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Preface

This lab manual is designed to accompany the textbook Foundations of Applied Mathematics
Volume 4: Modeling with Dynamics and Control by Humpherys, Jarvis and Whitehead. The labs
focus on numerical methods for solving ordinary and partial differential equations, including appli-
cations to optimal control problems. The reader should be familiar with Python [VD10] and its
NumPy [Oli06, ADH+01, Oli07] and Matplotlib [Hun07] packages before attempting these labs. See
the Python Essentials manual for introductions to these topics.

©This work is licensed under the Creative Commons Attribution 3.0 United States License.
You may copy, distribute, and display this copyrighted work only if you give credit to Dr. J. Humpherys.
All derivative works must include an attribution to Dr. J. Humpherys as the owner of this work as
well as the web address to

https://github.com/Foundations-of-Applied-Mathematics/Labs
as the original source of this work.
To view a copy of the Creative Commons Attribution 3.0 License, visit

http://creativecommons.org/licenses/by/3.0/us/
or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105,
USA.
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1 Animations and 3D
Plotting in Matplotlib

Lab Objective: Animations and 3D plots are useful in visualizing solutions to ODEs and PDEs
found in many dynamics and control problems. In this lab we explore the functionality contained in
the 3D plotting and animation libraries in Matplotlib.

Animation Basics
The Matplotlib library has a module matplotlib.animation that has many powerful options In
particular, it contains a class called FuncAnimation that we will use throughout this lab. This
class allows us to create animations in a very flexible way. FuncAnimation requires a user-defined
update function that controls the plot for each frame of the animation. This grants the user wide
flexibility and control of the resulting animation. The following steps describe the process of creating
an animated plot using the FuncAnimation class:

1. Create a figure object.

2. Create line objects to be altered dynamically.

3. Choose how to parameterize the frames.

4. Create a function to update line objects.

5. Create a FuncAnimation object.

6. Display the animation (several methods exist to do so).

Let’s work through an example of this. Consider the function

f(x, t) =
1

1 + t
e−x2/(1+t)2

modeling the diffusion of heat through a rod. Suppose that we want to animate how the temperature
changes in the segment of a rod for x ∈ [−4, 4] as time evolves from t = 0 to t = 5. In this case, it
will be easiest to not precompute the data. This has a higher risk of making the plot stutter if we
just use plt.show(), but other methods of showing the plot (discussed below) can avoid this issue.

First, we’ll set up ranges for x and t:

3



4 Lab 1. Animations and 3D Plotting in Matplotlib

import numpy as np

xs = np.linspace(-4, 4, 150)
ts = np.linspace(0, 5, 251)

Next, we will explicitly create the figure and axis objects, as well a line object that we will
update. Most Matplotlib functions actually return the objects that they manipulate, so this mostly
just requires saving the output of the functions we call:

from matplotlib import pyplot as plt
from matplotlib.animation import FuncAnimation

# Create a figure and axis object
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
plt.xlim([-2, 2])
plt.ylim([0, 1.1])

Note

Many functions for customizing plots (e.g. setting titles, axis ranges, and labels) have different
function names when called directly on an axes object. However, calling from plt can still
be used for these as long as you create subplots one-at-a-time. More detailed information on
the functions available to use with axes objects can be found here: https://matplotlib.org/
stable/api/axes_api.html.

When we have explicitly defined an axes object, plots are generated by calling the chosen plot function
on the axes object (for example, ax.plot(...)). The syntax is otherwise identical to calling directly
from plt:

# Create an empty line object
# plt.plot actually returns a list of objects; the trailing comma
# extracts the value from the list
line, = ax.plot([], [], "r-")

If we want more lines or also points or scatterplots, we create those here as well.
Next, we need to create the update function. The FuncAnimation object will call this function

to create each frame of the animation. The value passed to this function will be a value from our
frames list. Since we aren’t precomputing the data we will plot, it will be most convenient to use ts
as the frame values. In other cases, it can be more useful to use a range() instead. So, every time
our update function is called, it will be passed the current value of t. We will use the set_data()
method to update the line object we created earlier:

def update(t):
line.set_data(xs, np.exp(- xs**2 / (1+t)**2) / (1+t))

https://matplotlib.org/stable/api/axes_api.html
https://matplotlib.org/stable/api/axes_api.html
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If we had multiple line objects, we would call .set_data() on each of them inside of update().
Finally, we will create and display the animation:

ani = FuncAnimation(fig, update, frames=ts, interval=20)
plt.show()

The interval parameter specifies how many milliseconds should be between each frame (as an
integer). Usually we want to choose it so that it takes the animation one second to go from t = 0

to t = 1. If time goes from t0 to tf and we are using nt points in our linspace, the right number of
milliseconds per frame is given by the following formula:

Interval =

⌈
1000(tf − t0)

nt − 1

⌉
.

Some additional parameters to FuncAnimation are given in the table below.

Note

Using plt.show() does not work on all platforms (e.g. VSCode). For alternate methods
to show plots, refer to the Saving Animations section below and to the Additional Materials
section.

Parameter Description
fargs (tuple) Additional arguments to pass update function
repeat (bool) Determines whether animation repeats (Default: True.)

blit (bool) Determines whether blitting is used. (Default: False.) Blit-
ting means that FuncAnimation will attempt to only update
parts of the plot that were actually changed, which may make
your animation run faster. If this is enabled, your update
function needs to return a list of all of the line objects that
were updated.

Note

When using FuncAnimation, it is essential that a reference is kept to the instance of the class.
The animation is advanced by a timer and if a reference is not held for the object, Python will
automatically garbage collect and the animation will stop.

Achtung!
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If you display an animation in a Jupyter notebook using plt.show(), it will not persist after
closing, stopping, and reopening the notebook. What this means is that when you open the
notebook later, there will be a static image in place of your animation. This is particuarly
problematic for turning in an animation to be graded. Instead of using plt.show(), save the
animation to a file and embed it in your notebook (described below).

Saving Animations
The simplest way to save an animation is to encode it to a .mp4 file, which will allow you to display
the video inline inside a Jupyter Notebook, or view it using any video player supporting the chosen
filetype. Unfortunately, Matplotlib does not come with a built-in video encoder. The matplotlib.
animation module supports several third-party encoders. FFmpeg is a lightweight solution that is
relatively easy to install:

• On Linux, run sudo apt-get install ffmpeg in the terminal, or the equivalent command for
your package manager.

• On Mac, run brew install ffmpeg in the terminal.

• On Windows:

– FFmpeg is easiest to install if you have Windows Subsystem for Linux (WSL) installed.
In that case, you can run the Linux installation command in your WSL terminal.

– Otherwise, you can download it manually from https://github.com/BtbN/FFmpeg-Builds/
releases;1 choose one of the versions there marked for Windows. If you use this option,
you must also manually add its file location to your PATH environment variable. If this
option does not work easily, it will be easier to just install WSL and use the other
option. Consult Getting Started for instructions on how to do this.

To check if you have FFmpeg installed correctly, open your terminal and run the following command:

$ ffmpeg

It should print out a (rather long) help page.
When available, FFmpeg is generally chosen as the default by Matplotlib. If you get errors,

however, you may need to manually specify to Matplotlib to use it:

animation.writer = animation.writers["ffmpeg"]

If Matplotlib does not recognize FFmpeg after it is installed, you may also need to restart your
Python instance.

Now we proceed to actually saving the animation. Create the animation object as normal,

# Code to create figure, axes, and update function goes here
# ...
ani = animation.FuncAnimation(fig, update, frames=frames, interval=interval)

1This is one of the sources for the release version endorsed by the FFmpeg website https://www.ffmpeg.org/
download.html.

https://github.com/BtbN/FFmpeg-Builds/releases
https://github.com/BtbN/FFmpeg-Builds/releases
https://www.ffmpeg.org/download.html
https://www.ffmpeg.org/download.html
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then, in a seperate code cell, use its .save() method with the desired filename to render and save
the video.

ani.save("my_animation.mp4")

Finally, to display the .mp4 video in a Jupyter Notebook, place the following HTML code in a
separate markdown cell (with the filename changed as appropriate):

<video src="my_animation.mp4" controls>

The video will remain embedded in the Jupyter Notebook as long as the .mp4 file is found in the
same directory as it.

Note

In Jupyter Notebook, to insert a markdown cell, first insert a new cell, then in the dropdown
menu at the top, change the type from Code to Markdown.

If you update the video file, you will need to refresh the markdown cell for the embedded
video to update. To do this, open the markdown cell in text mode again, and then return it to
display mode.

Remember to push the video files of your animation with the rest of your lab!

Problem 1. Use the FuncAnimation class to animate the function y = sin(x + 3t) where
x ∈ [0, 2π], and t ranges from 0 to 10 seconds. Embed your animation into the notebook.

Hint: For the frames argument, use a linspace from 0 to 10.

3D Plotting Basics
3D plotting is very similar to 2D plotting. The main difference is that a set of 3D axes must be
created within the figure object. A 3D axes object is created using the additional keyword argument
projection="3d":

>>> # Create figure object.
>>> fig = plt.figure()
>>>
>>> # Create 3D axis object using add_subplot().
>>> ax = fig.add_subplot(111, projection="3d")

3D axes objects can also be created using plt.subplot; however, many 3D plotting functions
only work if you have the axes object, so it is better to use fig.add_subplot.
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Problem 2. The orbits for Mercury, Venus, Earth, and Mars are stored in the file orbits.npz.
The file contains four NumPy arrays: mercury, venus, earth, and mars. The first column of
each array contains the x-coordinates, the second column contains the y-coordinates, and the
third column contians the z-coordinates of each planet, all relative to the Sun, and expressed in
AU (astronomical units, the average distance between Earth and the Sun, approximately 150
million kilometers).

Use np.load("orbits.npz") to load the data for the four planets’ orbits. The .npz
filetype loads as (essentially) a dictionary of arrays; this file has four keys: "mercury", "venus
", "earth", and "mars". Create a 3D plot of the planet orbits, the starting positions of each
planet as a point, and the position of the sun as a point, and compare your results with Figure
1.1. Make sure to include a legend.

