be modeling the

28

multi-output feed forward loop that’s responsible for the production of proteins that create

a nanometer-scale motor and flagella propeller that the bacteria produce to move themselves

away from stressful environments. Before we dig into that though, let’s look at the basics of

how gene transcription works.

Gene Transcription

Gene transcription is the process by which genes in a cell’s DNA produce proteins. At a

high-level, the process consists of environmental signals, transcription factors, promoters

and genes, mRNA, and response proteins. When an environmental signal activates a related

transcription factor, this activated transcription factor interacts with the promoter region of

a gene as either an activator or a repressor for the gene. This activation or repression then

leads to the increased or decreased production of mRNA from that gene and, therefore, an

increase or decrease in the production of the gene’s related proteins.

The activation or repression curve of the interaction of a transcription factor and the

promoter region of a gene can be modeled by either a Hill function (sigmoidal curve ranging

from β0 to β) or, more simply, as a logic step function. This is how we will model them in

this case study.

Activator: f(X) =
βXn

Kn +Xn
or β ∗ L(X > K)

Repressor: f(X) =
β

1 +
(
X
K

)n or β ∗ L(X < K)

Activation functions can also be multivariate, with a promoter responding to multiple

transcription factors. These multivariate functions can take many forms, with some acting

similar to logic gates or behaving additively.

f(X, Y) = β ∗ L(X > Kx AND Y > Ky)

f(X, Y) = β ∗ L(X > Kx OR Y > Ky)

f(X, Y) = βxX + βyY

The dynamics of transcription networks, the way that the system responds to input

signals, are well modeled by the following differential equation, where Y is the resulting

protein concentration, β is the maximal activity, and α = αdeg+αdil is the combined protein

29

degradation and dilution rates [1].

dY

dt
= βf(X)− αY

It’s common for the product of a gene to be a transcription factor for other genes. By

connecting all of these relations together into a graph we get a gene transcription network.

The e. coli Motor Flagella Network

The transcription network that we will be modeling is the motor flagella network of e. coli

bacteria. This network is a graph with 14 nodes and 25 edges arranged in a common subgraph

called a multi-output feed forward loop shown in figure 1 below [1].

Figure 1: multi-output feed forward loop

In this multi-output FFL every edge represents an activator relationship, and all of the

activation functions of the output genes Z1, Z2, . . . , Z12 mix their input signals as a logical

OR gate.8

This subgraph architecture has several features that are very important to the purpose

it serves. First, the feed forward relation between genes X and Y and the OR gate mixing

in the output genes’ activation functions create a sign-sensitive filter to short fluctuations in

the input signal. This ensures that the process is robust to signal noise and is unlikely to

stop prematurely. Second, the activation thresholds for X and Y on the output genes can be

tuned to ensure that the output genes activate in the proper order: the first output genes to

8In reality they’re combined as a weighted sum. We are using OR gates since they simplify the compu-

tations while retaining the underlying behavior.

30

activate are also the first to deactivate.9 This ordering is impossible without the mediating

effect of gene Y [1].

Simulation Results

To simulate this network we used the excellent AlgebraicDynamics library for the Julia

programming language. Full code for the simulation can be found in the appendix. Using

the formalism above for wiring open systems together with lenses, we can represent our

composed system as the following wiring diagram.

Figure 2: flagella network wiring diagram

Here each node is a “continuous machine”—i.e. a differential system—based on the tran-

scription network dynamics below.

Gene X:
dX

dt
= [β ∗ L(S > κS)− α ∗X]

Gene Y:
dY

dt
= [β ∗ L(X > κX)− α ∗ Y]

Output Genes Z1 . . .Z12:
dZi

dt
= [β ∗ L(X > κX OR Y > κY)− α ∗ Zi]

The signal node, S, is a contrived signal used to test the dynamics of the model. It’s

output is included in figure 3 below of the simulation’s results. For a larger image, see

appendix B.

The simulation stays true to almost all of the expected dynamics of the network. It’s

robust to signal noise and, other than a few exceptions, it activates and deactivates the genes

in the correct order. The reason for the errors in the ordering is the lack of real activation

9This is called first-in-first-out, or FIFO, order.

31

Figure 3: Results from the motor flagella system simulation

thresholds for the genes. All activation thresholds in the simulation were tuned by hand

using only the crude heuristic that κzn < κzn+1 for the X activation and κzn > κzn+1 for the

Y activation.