As you work through the next few problems, it may be helpful to use a for loop and/or
dictionaries to plot each of the planets.

Hint: The z range of the data is very narrow. Set the z range of the plot manually with
ax.set_zlim3d().

1.0
0.5

0.0
0.5

1.0
1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

Orbits of the Inner Planets

Sun
Mercury
Venus
Earth
Mars

Figure 1.1: The solution to Problem 2.
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3D Animations

The key difference between 2D and 3D animations is that the .set_data() method does not support
setting the z values. Instead, use the .set_data_3d() method, which can be used to update x, y,
and z all together. Note that in order to use this method, the line object must be a 3D line object.
An empty one can be created as follows:

line, = ax.plot([], [], [])

Animation in 3D requires more careful consideration than in the 2D case. When matplotlib
displays a 3D plot, it does so in an interactive figure that allows the user to change the camera angle
and position. Since 3D rendering is more computationally expensive than 2D rendering, interactive
views of 3D animations often have poor framerates and choppy rendering. This is what calling plt.
plot() attempts to do; instead, it is much better to either render the animation to a file and then
embed the file as discussed above (recommended), or to use the HTML5 API to embed it as discussed
in Additional Materials (runs faster but often has issues after closing the notebook).

Problem 3. Each row of the arrays in orbits.npz gives the position of the planets at evenly
spaced time points. The arrays correspond to 1400 points in time over a 700 day period
(beginning on 2018-5-30).

Create a 3D animation of the planet orbits. Display lines for the trajectories of the orbits
and points for the sun and current positions of the planets at each point in time. The lines
displayed at each frame should only be the part the planet has traveled so far; see Figure 1.2
for an example of what this should look like. Include a legend, and embed your animated plot.

Hint: For the frames argument, use range(1400). The parameter your update() function
will receive will be the index of time for the frame, rather than the actual value of time. This
will be useful for slicing arrays.

Achtung!

The method .set_data_3d() expects a sequence of data for each dimension. Keep this in mind
as you create your update functions for the points in Problem 3

Surface Plotting
3D surface plotting is very similar to regular 3D plotting discussed earlier. With surface plots,
however, we must first create a meshgrid for X and Y. The process is identical to how to plot
heatmaps and contour plots.

Meshgrids are created using the NumPy command np.meshgrid(x, y) where x and y are 1D
arrays representing the x and y coordinates of the grid. This function creates 2D arrays X and Y that
combined give cartesian cordinates for every point made from the x and y arrays. Once a meshgrid
is defined, a surface plot is generated by calling ax.plot_surface(X, Y, Z), where Z is a 2D array
of height values that is the same shape as X and Y.
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Problem 4. Make a surface plot of the bivariate normal density function given by

f(x) =
1√

det(2πΣ)
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
where x = [x, y]T, µ = [0, 0]T is the mean vector, and

Σ =

[
1 3/5

3/5 2

]
is the covariance matrix. Compare your results with Figure 1.3.

1.0
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0.0
0.5

1.0
1.0

0.5

0.0
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1.0
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Figure 1.2: Example of what your Problem 3 animation should look like mid-animation.
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Bivariate Normal PDF

Figure 1.3: The solution to Problem 4.

Surface Animations

Animating a 3D surface is slightly different from animating a parametric curve in 3D. The object
created by .plot_surface() does not have a .set_data() method. Instead, use ax.clear() to
empty the axes at each frame, followed by a new call to ax.plot_surface(). Note that the axis
limits must be reset after ax.clear() is called; otherwise, the limits will change every frame of the
animation and it will look rather strange.

Problem 5. Use the data in vibration.npz to produce a surface animation of the solution to
the wave equation for an elastic rectangular membrane. The file contains three NumPy arrays:
X, Y, Z. X and Y are meshgrids of shape (300,200) corresponding to 300 points in the y-direction
and 200 points in the x-direction, giving a 2x3 rectangle with one corner at the origin. Z is of
shape (150,300,200), giving the height of the vibrating membrane at each (x,y) point for 150
values of time. Embed your animation into the notebook.

In the language of partial differential equations, this is the solution to the following ini-
tial/boundary value problem:

utt = 62(uxx + uyy)

(x, y) ∈ [0, 2]× [0, 3], t ∈ [0, 5]

u(t, 0, y) = u(t, 2, y) = u(t, x, 0) = u(t, x, 3) = 0
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u(0, x, y) = xy(2− x)(3− y)

Achtung!

Remember to push your video files with the rest of the lab! Otherwise, your grader will not be
able to view your animations, even if they are correctly embedded in your notebook.

When running git add, you will need to explicitly specify the video files’ filenames the
first time you add them: git add animation1.mp4 animation2.mp4 [...]
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Additional Material
Directly Embedding Animations

While saving animations to a file has the advantage that the animation will always persist if the
notebook is closed and reopened, it tends to be much slower than directly embedding the animation
in the notebook. Directly embedding can thus be useful in the process of creating an animation by
allowing faster experimentation.

After creating an animation, calling plt.show() will attempt to embed it; however, many
systems may struggle to display an animation in this way. When this is the case, it may be easier to
embed the animation using the HTML5 API. Jupyter notebooks use HTML to display their contents,
so we can leverage this and use HTML5’s video capabilities to insert video directly into a notebook.

To embed the video directly into a notebook using HTML5 you must use the IPython.display
module. This module will be able to interpret an encoded HTML5 video, which can be created by
matplotlib.animation. This method tends to be much more simple than rendering the animation
to an .mp4 file and then embedding that file into a notebook, and it tends to encounter fewer bugs
than using plt.show(). However, the animation generally does not persist if the notebook is closed
and reopened, and this generally still requires FFmpeg to be installed. Here is a snippet you may
reference to embed an animation using IPython.display

# required import statements
from IPython.display import HTML
import matplotlib.pyplot as plt
from matplotlib import animation

# disable interactive mode
plt.ioff()
'''
Here we would insert whatever code needed to create the animation
such as instantiating the fig object and defining the update function
'''
# create animation
ani = animation.FuncAnimation(fig, update, frames, interval)
# render as html5 and embed
HTML(ani.to_html5_video())

Achtung!

Note that animations that are embedded in the notebook using HTML() do not always persist
if the notebook is closed and reopened. They sometimes do, but are very inconsistent. While
this method can be useful for more quickly testing animations, do not use this method for
embedding the final animations of your finished lab, as the person grading them will not be
able to view your animations.
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2 Intro to IVP and BVP

Initial Value Problems
An initial value problem is a differential equation with a set of constraints at the initial point. An
IVP may look something like this

y′′ + y′ + y = f(t)

y(a) = α

y′(a) = β

t ∈[a, b].

This problem gives a differential equation with initial conditions for y and y′.
Formulating and solving initial value problems is an important tool when solving many types of

problems. One simple example of an IVP would be a differential equation modeling the path of a ball
thrown in the air where the initial position (y(a)) and velocity (y′(a)) are known. These problems
can be tricky to solve by hand. Luckily, SciPy has great tools that help us solve initial value problems
for most systems of first order ODEs. We will be using solve_ivp from scipy.integrate.

Consider the following example

y′′ + 3y = sin(t), y(0) = −π/2, y′(0) = π, t ∈ [0, 5]

We begin by changing this second order ODE into a first order ODE system.

Let y1 = y and y2 = y′ so that[
y1
y2

]′
=

[
y2

sin t− 3y1

]
.

This formulation allows us to use solve_ivp. We need three code elements in order to use solve_ivp:

1. The ODE function:
This function defines the right-hand side of the ODE system, and returns an array containing
its values for our first order system of ODEs.

2. The time domain:
This is a tuple giving the interval of integration.

15
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3. The initial conditions:
This is an array containing the initial conditions of each coordinate of the ODE. In our example,
these are the value of the "zeroeth" derivative, followed by the first derivative, and so on if
there are higher order derivatives.

The following code sets up and solves the IVP in the above example:

from scipy.integrate import solve_ivp
import numpy as np

# element 1: the ODE function
def ode(t, y):

'''defines the ode system'''
return np.array([y[1], np.sin(t)-3*y[0]])

# element 2: the time domain
t_span = (0, 5)

# element 3: the initial conditions
y0 = np.array([-np.pi /2, np.pi])

# solve the system
# max_step is an optional parameter that controls maximum step size and
# a smaller value will result in a smoother graph
sol = solve_ivp(ode, t_span, y0, max_step=0.1)

# as an alternative, the parameter t_eval can be used to evaluate the function
# at specific points; this can also be used to get a smooth graph
sol = solve_ivp(ode, t_span, y0, t_eval=np.linspace(0, 5, 150))

Then we can plot the solution with the following code:

from matplotlib import pyplot as plt

plt.plot(sol.t,sol.y[0])
plt.xlabel('t')
plt.ylabel("y(t)")
plt.show()
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Figure 2.1: The solution to the above example

Problem 1. Use solve_ivp to solve for y in the equation y′′−y = sin(t) with initial conditions
y(0) = − 1

2 , y′(0) = 0 and plot your solution on the interval [0, 5]. Compare this to the analytic
solution y = − 1

2 (e
−t + sin(t)).

Note: Using max_step = 0.1 with give you the smoother graph seen in figure 2.2.
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Figure 2.2: The solution to Problem 1
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Boundary Value Problems
A boundary value problem is a differential equation with a set of constraints. It is similar to initial
value problems, but may give end constraints as well as initial constraints. A boundary value problem
may look something like this

y′′ + y′ + y = f(t)

y(a) = α

y(b) = β

t ∈[a, b],

where we have both right and left hand boundary conditions on y. One simple example of a BVP
would be a differential equation modeling the path of a ball thrown in the air where the initial
position (y(a)) and final position (y(b)) are known. Note that like an IVP problem, a BVP problem
has two boundary conditions.

SciPy has great tools that help us solve boundary value problems. We will be using solve_bvp
from scipy.integrate. Consider the following example:

y′′ + 9y = cos(t), y′(0) = 5, y (π) = −5

3
. (2.1)

We begin by changing this second order ODE into a first order ODE system.

Let y1 = y and y2 = y′ so that,[
y1
y2

]′
=

[
y2

cos t− 9y1

]
.

This formulation allows us to use solve_bvp. It is important to notice that there are several key dif-
ferences between solve_ivp and solve_bvp. We need four code elements in order to use solve_bvp:

1. The ODE function:
This is essentially the same function we used in solve_ivp.1

2. The boundary condition function:
Instead of just having a tuple containing our initial values, we now must use a function that
returns an array of the residuals of the boundary conditions. We pass in 2 arrays: ya, repre-
senting the initial values, and yb, representing the final values. The ith entry of those arrays
represents the boundary condition at the ith coordinate of the ODE. Returning ya[0]-x would
indicate that we know y1(a) = x, ya[1]-x would indicate that we know y2(a) = x, yb[0]-x
would indicate that we know y1(b) = x, and yb[1]-x would indicate that we know y2(b) = x.

3. The time domain:
Instead of a tuple giving the interval of integration, we now must pass in a linspace from the
starting time to the ending time, containing the desired number of points (we now must choose
the number). As part of its algorithm, solve_bvp will add additional points to the mesh to
attempt to reduce the error of the approximation, so it is not generally necessary to pass in a
very fine mesh. This also means that the mesh of the returned solution will generally not be
the same as the one you pass in here.

1There is a technical difference between how the two methods call the ODE function. Unlike solve_ivp, solve_bvp
calls the function on all of the time steps all at once, so t will be an array and y will be a (n, T ) array where n is
the dimension of the ODE and T is the number of timesteps. For most applications, this leads to no difference in how
you code the ODE function, as can be seen in the examples; however, for some applications, such as piecewise ODE
functions, this fact must be taken into consideration.
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4. The initial guess:
As we no longer know all of the initial values, we now must make a (hopefully educated) guess.
This is an array of shape (n, t_steps) where n is the shape of the output of the ODE function
and t_steps is the chosen number of steps in our time domain linspace.

from scipy.integrate import solve_bvp
import numpy as np

# element 1: the ODE function
def ode(t, y):

''' define the ode system '''
return np.array([y[1], np.cos(t) - 9*y[0]])

# element 2: the boundary condition function
def bc(ya, yb):

''' define the boundary conditions '''
# ya are the initial values
# yb are the final values
# each entry of the return array will be set to zero
return np.array([ya[1] - 5, yb[0] + 5/3])

# element 3: the time domain.
t_steps = 100
t = np.linspace(0, np.pi, t_steps)

# element 4: the initial guess.
y0 = np.ones((2, t_steps))

# Solve the system.
sol = solve_bvp(ode, bc, t, y0)

The syntax for plotting the function is also slightly different:

import matplotlib.pyplot as plt

# here we plot sol.x instead of sol.t
plt.plot(sol.x, sol.y[0])
plt.xlabel('t')
plt.ylabel("y(t)")
plt.show()
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Figure 2.3: The solution to the above boundary value problem

Problem 2. Use solve_bvp to solve for y in the equation y′′ + y′ = − 1
4e

−t/2 + sin(t)− cos(t)

with boundary conditions y(0) = 6, y′(5) = −0.324705 and plot your solution on the interval
[0, 5]. Compare this to the analytic solution y = e−t/2 − sin(t) + 5.
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Figure 2.4: The solution to problem 2.
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One other useful functionality of solve_bvp: sol.sol is a callable function, which is the
estimation of the boundary value problem. You can plug in any value or numpy array (sol.sol(np
.linspace), sol.sol(float), sol.sol(list)), like a normal lambda function.

The Pitfalls of solve_bvp

One of the common issues with solve_bvp is choosing a guess for the initial value. Often, small
changes in the guess can cause large changes in the final approximation. The reason for this is that
the algorithm used by solve_bvp is essentially a version of Newton’s method set up to approximate
the boundary value problem, and thus can be sensitive to the initial guess. The next problem
demonstrates the huge difference that can be made between a constant initial guess of 10 and a
constant initial guess of 9.99

Problem 3. Use solve_bvp to solve for y in the equation y′′ = (1− y′) ∗ 10y with boundary
conditions y(0) = −1 and y(1) = 3

2 and plot your solution on the interval [0, 1]. Use an initial
guess of 10. Compare this to the the same solution using an initial guess of 9.99. For both of
your initial guesses, use 50 steps in t.

The solution is found in Figure 2.5.
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Figure 2.5: The solution to problem 3.
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Strange Attractors
In the growing field of dynamical systems, an attractor is a set of states toward which a system
tends to evolve. Strange attractors are special in that they showcase complex behavior in a simple
set of equations. A minute change in the initial values can cause massive differences in the outcome.
The most famous of these is the Lorenz attractor, introduced by Edward Lorenz in 1963. Later on,
we dedicate a full lab to the study of the Lorenz attractor, but today we focus on modeling the
Four-Wing attractor. This is a system of first order ODEs defined by the following set of equations

dx

dt
= ax+ yz (2.2)

dy

dt
= bx+ cy − xz (2.3)

dz

dt
= −z − xy (2.4)

given some constants a, b, and c. As we mentioned earlier, solve_ivp and solve_bvp can be used to
solve and model systems of first order ODEs. We will now use solve_ivp to model the Four-Wing
attractor.

Problem 4. Use solve_ivp to solve the Four-Wing Attractor as described in equations (2.2),
(2.3), and (2.4) where a = 0.2, b = 0.01, and c = −0.4. Try this with 3 different initial values
and plot (in three dimensions) the 3 corresponding graphs.

Examples of solutions are given in Figure 2.6.
Hint: Because the attractor lies mostly within the box [−2, 2]2, it is best to have the initial

conditions also within this box. Also, you may need the time scale to run from about about 0

to 400 to visualize the full attractor.
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Figure 2.6: Possible solutions to problem 4.

BVPs with Free Parameters
Often when solving a BVP, there are extra variables that we wish to solve for in addition to the
solution. These are called unknown or free parameters. A free parameter refers to any undetermined
constant or parameter within the problem that remains free until boundary conditions or additional
constraints provide a way to fix its value. We will encounter various scenarios in later labs when a
method to solve for such parameters will be useful.
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Fortunately, the function solve_bvp also supports solving for free parameters in a boundary
value problem. The syntax is very similar to what we did above, except that our functions will have
an additional argument that is a list of all of the free parameters. For example, suppose we have
the following BVP with free parameter d, that is, in addition to the BVP, we are also solving for an
unknown parameter d:

x′(t) = (1 + t)y(t)− x(t)
y′(x) = d sin(x(t))

x(0) = 1, x(1) = 0, y(1) = 2

Note that we need one additional boundary condition for each free parameter; in this case, since we
have two variables and one free parameter, we need three boundary conditions. We set up the ODE
and boundary condition functions as follows:

# The ODE function
def ode(t, y, p):

''' Defines the ODE system '''
return np.array([

(1+t)* y[1] - y[0],
p[0] * np.sin(y[0])

])

# The boundary condition function
def bcs(ya, yb, p):

''' Defines the boundary conditions '''
return np.array([

ya[0] - 1,
yb[0] - 0,
yb[1] - 2

])

Note that both of these functions accept an additional argument p, which is a list of the free param-
eters in the problem. In this case, we only have one parameter, so p=[d]. Using solve_bvp to get
the solution is similar to before, except that we must also pass in a guess for the free parameters
with the argument p:

# Guess of the solution values
t = np.linspace(0, 1, 50)
y_guess = np.ones((2, 50))
p_guess = [1]

# Solve
sol = solve_bvp(ode, bcs, t, y_guess, p=p_guess)

The solution can be plotted as before, and the value of the free parameters for the solution can be
found with sol.p:

plt.plot(sol.x, sol.y[0], label="$x(t)$")
plt.plot(sol.x, sol.y[1], label="$y(t)$")
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plt.legend()
plt.xlabel('t')
plt.ylabel("y(t)")
plt.title(f'$d = {sol.p[0]:.4f}$')
plt.show()
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Figure 2.7: The solution to the above example

Free parameters occur in eigenvalue problems for differential operators. The general form of
these is

Dy = λy

y(a) =y(b) = 0

where D is some differential operator and λ is an unknown scalar. These differential eigenvalue
problems are very analogous to the finite-dimensional case of matrix eigenvalue problems, except
that instead of trying to find eigenvectors, we now try to find eigenfunctions. As in the matrix case,
we are not interested in the trivial solution y = 0. Furthermore, if we have an eigenfunction y, any
multiple ky is also an eigenfunction. To solve both of these issues, we will stipulate that y′(a) = 1;
this guarantees the solution is not identically zero, and also makes it unique for a given value of λ.