In future modeling work it should be possible to find real-world data with more time

and journal access for secondary research. Or, if none are found, it should also be possible

to define a loss function based on the expected dynamics and tune the model’s parameters

algorithmically using genetic programming or some other form of heuristic search. Lastly, it

might also improve the accuracy of the model if we removed the logical approximations in

it. We could replace the step functions with hill functions and the OR gates in the output

genes’ activation functions for a weighted sum.

Conclusion and Future Work

You may have noticed that there wasn’t actually much category theory in the case study

section. We didn’t even explicitly use any lenses or arenas but kept them hidden inside the

wiring diagrams. This was on purpose.

This pattern repeats in much of applied category theory. The category theory itself is used

to find the right abstraction over the domain and define what it means to compose whatever

32

the atomic objects end up being (and often what it means to multiply them as well). Then

on top of this theory is created a visual and diagrammatic language that encapsulates the

abstraction [4, 5, 8]. This visual language is what we work with.

The benefits of using the diagrams is that they are often easier to work with and, crucially,

are easier to understand; especially for stakeholders that don’t have mathematical training.

The diagram is simultaneously “the math” and the visual aid.

The ability to model a fairly complicated system in the time alotted for this project

is evidence of how effective it is. This was done without background in modeling or gene

transcription. And because the method is so general thanks to category theory, it’s possible

to use this same language across a variety of system types.

Had time and paper length allowed, we could have used this same language to model a

multitude of other systems. We could’ve changed the underlying Cartesian category of our

lenses from the category of Euclidean spaces and smooth maps to the category of sets and

functions. With this we could compose and multiply finite state machines and design deter-

ministic, mission critical software. Then we could change the lenses to monadic lenses and

start composing and multiplying nondeterministic systems like Markov decision processes to

model and design decision-making processes under uncertainty [8].

The ability to capture such disparate processes within a single formalism is the gift of

abstraction. Learning this general, common language helps us organize our thoughts about

what systems are and how we use them to model phenomena in the world. And perhaps

even more importantly, it helps us share them.

33

References

[1] Alon, U. An introduction to systems biology: design principles of biological circuits.

Chapman and Hall/CRC, 2019.

[2] Asudeh, A., and Giorgolo, G. Enriched meanings: Natural language semantics with

category theory, vol. 13. Oxford University Press, 2020.

[3] Cheng, E. The joy of abstraction: an exploration of math, category theory, and life.

Cambridge University Press, 2022.

[4] Coecke, B., and Kissinger, A. Picturing Quantum Processes: A First Course in

Quantum Theory and Diagrammatic Reasoning. Cambridge University Press, 2017.

[5] Fong, B., and Spivak, D. I. An invitation to applied category theory: seven sketches

in compositionality. Cambridge University Press, 2019.

[6] Goldblatt, R. Topoi: the categorial analysis of logic. Elsevier, 2014.

[7] Milewski, B. Category theory for programmers. Blurb, 2018.

[8] Myers, D. J. Categorical systems theory. Manuscript in preparation (2022).

[9] Riehl, E. Category theory in context. Courier Dover Publications, 2017.

34

Appendix A: Simulation Code

� �
using AlgebraicDynamics

using AlgebraicDynamics.DWDDynam

using Catlab.WiringDiagrams, Catlab.Programs

using LabelledArrays

using OrdinaryDiffEq, Plots, Plots.PlotMeasures

Define the primitive systems

signal(u, x, p, t) = [0.4 * (2 < t < 5) - 0.4 * (8 < t < 9) + 0.4 * (9 < t < 10

.1) - 0.4 * (11 < t < 12) + 0.4 * (12 < t < 13.05) - 0.4 * (14 < t < 17)]

flhDC(u, x, p, t) = [p.β1 * (x[1] > p.κ1) - p.α1 * u[1]]

fliA(u, x, p, t) = [p.β2 * (x[1] > p.κ2) - p.α2 * u[1]]

fliL(u, x, p, t) = [p.β3 * (x[1] > p.κ3 || x[2] > p.κ4) - p.α3 * u[1]]

fliE(u, x, p, t) = [p.β4 * (x[1] > p.κ5 || x[2] > p.κ6) - p.α4 * u[1]]

fliF(u, x, p, t) = [p.β5 * (x[1] > p.κ7 || x[2] > p.κ8) - p.α5 * u[1]]

flgA(u, x, p, t) = [p.β6 * (x[1] > p.κ9 || x[2] > p.κ10) - p.α6 * u[1]]

flgB(u, x, p, t) = [p.β7 * (x[1] > p.κ11 || x[2] > p.κ12) - p.α7 * u[1]]

flhB(u, x, p, t) = [p.β8 * (x[1] > p.κ13 || x[2] > p.κ14) - p.α8 * u[1]]

fliD(u, x, p, t) = [p.β9 * (x[1] > p.κ15 || x[2] > p.κ16) - p.α9 * u[1]]

flgK(u, x, p, t) = [p.β10 * (x[1] > p.κ17 || x[2] > p.κ18) - p.α10 * u[1]]

fliC(u, x, p, t) = [p.β11 * (x[1] > p.κ19 || x[2] > p.κ20) - p.α11 * u[1]]

meche(u, x, p, t) = [p.β12 * (x[1] > p.κ21 || x[2] > p.κ22) - p.α12 * u[1]]

mocha(u, x, p, t) = [p.β13 * (x[1] > p.κ23 || x[2] > p.κ24) - p.α13 * u[1]]

flgM(u, x, p, t) = [p.β14 * (x[1] > p.κ25 || x[2] > p.κ26) - p.α14 * u[1]]

ContinuousMachine{T}(ninputs, nstates, noutputs, f, r)

s = ContinuousMachine{Float64}(0, 1, 1, signal, (u, p, t) -> u)

X = ContinuousMachine{Float64}(1, 1, 1, flhDC, (u, p, t) -> u)

Y = ContinuousMachine{Float64}(1, 1, 1, fliA, (u, p, t) -> u)

Z1 = ContinuousMachine{Float64}(2, 1, 1, fliL, (u, p, t) -> u)

Z2 = ContinuousMachine{Float64}(2, 1, 1, fliE, (u, p, t) -> u)

Z3 = ContinuousMachine{Float64}(2, 1, 1, fliF, (u, p, t) -> u)

Z4 = ContinuousMachine{Float64}(2, 1, 1, flgA, (u, p, t) -> u)

Z5 = ContinuousMachine{Float64}(2, 1, 1, flgB, (u, p, t) -> u)

Z6 = ContinuousMachine{Float64}(2, 1, 1, flhB, (u, p, t) -> u)

Z7 = ContinuousMachine{Float64}(2, 1, 1, fliD, (u, p, t) -> u)

Z8 = ContinuousMachine{Float64}(2, 1, 1, flgK, (u, p, t) -> u)

Z9 = ContinuousMachine{Float64}(2, 1, 1, fliC, (u, p, t) -> u)

Z10 = ContinuousMachine{Float64}(2, 1, 1, meche, (u, p, t) -> u)

Z11 = ContinuousMachine{Float64}(2, 1, 1, mocha, (u, p, t) -> u)

Z12 = ContinuousMachine{Float64}(2, 1, 1, flgM, (u, p, t) -> u)

WiringDiagram([external inports], [external outports])

35

Box(name, [inports], [outports])

add_box!(wiring_diagram, box)

motor_diagram = WiringDiagram([], [

:Z1_level,

:Z2_level,

:Z3_level,

:Z4_level,

:Z5_level,

:Z6_level,

:Z7_level,

:Z8_level,

:Z9_level,

:Z10_level,

:Z11_level,

:Z12_level,

:signal,

:X_level,

:Y_level

])

signal_generator = add_box!(motor_diagram, Box(:S, [], [:signal_level]))

geneX = add_box!(motor_diagram, Box(:X, [:X_signal], [:X_level]))

geneY = add_box!(motor_diagram, Box(:Y, [:X_level], [:Y_level]))

geneZ1 = add_box!(motor_diagram, Box(:Z1, [:X_level, :Y_level], [:Z1_level]))

geneZ2 = add_box!(motor_diagram, Box(:Z2, [:X_level, :Y_level], [:Z2_level]))

geneZ3 = add_box!(motor_diagram, Box(:Z3, [:X_level, :Y_level], [:Z3_level]))

geneZ4 = add_box!(motor_diagram, Box(:Z4, [:X_level, :Y_level], [:Z4_level]))

geneZ5 = add_box!(motor_diagram, Box(:Z5, [:X_level, :Y_level], [:Z5_level]))

geneZ6 = add_box!(motor_diagram, Box(:Z6, [:X_level, :Y_level], [:Z6_level]))

geneZ7 = add_box!(motor_diagram, Box(:Z7, [:X_level, :Y_level], [:Z7_level]))

geneZ8 = add_box!(motor_diagram, Box(:Z8, [:X_level, :Y_level], [:Z8_level]))

geneZ9 = add_box!(motor_diagram, Box(:Z9, [:X_level, :Y_level], [:Z9_level]))

geneZ10 = add_box!(motor_diagram, Box(:Z10, [:X_level, :Y_level], [:Z10_level]))

geneZ11 = add_box!(motor_diagram, Box(:Z11, [:X_level, :Y_level], [:Z11_level]))

geneZ12 = add_box!(motor_diagram, Box(:Z12, [:X_level, :Y_level], [:Z12_level]))

#add_wires(wiring_diagram, [

(box, output number) => (box, input_number),

(box, output number) => (box, input_number),

etc.