Sturm-Liouville problems are an important category of these eigenvalue problems. These have
the special form

(py′)′ + qy = λry

y(a) = y(b) = 0

where p(t), q(t), r(t) are known functions and λ is an unknown scalar. Sturm-Liouville problems and
their extensions are important theoretically, and their solutions have some very nice properties. They
also have applications in PDEs and occur in areas such as physics and quantum mechanics.
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Problem 5. An important problem in quantum mechanics is to find steady-state solutions of
the Schrödinger equation. These functions are solutions to the time-independent Schrödinger
equation. This equation is a differential equation for the wave function ψ, with one free param-
eter E. In one dimension, this equation is

− ℏ2

2m
ψ′′(x) + U(x)ψ(x) = Eψ(x) (2.5)

where U is a known function describing the potential energy. Note that this is in fact a Sturm-
Liouville problem. If a function ψ and scalar E satisfy this equation, they describe an allowed
steady state of a particle in the system. The value of E is the energy of the particle in that state,
and the values of ψ are related to the probability of the particle being in any given location.
For simplicity, we will let ℏ2

2m = 1.a

Write a function that uses solve_bvp to find ψ and E that are solutions to (2.5) for the
potential U(x) = x2 and with boundary conditions ψ(−1) = ψ(1) = 0, ψ′(−1) = 1. By varying
your initial guess for E, use your function to find solutions for several different values of E, and
plot them together. Label the solutions with the values of E that you found.

aMaking constants equal to one in this way is acutally done quite frequently in particle physics, by choosing
the units we are using appropriately.
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Figure 2.8: A possible solution to problem 5.
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3 Modelling the Spread
of an Epidemic: SIR
Models

Numerical Solvers
We often rely on numerical solvers to numerically integrate ordinary differential equations (ODEs),
especially for complicated and high-dimensional systems with no symbolic solution. In this lab we
will be using solve_ivp, which is a part of scipy.integrate, to solve ODE systems related to
epidemic models. You can read the documentation for solve_ivp at https://docs.scipy.org/
doc/scipy/reference/generated/scipy.integrate.solve_ivp.html.

As we discussed in the previous lab, Intro to IVPs and BVPs, solve_ivp takes the ODE as
a function, a tuple containing the start and end time, and an array with the initial conditions as
arguments, and returns a bunch object containing the solution and other information. We can solve
the following ODE system with the following code:[

y1(t)

y2(t)

]′
=

[
y2(t)

sin(t)− 5y2(t)− y1(t)

]
y1(0) =0, y2(0) = 1, t ∈ [0, 3π]

(3.1)

import numpy as np
from scipy.integrate import solve_ivp

# define the ode system as given in the problem
def ode(t, y):

return np.array([y[1], np.sin(t) - 5*y[1] - y[0]])

# define the t0 and tf parameters
t0 = 0
tf = 3*np.pi

# define the initial conditions
y0 = np.array([0, 1])

# solve the system
sol = solve_ivp(ode, (t0, tf), y0, t_eval=np.linspace(t0, tf, 150))

# Plot the system

27

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
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import matplotlib.pyplot as plt

# plot y_1 against y_2
plt.plot(sol.y[0], sol.y[1])
plt.xlabel("$y_1$")
plt.ylabel("$y_2$")
plt.show()
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Figure 3.1: Solution to the example given by Equation (3.1)

The SIR Model

The SIR model describes the spread of an epidemic through a large population. It does this by
describing the movement of the population through three phases of the disease: those individuals
who are susceptible, those who are infectious, and those who have been removed from the disease.
Those individuals in the removed class have either died, or have recovered from the disease and are
now immune to it. If the outbreak occurs over a short period of time, we may reasonably assume
that the total population is fixed, so that S′(t) + I ′(t) + R′(t) = 0. We may also assume that
S(t) + I(t) +R(t) = 1, so that S(t) represents the fraction of the population that is susceptible, etc.

Individuals may move from one class to another as described by the flow

S → I → R.
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Let us consider the transition rate between S and I. Let β represent the average number of contacts
made per unit time period (one day perhaps) that could spread the disease. The proportion of these
contacts that are with a susceptible individual is S(t). Thus, one infectious individual will on average
infect βS(t) others per day. Let N represent the total population size. Then we obtain the differential
equation

d

dt
(S(t)N) = −βS(t)(I(t)N)

Now consider the transition rate between I and R. We assume that there is a fixed proportion
γ of the infectious group who will recover on a given day, so that

d

dt
R(t) = γI(t).

Note that γ is the reciprocal of the average length of time spent in the infectious phase.

Since the derivatives sum to 0, we have I ′(t) = −S′(t)−R′(t), so the differential equations are
given by

dS

dt
= −βIS, (3.2)

dI

dt
= βIS − γI, (3.3)

dR

dt
= γI. (3.4)

Problem 1. Suppose that, in a city of approximately three million, five people have recently
entered the city carrying a certain disease. Each infected individual has one contact each day
that could spread the disease, and an average of three days is spent in the infectious state.

Find the solution of the corresponding SIR equations using solve_ivp over a time period
of fifty days, and plot your results. Compare your plot to Figure 1. Use the percentages of each
state, not the actual number of people in the state.

At the peak of the infection, how many in the city will still be able to work (assume for
simplicity that those who are in the infectious state either cannot go to work or are unproductive,
etc.)?

Hint: Use the t_eval argument of solve_ivp to specify the points in time that you want
the solution’s value at. This parameter accepts a linspace of time values. Specify enough points
that your graph is smooth.
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Figure 3.2: Solution to Problem 1

SIR is an effective model for epidemic spread under certain assumptions. For example, we
assume that the network is what’s called “fully mixed.” This implies that no group of members of a
network are more likely to encounter each other than any other group. Because of this assumption,
we should not use SIR to model networks we know to be poorly mixed. In fact, we should be clear in
stating that almost no network is truly fully mixed; however this model is still effective for networks
that are reasonably well mixed. In the next problem we will be using SIR to model data from the
recent COVID-19 outbreak. To adhere to the “reasonably well mixed” criteria, we will be using only
data from one county at a time.

Problem 2. On March 11, 2020, New York City had 52 confirmed cases of COVID-19. On that
day, New York started its lock-down measures. Using the following information, model what
the spread of the virus could have been, using solve_ivp(), if New York did not implement
any measures to curb the spread of the virus over the next 150 days:

• There are approximately 8.399 million people in New York City.

• The average case of COVID-19 lasts for 10 days.

• Each infected person spreads the virus to 2.5 people on average over the whole time that
they are sick.

Plot your results for each day and compare to Figure 3.3. Also answer the following
questions:

1. At the projected peak, how many concurrent active cases are there?
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2. Assuming that about 5% of COVID-19 cases require hospitalization, and using the fact
that there are about 58,000 hospital beds in NYC, how many beds over capacity will the
hospitals in NYC be at the projected peak?

Hint: Recall that β is the average number of contacts an infected person makes per day
that could spread the disease, and γ is the reciprocal of the average length of time spent in the
infectious phase.
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Figure 3.3: Solution to Problem 2.

Variations on the SIR Model
The SIS model is a common variation of the SIR model. SIS Models describe diseases where indi-
viduals who have recovered from the disease do not gain any lasting immunity. There are only two
compartments in this model: those who are susceptible, and those who are infectious. Here, f is the
rate of becoming susceptible again.

The basic equations are given by

dS

dt
= −βIS + fI,

dI

dt
= βIS − fI
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Another alteration we can make to the SIR model is to add a birth and death rate. In the
equations below we are assuming that the natural death rate together with the death rate caused by
the disease is equal to the birth rate. This model is given by

dS

dt
= µ(1− S)− βIS,

dI

dt
= βIS − (γ + µ)I,

dR

dt
= γI − µR

where µ represents the death rate and equal birth rate, noting that any new person born is born into
the susceptible population.

If we combine the last two variations we made on the SIR model we come to this formulation,
which is an SIRS model. This SIRS model allows the transfer of individuals from the recovered/re-
moved class to the susceptible class and includes modeling of the birth and death rates.

dS

dt
= fR+ µ(1− S)− βIS, (3.5)

dI

dt
= βIS − (γ + µ)I, (3.6)

dR

dt
= −fR+ γI − µR. (3.7)

Problem 3. There are 7 billion people in the world. Influenza, or the flu, is one of those viruses
that everyone can be susceptible to, even after recovering. The flu virus is able to change in
order to evade our immune system, and we become susceptible once more, although technically
it is now a different strain.

Suppose the virus originates with 1000 people in Texas after Hurricane Harvey flooded
Houston, and stagnant water allowed the virus to proliferate. Suppose the average person is
contagious for 10 days before recovering. Also suppose that on average someone makes one
contact every two days that could spread the flu. Since we can catch a new strain of the flu,
suppose that a recovered individual becomes susceptible again with rate f = 1/50. The flu is
also known to be deadly, killing hundreds of thousands every year on top of the normal death
rate. To assure a steady population, let the birth rate balance out the death rate, and let
µ = 0.0001.

Using the SIRS model above, plot the proportion of population that is Susceptible, In-
fected, and Recovered over a one-year span (365 days). Compare your plot to Figure 3.4.
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Figure 3.4: Solution to Problem 3.

Modeling COVID-19 with Social Distancing

Social distancing upsets the main assumption that is made when trying to model epidemic spread
using SIR models. During the periods of lockdown instituted by governments, the interaction net-
works between people in a city or county were disrupted to the point that standard SIR models were
no longer effective at modeling the spread of COVID-19. A paper released in May of 2020 presented
some alternative models for COVID-19 that have some success in modeling its spread during periods
of social distancing.

This model claims that the growth of I(t) is polynomial with exponential decay (PGED), which
results in the following SIR type model:

dS

dt
= −α

t
I, (3.8)

dI

dt
=

(
α

t
− 1

TG

)
I, (3.9)

dR

dt
=

1

TG
I. (3.10)

The values α and TG are the model parameters. The product αTG can be interpreted as the time of
epidemic peak.

https://arxiv.org/pdf/2005.06933.pdf
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Fitting Models

Model fitting can be a frustrating task if we only use our intuition and guess and check. Thankfully,
SciPy’s optimize library has tools we can use to make these problems a lot easier. We will use
scipy.optimize.minimize to find the parameters that minimize the error between the model and
the actual data.

Suppose we have some data that we believe to follow a cubic trend with the following model

αx3 + β(x2 + 2x) + δ.

We will create a function that calculates the error of the model against the data, and pass it into
scipy.optimize.minimize. This function will accept an array containing all of the parameters,
and return a floating-point value. The function scipy.optimize.minimize will then return an
OptimizeResult object, which contains the optimal parameters.