#])

add_wires!(motor_diagram, [

(signal_generator, 1) => (geneX, 1),

(geneX, 1) => (geneY, 1),

(geneX, 1) => (geneZ1, 1),

(geneX, 1) => (geneZ2, 1),

(geneX, 1) => (geneZ3, 1),

(geneX, 1) => (geneZ4, 1),

(geneX, 1) => (geneZ5, 1),

36

(geneX, 1) => (geneZ6, 1),

(geneX, 1) => (geneZ7, 1),

(geneX, 1) => (geneZ8, 1),

(geneX, 1) => (geneZ9, 1),

(geneX, 1) => (geneZ10, 1),

(geneX, 1) => (geneZ11, 1),

(geneX, 1) => (geneZ12, 1),

(geneY, 1) => (geneZ1, 2),

(geneY, 1) => (geneZ2, 2),

(geneY, 1) => (geneZ3, 2),

(geneY, 1) => (geneZ4, 2),

(geneY, 1) => (geneZ5, 2),

(geneY, 1) => (geneZ6, 2),

(geneY, 1) => (geneZ7, 2),

(geneY, 1) => (geneZ8, 2),

(geneY, 1) => (geneZ9, 2),

(geneY, 1) => (geneZ10, 2),

(geneY, 1) => (geneZ11, 2),

(geneY, 1) => (geneZ12, 2),

(signal_generator, 1) => (output_id(motor_diagram), 13),

#(geneX, 1) => (output_id(motor_diagram), 14),

#(geneY, 1) => (output_id(motor_diagram), 15),

(geneZ1, 1) => (output_id(motor_diagram), 1),

(geneZ2, 1) => (output_id(motor_diagram), 2),

(geneZ3, 1) => (output_id(motor_diagram), 3),

(geneZ4, 1) => (output_id(motor_diagram), 4),

(geneZ5, 1) => (output_id(motor_diagram), 5),

(geneZ6, 1) => (output_id(motor_diagram), 6),

(geneZ7, 1) => (output_id(motor_diagram), 7),

(geneZ8, 1) => (output_id(motor_diagram), 8),

(geneZ9, 1) => (output_id(motor_diagram), 9),

(geneZ10, 1) => (output_id(motor_diagram), 10),

(geneZ11, 1) => (output_id(motor_diagram), 11),

(geneZ12, 1) => (output_id(motor_diagram), 12)

])

final system = oapply(d::WiringDiagram, ms::Vector{M}) where {M<:

AbstractMachine}

system = oapply(motor_diagram, [s, X, Y, Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10

, Z11, Z12])

Solve and plot

x0 = LVector(X_signal=0)

u0 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

a = 10

b = 10

params = LVector(

37

β1=a * 13 + b + 1, κ1=1, α1=1,

β2=2 * a * 13 + b, κ2=a * 7 + b, α2=1,

β3=1, κ3=a * 1 + b, κ4=a * 12 + b, α3=1,

β4=1, κ5=a * 2 + b, κ6=a * 11 + b, α4=1,

β5=1, κ7=a * 3 + b, κ8=a * 10 + b, α5=1,

β6=1, κ9=a * 4 + b, κ10=a * 9 + b, α6=1,

β7=1, κ11=a * 5 + b, κ12=a * 8 + b, α7=1,

β8=1, κ13=a * 6 + b, κ14=a * 7 + b, α8=1,

β9=1, κ15=a * 8 + b, κ16=a * 6 + b, α9=1,

β10=1, κ17=a * 9 + b, κ18=a * 5 + b, α10=1,

β11=1, κ19=a * 10 + b, κ20=a * 4 + b, α11=1,

β12=1, κ21=a * 11 + b, κ22=a * 3 + b, α12=1,

β13=1, κ23=a * 12 + b, κ24=a * 2 + b, α13=1,

β14=1, κ25=a * 13 + b, κ26=a * 1 + b, α14=1

)

tspan = (0.0, 25.0)

problem = ODEProblem(final system, u0, tspan, params)

solution = solve(problem, Tsit5())

problem = ODEProblem(system, u0, tspan, params)

solution = solve(problem, Tsit5())

plot(solution, system, params,

lw=2, title="Motor Flagella Network",

xlabel="time", ylabel="Presence of Transcription Factors Z",

size=(2000, 1000)

)� �

38

Appendix B: Simulation Results

39