# import the minimizer function
from scipy.optimize import minimize

# Load the data and get the x and y values
data = np.load("to_fit.npy")
xs = data[:, 0]
ys = data[:, 1]

# define the function we want to minimize
def calculate_error(params):

# Unpack the parameters
a, b, d = params

# Get the model output based on the parameters
model_prediction = a*xs**3 + b*(xs**2 + 2*xs) + d

# Find the difference between out and the data
diff = model_prediction - ys

# Calculate the error
return np.linalg.norm(diff)

# Make a guess for the parameters
p0 = (1, 1, 1)

# Find the best parameters for this model
result = minimize(calculate_error, p0)

# Get the minimizer
print(result.x)
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Problem 4. The file new_york_cases.npy contains daily case counts for COVID-19 beginning
on March 11, 2020. These counts are the total number of people who have been sick at any time
up to that point; that is, the sum of the number of people currently infected and the number
of people who have recovered, corresponding to I(t) +R(t).

Convert the counts from the file to proportions of New York’s population (recall that the
total population is 8.399 million people). Fit the PGED model to the COVID-19 data by using
scipy.optimize.minimize to find values of α and TG that minimize the difference between
the observed proportions and the model’s prediction for I(t)+R(t). Unlike the example above,
in this problem our model is the system of ODEs (3.8), (3.9), and (3.10) rather than an explicit
formula. So, to find model_output in the function you pass into scipy.optimize.minimize,
you will need to use solve_ivp to solve the system of ODEs every time the function is called.

Plot the actual data alongside the values of I(t) + R(t) predicted by your model. Print
the values of α and TG you found.

Hint: Set t0 = 1; the PEGD model requires dividing by t, so we must have t ̸= 0. To pass
the values of α and TG into your ODE function, you can use the argument args=(alpha, T_G)
inside solve_ivp. Use the t_eval argument to get the ODE solution values at the correct
times.
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Figure 3.5: Solution to Problem 4



36 Lab 3. Modelling the Spread of an Epidemic: SIR Models

Boundary Value Problems
The next exercise uses a variation of the SIR model called an SEIR model to describe the spread
of measles.1 This new model adds another compartment, called the exposed or latency phase. It
assumes that the rate at which measles is contracted depends on the season, i.e. the rate is periodic.
That allows us to formulate the yearly occurrence rate for measles as a boundary value problem. The
boundary value problem looks like S

E

I

′

=

 µ− β(t)SI
β(t)SI − E/λ
E/λ− I/η

 , (3.11)

S(0) = S(1),

E(0) = E(1),

I(0) = I(1)

(3.12)

The parameters µ and λ represent the birth rate of the population and the latency period
of measles, respectively. The parameter η represents the length of the infectious period before an
individual moves from the infectious class to the recovered class. After recovery an individual remains
immune, which is why R(t) is not included in the system. The set up of this problem is not normal
since we are excluding R(t), but it results in a nice graph.

To solve this problem we will use the BVP solver available in SciPy. As a refresher, the code
below demonstrates how to use solve_bvp to solve the BVP

εy′′ + yy′ − y = 0, y(−1) = 1, y(1) = −1/3, ε = 0.1. (3.13)

See Figure 3.6 for the solution.
The BVP solver requires a callable function for the boundary conditions. This function needs

to compute the difference between the value of the current guess at the boundary conditions and the
desired boundary conditions. In this case, we have one boundary condition on either side. These
constraints will evaluate to 0 precisely when the boundary condition is satisfied.

import numpy as np
from scipy.integrate import solve_bvp
import matplotlib.pyplot as plt

epsilon, lbc, rbc = 0.1, 1, -1/3

# The ode function takes the independent variable first
# It has return shape (n,)
def ode(x, y):

return np.array([
y[1] ,
(1/epsilon) * (y[0] - y[0] * y[1])

])

# The return shape of bcs() is (n,)
def bcs(ya, yb):

1Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, by Aescher, Mattheij, and
Russell
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# The return values will be 0s when the boundary conditions are met exactly
return np.array([

ya[0] - lbc, # One boundary condition on the left
yb[0] - rbc, # One boundary condition on the right

])

# The independent variable has size (m,) and goes from a to b
t = np.linspace(-1, 1, 200)
# The initial guess for y must have shape (n,m)
y_guess = np.array([-1/3, -4/3]).reshape((-1, 1))*np.ones((2, len(t)))

# Solve the BVP
solution = solve_bvp(ode, bcs, t, y_guess)
# The returned object has multiple objects. We will use sol, which is a
# callable function of the solution. We are interested in only y,
# which is the first row.
y_plot = solution.sol(t)[0]

# You can also instead use sol.x and sol.y. Note that these will not
# be the same lengths as your initial guesses.

plt.plot(t, y_plot)
plt.xlabel('t')
plt.ylabel('y')
plt.show()
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Figure 3.6: Solution to the example given by Equation (3.13)

Problem 5. In this problem we will solve the BVP given by equations (3.11) and (3.12).
Let the periodic function for our measles case be β(t) = β0(1+β1 cos 2πt). Use parameters

β1 = 1, β0 = 1575, η = 0.01, λ = 0.0279, and µ = 0.02. With these parameter values, time
is measured in years, so run the solution over the interval [0, 1] to show a one-year cycle. The
boundary conditions in (3.12) are just saying that the year will begin and end in the same state.

Create functions for the ODE and for the boundary conditions. Solve the BVP with the
given parameters over a period of one year, and plot the values of S, E, and I. Compare your
results with Figure 3.7.

Hint: Use the initial conditions from Figure 3.7 as your initial guess. Remember that the
initial infected proportion is small, not 0.
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4 Numerical Methods
for Initial Value
Problems

Lab Objective: Implement several basic numerical methods for initial value problems (IVPs) and
use them to study harmonic oscillators.

Methods for Initial Value Problems
Consider the initial value problem (IVP)

x′(t) = f(x(t), t), t0 ≤ t ≤ tf
x(t0) = x0,

(4.1)

where f is a suitably continuous function. A solution of (4.1) is a continuously differentiable, and
possibly vector-valued, function x(t) = [x1(t), . . . , xm(t)]

T, whose derivative x′(t) equals f(x(t), t)
for all t ∈ [t0, tf ], and for which the initial value x(t0) equals x0.

Under the right conditions, namely that f is uniformly Lipschitz continuous in x(t) near x0

and continuous in t near t0, (4.1) is well-known to have a unique solution. However, for many IVPs,
it is difficult, if not impossible, to find a closed-form, analytic expression for x(t). In these cases,
numerical methods can be used to instead approximate x(t).

As an example, consider the initial value problem

x′(t) = sin(x(t)),

x(0) = x0.
(4.2)

The solution x(t) is defined implicitly by

t = ln

∣∣∣∣ cos(x0) + cot(x0)

csc(x(t)) + cot(x(t))

∣∣∣∣ .
This equation cannot be solved for x(t), so it is difficult to understand what solutions to (4.2) look
like. Since sin(nπ) = 0, there are constant solutions xn(t) = nπ, n ∈ Z. Using a numerical IVP
solver, solutions for different values of x0 can be approximated. Figure 4.1 shows several of these
approximate solutions, along with some of the constant, or equilibrium, solutions.
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Figure 4.1: Several solutions of (4.2), using scipy.integrate.odeint.

Numerical Methods
For the numerical methods that follow, the key idea is to seek an approximation for the values of
x(t) only on a finite set of values t0 < t1 < . . . < tn−1 < tn (= tf ). In other words, these methods
try to solve for x1,x2, . . . ,xn such that xi ≈ x(ti).

Euler’s Method

For simplicity, assume that each of the n subintervals [ti−1, ti] has equal length h = (tf − t0)/n. h is
called the step size. Assuming x(t) is twice-differentiable, for each component function xj(t) of x(t)
and for each i, Taylor’s Theorem says that

xj(ti+1) = xj(ti) + hx′j(ti) +
h2

2
x′′j (c) for some c ∈ [ti, ti+1].

The quantity h2

2 x
′′
j (c) is negligible when h is sufficiently small, and thus xj(ti+1) ≈ xj(ti) + hx′j(ti).

Therefore, bringing the component functions of x(t) back together gives

x(ti+1) ≈ x(ti) + hx′(ti),

≈ x(ti) + hf(x(ti), ti).

This approximation leads to the Euler method : Starting with x0 = x(t0), xi+1 = xi + hf(xi, ti)

for i = 0, 1, . . . , n − 1. Euler’s method can be understood as starting with the point at x0, then
calculating the derivative of x(t) at t0 using f(x0, t0), followed by taking a step in the direction of
the derivative scaled by h. Set that new point as x1 and continue.
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It is important to consider how the choice of step size h affects the accuracy of the approxima-
tion. Note that at each step of the algorithm, the local truncation error, which comes from neglecting
the x′′j (c) term in the Taylor expansion, is proportional to h2. The error ||x(ti)− xi|| at the ith step
comes from i = ti−t0

h steps, which is proportional to h−1, each contributing h2 error. Thus the global
truncation error is proportional to h. Therefore, the Euler method is called a first-order method, or
a O(h) method. This means that as h gets small, the approximation of x(t) improves in two ways.
First, x(t) is approximated at more values of t (more information about the solution), and second,
the accuracy of the approximation at any ti is improved proportional to h (better information about
the solution).
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Figure 4.2: The solution of (4.3), alongside several approximations using Euler’s method.

Problem 1. Write a function which implements Euler’s method for an IVP of the form (4.1).
Test your function on the IVP:

x′(t) = x(t)− 2t+ 4, 0 ≤ t ≤ 2,

x(0) = 0,
(4.3)

where the analytic solution is x(t) = −2 + 2t + 2et. Use the Euler method to numerically
approximate the solution with step sizes h = 0.2, 0.1, and 0.05. Plot the true solution alongside
the three approximations, and compare your results with Figure 4.2.
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Midpoint Method

The midpoint method is very similar to Euler’s method. For small h, use the approximation

x(ti+1) ≈ x(ti) + hf(x(ti) +
h

2
f(x(ti), ti), ti +

h

2
).

In this approximation, first set x̂i = xi +
h
2 f(xi, ti), which is an Euler method step of size h/2.

Then evaluate f(x̂i, ti +
h
2 ), which is a more accurate approximation to the derivative x′(t) in the

interval [ti, ti+1]. Finally, a step is taken in that direction, scaled by h. It can be shown that the
local truncation error for the midpoint method is O(h3), giving global truncation error of O(h2).
This is a significant improvement over the Euler method. However, it comes at the cost of additional
evaluations of f and a handful of extra floating point operations on the side. This tradeoff will be
considered later in the lab.

Runge-Kutta Methods

The Euler method and the midpoint method belong to a family called Runge-Kutta methods. There
are many Runge-Kutta methods with varying orders of accuracy. Methods of order four or higher
are most commonly used. A fourth-order Runge-Kutta method (RK4) iterates as follows:

K1 = f(xi, ti),

K2 = f(xi +
h

2
K1, ti +

h

2
),

K3 = f(xi +
h

2
K2, ti +

h

2
),

K4 = f(xi + hK3, ti+1),

xi+1 = xi +
h

6
(K1 + 2K2 + 2K3 +K4).

Runge-Kutta methods can be understood as a generalization of quadrature methods for approx-
imating integrals, where the integrand is evaluated at specific points, and then the resulting values
are combined in a weighted sum. For example, consider a differential equation

x′(t) = f(t)

Since the function f has no x dependence, this is a simple integration problem. In this case, Euler’s
method corresponds to the left-hand rule, the midpoint method becomes the midpoint rule, and RK4
reduces to Simpson’s rule.

Advantages of Higher-Order Methods
It can be useful to visualize the order of accuracy of a numerical method. A method of order p has
relative error of the form

E(h) = Chp

taking the logarithm of both sides yields

log(E(h)) = p · log(h) + log(C)

Therefore, on a log-log plot against h, E(h) is a line with slope p and intercept log(C).



45

Problem 2. Write functions that implement the midpoint and fourth-order Runge-Kutta meth-
ods. Use the Euler, Midpoint, and RK4 methods to approximate the value of the solution for
the IVP (4.3) from Problem 1 for step sizes of h = 0.2, 0.1, 0.05, 0.025, and 0.0125.

Plot the following graphs

• The true solution alongside the approximation obtained from each method when h = 0.2.

• A log-log plot (use plt.loglog) of the relative error |x(2)− xn|/|x(2)| as a function of h
for each approximation.

Compare your second plot with Figure 4.3.
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E(
h)

Euler method
Midpoint method
RK4 method

Figure 4.3: Loglog plot of the relative error in approximating x(2), using step sizes h = 0.2, 0.1, 0.05,

0.025, and 0.0125. The slope of each line demonstrates the first, second, and fourth order convergence
of the Euler, Midpoint, and RK4 methods, respectively.
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The Euler, midpoint, and RK4 methods help illustrate the potential trade-off between order
of accuracy and computational expense. To increase the order of accuracy, more evaluations of f
must be performed at each step. It is possible that this trade-off could make higher-order methods
undesirable, as (in theory) one could use a lower-order method with a smaller step size h. However,
this is not generally the case. Assuming efficiency is measured in terms of the number of f -evaluations
required to reach a certain threshold of accuracy, higher-order methods turn out to be much more
efficient. For example, consider the IVP

x′(t) = x(t) cos(t), t ∈ [0, 8],

x(0) = 1.
(4.4)

Figure 4.4 illustrates the comparative efficiency of the Euler, Midpoint, and RK4 methods applied to
(4.4). The higher-order RK4 method requires fewer f -evaluations to reach the same level of relative
error as the lower-order methods. As h becomes small, which corresponds to increasing functional
evaluations, each method reaches a point where the relative error |x(8)−xn|/|x(8)| stops improving.
This occurs when h is so small that floating point round-off error overwhelms local truncation error.
Notice that the higher-order methods are able to reach a better level of relative error before this
phenomena occurs.
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Figure 4.4: The relative error in computing the solution of (4.4) at x = 8 versus the number of times
the right-hand side of (4.4) must be evaluated.
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Harmonic Oscillators and Resonance
Harmonic oscillators are common in classical mechanics. A few examples include the pendulum (with
small displacement), spring-mass systems, and the flow of electric current through various types of
circuits. A harmonic oscillator y(t)1 is a solution to an initial value problem of the form

my′′ + γy′ + ky = f(t),

y(0) = y0, y′(0) = y′0.

Here, m represents the mass on the end of a spring, γ represents the effect of damping on the motion,
k is the spring constant, and f(t) is the external force applied.

Simple harmonic oscillators
A simple harmonic oscillator is a harmonic oscillator that is not damped, γ = 0, and is free, f = 0,
rather than forced, f ̸= 0. A simple harmonic oscillator can described by the IVP

my′′ + ky = 0,

y(0) = y0, y′(0) = y′0.

The solution of this IVP is y = c1 cos(ω0t) + c2 sin(ω0t), where ω0 =
√
k/m is the natural frequency

of the oscillator and c1 and c2 are determined by applying the initial conditions.
To solve this IVP using a Runge-Kutta method, it must be written in the form

x′(t) = f(x(t), t)

This can be done by setting x1 = y and x2 = y′. Then we have

x′ =

[
x1
x2

]′
=

[
x2

−k
m x1

]
Therefore

f(x(t), t) =

[
x2

−k
m x1

]

Problem 3. Use the RK4 method to solve the simple harmonic oscillator satisfying

my′′ + ky = 0, 0 ≤ t ≤ 20,

y(0) = 2, y′(0) = −1,
(4.5)

for m = 1 and k = 1.
Plot your numerical approximation of y(t). Compare this with the numerical approxi-

mation when m = 3 and k = 1. Consider: Why does the difference in solutions make sense
physically?

1It is customary to write y instead of y(t) when it is unambiguous that y denotes the dependent variable.
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Figure 4.5: Solutions of (4.5) for several values of m.

Damped free harmonic oscillators
A damped free harmonic oscillator y(t) satisfies the IVP

my′′ + γy′ + ky = 0,

y(0) = y0, y′(0) = y′0.

The roots of the characteristic equation are

r1, r2 =
−γ ±

√
γ2 − 4km

2m
.

Note that the real parts of r1 and r2 are always negative, and so any solution y(t) will decay over
time due to a dissipation of the system energy. There are several cases to consider for the general
solution of this equation:

1. If γ2 > 4km, then the general solution is y(t) = c1e
r1t + c2e

r2t. Here the system is said to be
overdamped. Notice from the general solution that there is no oscillation in this case.

2. If γ2 = 4km, then the general solution is y(t) = c1e
γt/2m + c2te

γt/2m. Here the system is said
to be critically damped.

3. If γ2 < 4km, then the general solution is

y(t) = e−γt/2m [c1 cos(µt) + c2 sin(µt)] ,

= Re−γt/2m sin(µt+ δ),
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where R and δ are fixed, and µ =
√
4km− γ2/2m. This system does oscillate.

Problem 4. Use the RK4 method to solve for the damped free harmonic oscillator satisfying

y′′ + γy′ + y = 0, 0 ≤ t ≤ 20,

y(0) = 1, y′(0) = −1.

For γ = 1/2, and γ = 1, simultaneously plot your numerical approximations of y.

Forced harmonic oscillators without damping

Consider the systems described by the differential equation

my′′(t) + ky(t) = F (t). (4.6)

In many instances, the external force F (t) is periodic, so assume that F (t) = F0 cos(ωt). If ω0 =√
k/m ̸= ω, then the general solution of 4.6 is given by

y(t) = c1 cos(ω0t) + c2 sin(ω0t) +
F0

m(ω2
0 − ω2)

cos(ωt).

If ω0 = ω, then the general solution is

y(t) = c1 cos(ω0t) + c2 sin(ω0t) +
F0

2mω0
t sin(ω0t).

When ω0 = ω, the solution contains a term that grows arbitrarily large as t → ∞. If we
included damping, then the solution would be bounded but large for small γ and ω close to ω0.

Consider a physical spring-mass system. Equation 4.6 holds only for small oscillations; this
is where Hooke’s law is applicable. However, the fact that the equation predicts large oscillations
suggests the spring-mass system could fall apart as a result of the external force. This mechanical
resonance has been known to cause failure of bridges, buildings, and airplanes.

Problem 5. Use the RK4 method to solve the damped and forced harmonic oscillator satis-
fying

2y′′ + γy′ + 2y = 2 cos(ωt), 0 ≤ t ≤ 40,

y(0) = 2, y′(0) = −1.
(4.7)

For the following values of γ and ω, plot your numerical approximations of y(t): (γ, ω) =

(0.5, 1.5), (0.1, 1.1), and (0, 1). Compare your results with Figure 4.6.
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Figure 4.6: Solutions of (4.7) for several values of ω and γ.



5 Predator-Prey Models

Lab Objective: We apply methods for solving initial value problems to analyzing several dynamical
systems between predator and prey populations.

Predator-Prey Model
ODEs are commonly used to model relationships between predator and prey populations. For exam-
ple, consider the populations of wolves (the predator) and rabbits (the prey) in Yellowstone National
Park. Let r(t) and w(t) represent the rabbit and wolf populations respectively at time t, measured
in years. We will make a few assumptions to simplify our model:

• In the absence of wolves, the rabbit population grows at a positive rate proportional to the
current population. Thus, when w(t) = 0 we have dr/dt = αr(t) for some α > 0.

• In the absence of rabbits, the wolves die out. Thus, when r(t) = 0 we have dw/dt = −δw(t)
for some δ > 0.

• The number of encounters between rabbits and wolves is proportional to the product of their
populations. The wolf population grows proportional to the number of encounters by βr(t)w(t)
(where β > 0), and the rabbit population decreases proportional to the number of encounters
by −γr(t)w(t) (where γ > 0).

This leads to the following system of ODEs:

dr

dt
= αr − βrw = r(α− βw)

dw

dt
= −δw + γrw = w(−δ + γr)

(5.1)

Problem 1. Define the function predator_prey() that accepts the current time t, the current
r(t) and w(t) values as a 1d array y, and the parameters α, β, δ, and γ, and returns the right
hand side of (5.1) as a tuple.
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Figure 5.1: The solution to Problem 2 of the system found in (5.1)

Problem 2. Use solve_ivp and your function from Problem 1 to solve (5.1) with initial
conditions (r0, w0) = (5, 3) and time ranging from 0 to 20 years. Use α = 1.0, β = 0.5,
δ = 0.75, and γ = 0.25 as your growth parameters. Display the resulting rabbit and wolf
populations over time on the same plot. Your graph should match the graph in Figure 5.1.

To pass parameters into your ODE function, use the args argument of solve_ivp. For
example:

# Pass the arguments into solve_ivp here:
t = np.linspace(t0, tf, t_steps)
solve_ivp(predator_prey, t_span, y0, t_eval=t,

args=(alpha, beta, gamma, delta))

The populations are stored as rows in the attribute y of the output of solve_ivp.
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Variations on the Predator-Prey
The Lotka-Volterra model

The representation of the predator-prey relationship found in (5.1) is called the Lotka-Volterra
predator-prey model and is typically given by

du

dt
= αu− βuv,

dv

dt
= −δv + γuv.

where u and v represent the prey and predator populations, respectively. Here α, β, δ, and γ are the
same as before but now for an arbitrary prey and predator.

The equlibria (fixed points) of a system occur when the derivatives are zero. In this example,
that occurs at (u, v) = (0, 0) and (u, v) = ( cd ,

a
b ). Visualizing the phase portrait helps to give more

insight into the dynamics of a system. We will do this by first nondimensionalzing our system to
reduce the number of parameters.

Let U = γ
δ u, V = β

αv, t̄ = αt, and η = γ
α . Substituting into the original ODEs we obtain the

nondimensional system of equations
dU

dt̄
= U(1− V ),

dV

dt̄
= ηV (U − 1).

(5.2)

Figure 5.2: The phase portrait for the nondimensionalized Lotka-Volterra predator-prey equations
with parameters η = 1/3.
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Problem 3. Similar to Problem 1, define a function lotka_volterra() that takes in the
current time t, the current predator and prey populations as a 1d array y, and the growth
parameter η, and returns the right hand side of the nondimensional Lotka-Volterra system
(5.2).

Plot the phase portrait and several solutions of (5.2) for η = 1/3. Using solve_ivp, solve
(5.2) with three different initial conditions y0 = (1/2, 1/3), y0 = (1/2, 3/4), and y0 = (1/16, 3/4)

and time domain t = [0, 13]. Plot these three solutions on the same graph as the phase portrait.
Also plot the equilibria (0, 0) and (1, 1) as points.

The following three lines of code can be used to plot the phase portrait of (5.2):

Y1, Y2 = np.meshgrid(np.linspace(0, 4.5, 9), np.linspace(0, 4.5, 9))
dU, dV = lotka_volterra(0, (Y1, Y2), eta)
Q = plt.quiver(Y1, Y2, U, V)

Since your solutions are being plotted with the phase portrait, plot the two populations
against each other (instead of both individually against time). Your plot should match Figure
5.2.

The Logistic model

Notice that the Lotka-Volterra equations predict that prey populations will grow exponentially in the
absence of predators. The logistic predator-prey equations change this dynamic by adding a carrying
capacity K to the prey population:

du

dt
= αu

(
1− u

K

)
− βuv,

dv

dt
= −δv + γuv.

We can again do dimensional analysis on this system to simplify parameters. Let U = u
K , V = β

αv,
t̄ = αt, η = γK

α , and ρ = δ
γK . Then the nondimensional logistic equations are

dU

dt̄
= U(1− U − V ),

dV

dt̄
= ηV (U − ρ).

(5.3)

Problem 4. Define a new function logistic_model() that takes in the current time t, the
current predator and prey populations y, the parameters η and ρ, and returns the right hand
side of the nondimensional logistic model (5.3) as a tuple.

Use solve_ivp to compute solutions (U, V ) of (5.3) for initial conditions (1/3, 1/3) and
(1/2, 1/5) with (t0, tf ) = (0, 13). Do this for parameter values η = 1, ρ = 0.3 and also for values
η = 1, ρ = 1.1.

Create a phase portrait for the logistic equations for each set of parameter values. Plot
the direction field, all equilibrium points, and both solution orbits on the same plot for each
set of parameter values.
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Hint: there are three equilibrium points for each set of parameter values. However, you
only need to plot the ones with nonnegative values of U and V , as these are the only ones that
correspond to physically-meaningful solutions.

Competition between Prey

One interesting extension we can consider is what happens if we have multiple species of prey com-
peting for the resources of their environment as well as are hunted by predators. Supppose we now
wish to model the populations of rabbits (prey), elk (also prey), and wolves in Yellowstone. For
simplicity, we will assume that the two prey populations share strictly the same resources, and can
support up to either K1 rabbits or K2 elk. Let u be the population of rabbits, v the population of elk,
and w the population of wolves. Expanding on the logistic model, we can model their populations
as follows:

du

dt
= α1u

(
1− u

K1
− v

K2

)
− β1wu

dv

dt
= α2v

(
1− u

K1
− v

K2

)
− β2wv

dw

dt
= −δw + γ1wu+ γ2wv.

We again perform dimensional analysis to reduce the number of parameters. Let U = u
K1

, V = v
K2

,
W = β1

α1
w, and t̄ = α1t, and define new parameters as η = γ1K1

α1
, ρ = δ

γ1K1
, ξ = γ2K2

γ1K1
, α = α2

α1
, and

β = β2

β1
. Then, the nondimensional equations for two prey species are

dU

dt
= U(1− U − V −W ),

dV

dt
= αV (1− U − V )− βVW,

dW

dt
= ηW (U + ξV − ρ).

(5.4)

Problem 5. Define a new function two_prey_species() that takes in the current time t,
the current prey and predator populations y, the parameters α, β, η, ξ, and ρ, and returns the
right-hand-side of the nondimensional two prey species system (5.4) as a tuple.

Use solve_ivp to compute solutions (U, V,W ) of (5.4) using the three initial condition
(1/3, 1/3, 1/3), (1/2, 1/3, 1/5), and (1, 1/10, 1/2), with (t0, tf ) = (0, 25). Use parameter values
η = 1, ρ = 0.3, ξ = 0.5, α = 0.2, β = 0.1. Plot the numerical solutions for the populations as
functions against time.

Do the dynamics predicted by this model seem realistic? Write (in a markdown cell) your
answer and reasoning behind it.
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6 Lorenz Equations

Lab Objective: Investigate the behavior of a system that exhibits chaotic behavior. Demonstrate
methods for visualizing the evolution of a system.

Chaos is everywhere. It can crop up in unexpected places and in remarkably simple systems,
and a great deal of work has been done to describe the behavior of chaotic systems. One primary
characterization of chaos is that small changes in initial conditions result in large changes over time
in the solution curves.

The Lorenz System
One of the earlier examples of chaotic behavior was discovered by Edward Lorenz. In 1963, while
working to study atmospheric dynamics, he derived the simple system of equations

dx

dt
= σ (y − x)

dy

dt
= ρx− y − xz

dz

dt
= xy − βz

where σ, ρ, and β are all constants. After deriving these equations, he plotted the solutions and
observed some unexpected behavior. For appropriately chosen values of σ, ρ, and β, the solutions
did not tend toward any steady fixed points, nor did the system permit any stable cycles. The
solutions did not tend off toward infinity either. This began the study of what was called a strange
attractor. Although relatively simple, this system exhibits chaotic behavior.

Problem 1. Write a function that implements the Lorenz equations. Let σ = 10, ρ = 28,
β = 8

3 . Make a 3D plot of a solution to the Lorenz equations, where the initial conditions
x0, y0, z0 are each drawn randomly from a uniform distribution on [−15, 15] and for t in the
range [0, 25]. As usual, use scipy.integrate.solve_ivp to compute an approximate solution.
Compare your results with Figure 6.1.
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Figure 6.1: Approximate solution to the Lorenz equation with random initial conditions

Basin of Attraction
Notice in the first problem that the solution tended to a certain region, called an attractor. The
basin of attraction of an attractor is the set of initial conditions that tend towards the attrac-
tor. We will investigate the basin of attraction of the Lorenz system by changing the initial condi-
tions.

Problem 2. To better visualize the Lorenz attractor, produce a single 3D plot displaying three
solutions to the Lorenz equations, each with random initial conditions as before. Compare your
results with Figure 6.2.
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Figure 6.2: Multiple solutions to the Lorenz equation with random initial conditions

Chaos
Chaotic systems exhibit high sensitivity to initial conditions. This means that a small difference in
initial conditions will generally result in solutions that diverge significantly from each other. However,
chaotic systems are not random. An explanation given by Lorenz is that chaos is “when the present
determines the future, but the approximate present does not approximately determine the future.”
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Problem 3. Use matplotlib.animation.FuncAnimation to produce a 3D animation of two
solutions to the Lorenz equations with nearly identical initial conditions. To make the ini-
tial conditions, draw x0, y0, z0 as before, and then make a second initial condition by adding
a small perturbation to the first (try using np.random.randn(3)*(1e-8) for the perturba-
tion). Note that it may take several seconds before the separation between the two solutions
will be noticeable. Evaluate on t_span=(0,50) and use the t_eval argument of solve_ivp,
with t_eval=np.linspace(0,50,3000). Using this argument causes solve_ivp to return the
solution’s values at the points you pass in.

The animation should display a point marker as well as the past trajectory curve for each
solution. Save your animation as lorenz_animation1.mp4 and embed it into the notebook.

In a chaotic system, round-off error implicit in a numerical method can also cause divergent
solutions. For example, using a Runge-Kutta method with two different values for the stepsize h on
identical initial conditions will still result in approximations that differ in a chaotic fashion.

Problem 4. Even differences due to small numerical errors can cause solutions of chaotic
systems to diverge from each other. The solve_ivp function allows user to specify error
tolerances (similar to setting a value of h in a Runge-Kutta method). Using a single initial
condition, produce two approximations by using the solve_ivp arguments (atol=1e-15,
rtol=1e-13) for the first approximation and (atol=1e-12, rtol=1e-10) for the second.

As in the previous problem, use FuncAnimation to animation both solutions. Save the
animation as lorenz_animation2.mp4 and embed it into the notebook. Use the same t_span
and t_eval arguments as in problem 3.

Lyapunov Exponents
The Lyapunov exponent of a dynamical system is one measure of how chaotic a system is. While
there are more conditions for a system to be considered chaotic, one of the primary indicators of
a chaotic system is extreme sensitivity to initial conditions. Strictly speaking, this is saying that
a chaotic system is poorly conditioned. In a chaotic system, the sensitivity to changes in initial
conditions depends expoentially on the time the system is allowed to evolve. If δ(t) represents the
difference between two solution curves, when δ(t) is small, the following approximation holds.

∥δ(t)∥ ∼ ∥δ(0)∥eλt

where λ is a constant called the Lyapunov exponent. In other words, log(∥δ(t)∥) is approximately
linear as a function of time, with slope λ. For the Lorenz system (and for the parameter values
specified in this lab), experimentally it can be verified that λ ≈ .9.

Problem 5. Estimate the Lyapunov exponent of the Lorenz equations by doing the following:

• Produce an initial condition that already lies in the attractor. This can be done by using
a random “dummy” initial condition, approximating the resulting solution to the Lorenz
system for a short time, and then using the endpoint of that solution (which is now in
the attractor) as the desired initial condition.
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Figure 6.3: A semilog plot of the separation between two solutions to the Lorenz equations together
with a fitted line that gives an estimate of the Lyapunov exponent of the system.

• Produce a second initial condition by adding a small perturbation to the first (as before).

• For both initial conditions, use solve_ivp to produce approximate solutions for 0 ≤ t ≤
10.

• Compute ∥δ(t)∥ by taking the norm of the vector difference between the two solutions for
each value of t.

• Use scipy.stats.linregress to calculate a best-fit line for log(∥δ(t)∥) against t.

• The slope of the best-fit line is an approximation for the Lyapunov exponent λ.

Print your approximation of λ, and produce a plot similar to Figure 6.3 by using plt.semilogy.
Hint: Remember that the best-fit line you calculated corresponds to a best-fit exponential

for ∥δ(t)∥. If a and b are the slope and intercept of the best-fit line, the best-fit exponential can
be plotted using plt.semilogy(t,np.exp(a*t+b)). Use the t_eval argument of solve_ivp
(as in Problem 3) for both solutions to the Lorenz equation so that you can compute ∥δ(t)∥ for
the same time steps.
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7 Bifurcations and
Hysteresis

Recall that any ordinary differential equation can be written as a first order system of ODEs,

x′ = F (x), x′ :=
d

dt
x(t). (7.1)

Many interesting applications and physical phenomena can be modeled using ODEs. Given a mathe-
matical model of the form (7.1), it is important to understand geometrically how its solutions behave.
This information can then be conveyed in a phase portrait, a graph describing solutions of (7.1) with
differential initial conditions. The first step in constructing a phase portrait is to find the equilibrium
solutions of the equation, i.e., the zeros of F (x), and to determine their stability.

It is often the case that the mathematical model we study depends on some parameter or set
of parameters λ. Thus the ODE becomes

x′ = F (x, λ). (7.2)

The parameter λ can then be tuned to better fit the physical application. As λ varies, the equilibrium
solutions and other geometric features of (7.2) may suddenly change. A value of λ where the phase
portrait changes is called a bifurcation point ; the study of how these changes occur is called bifurcation
theory. The parameter values and corresponding equilibrium solutions are often graphed together in
a bifurcation diagram.

As an example, consider the scalar differential equation

x′ = x2 + λ. (7.3)

For λ > 0 equation (7.3) has no equilibrium solutions. At λ = 0 the equilibrium point x = 0 appears,
and for λ < 0 it splits into two equilibrium points. For this system, a bifurcation occurs at λ = 0.
This is an example of a saddle-node bifurcation. The bifurcation diagram is shown in Figure 7.1
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Figure 7.1: Bifurcation diagram for the equation x′ = λ+ x2.

Suppose that F (x0, λ0) = 0. We use a method called natural embedding to find zeros (x, λ)

of F for nearby values of λ. Specifically, we step forward in λ by letting λ1 = λ0 + △λ, and use
Newton’s method to find the value x1 that satisfies F (x1, λ1) = 0. This method works well except
when λ is near a bifurcation point λ∗.

The following code implements the natural embedding algorithm, and then uses that algorithm
to find the curves in the bifurcation diagram for (7.3). Notice that this algorithm needs a good initial
guess for x0 to get started.
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Figure 7.2: Phase Portrait for the equation x′ = −2 + x2.

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import newton

def embedding_alg(lams, guess, F):
xs = list()
for lam in lams:

try:
# Solve for x_value making F(x_value, param) = 0.
x_value = newton(F, guess, args=(param,), tol=1e-7)
# Record the solution and update guess for the next iteration.
xs.append(x_value)
guess = x_value

except RuntimeError:
# If Newton's method fails, return a truncated list of parameters
# with the corresponding x values.
return lams[: len(xs)], xs

# Return the list of parameters and the corresponding x values.
return lams, xs

def F(x, lmbda):
return x**2 + lmbda
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# Top curve shown in the bifurcation diagram
lams1, xs1 = embedding_alg(np.linspace(-5, 0, 200), np.sqrt(5), F)
# The bottom curve
lams2, xs2 = embedding_alg(np.linspace(-5, 0, 200), -np.sqrt(5), F)

Problem 1. Use the natural embedding algorithm to create a bifurcation diagram for the
differential equation

x′ = λx− x3.

This type of bifurcation is called a pitchfork bifurcation (you should see a pitchfork in your
diagram).

Hints: Essentially this amounts to running the same code as the example, but with dif-
ferent parameters and function calls so that you are tracing through the right curves for this
problem. To make this first problem work, you will want to have your ‘linspace’ run from
high to low instead of from low to high. There will be three different lines in this image all of
which must be produced using the embedding_alg function. Any hard coding will result in an
automatic 0. See Figure 7.3.
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Figure 7.3: Bifurcation diagram for the equation x′ = λx− x3.
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Problem 2. Another useful tool for analyzing a bifurcation diagram can be to plot the trajec-
tory of the solutions, given different parameters and initial conditions, such that the parameters
chosen are from each partition of the bifurcation diagram. For example, the points

(λ, x0) ∈
{(

1

2
,
1

2

)
,

(
1

2
,
−1
2

)
,

(
−1
2
,
1

2

)
,

(
−1
2
,
−1
2

)}
all lie in different parts of the bifurcation diagram in Figure 7.3. We can pick a λ and x0 and
find the trajectory of that points, given the ODE

x′ = λx− x3.

and the initial condition x(0) = x0. Use the four parameter value and initial condition combi-
nations above to solve the ODE

x′ = λx− x3.

Use solve_ivp to plot on the time interval 0 ≤ t ≤ 20. Be sure to include a legend. See Figure
7.4.
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= 0.5

Figure 7.4: Possible trajectories given different x0’s and λ’s for the equation x′ = λx− x3.

Hysteresis
The following ODE exhibits an interesting bifurcation phenomenon called hysteresis:

x′ = λ+ x− x3.
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Figure 7.5: Bifurcation diagram for the ODE x′ = λ+ x− x3.

This system has a bifurcation diagram containing what is known as a hysteresis loop, shown in Figure
7.5. In the hysteresis loop, when the parameter λ moves beyond the bifurcation point the equilibrium
solution makes a sudden jump to the other stable branch. When this occurs the system cannot reach
its previous equilibrium by simply rewinding the parameter slightly. The next section discusses a
model with a hysteresis loop.

Budworm Population Dynamics

Here we study a mathematical model describing the population dynamics of an insect called the
spruce budworm. In eastern Canada, an outbreak in the budworm population can destroy most of
the trees in a forest of balsam fir trees in about 4 years. The mathematical model is given by

N ′ = RN

(
1− N

K

)
− p(N). (7.4)

This model was studied by Ludwig et al (1978), and is described well in Strogatz’s text Nonlinear
Dynamics and Chaos. Here N(t) represents the budworm population at time t, R is the growth
rate of the budworm population and K represents the carrying capacity of the environment. We
could interpret K to represent the amount of food available to the budworms. p(N) represents the
death rate of budworms due to predators (birds); we assume specifically that p(N) has the form
P (N) = BN2

A2+N2 .
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Figure 7.6: Graphical demonstration of nonzero equilibrium solutions for the budworm population
(here r = .56, k = 8); equilibrium solutions occur where the curves cross. As k increases, the line
y = r(1− x/k) gets more shallow and the number of solutions goes from one to three and then back
to one.

Before studying the equilibrium points of (7.4) it is important to reduce the number of pa-
rameters in the system by nondimensionalizing. Thus, we make the coordinate change x = N/A,
τ = Bt/A, r = RA/B, and k = K/A, obtaining finally the system

dx

dτ
= rx(1− x/k)− x2

1 + x2
. (7.5)

Note that x = 0 is always an equilibrium solution. To find other equilibrium solutions we study
the equation r(1−x/k)−x/(1+x2) = 0. Fix r = .56, and consider Figure (7.6) (k = 8 in the figure).
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Figure 7.7: Bifurcation diagram for the budworm population model. The parameter r is fixed at 0.56.
The lower stable branch is known as the refuge level of the bundworm population, while the upper
stable branch is known as the outbreak level. Once the budworm population reaches an outbreak
level, the available food (foliage of the balsam fir trees) in the system must be reduced drastically
to jump back down to refuge level. Thus many of the balsam fir trees die before the budworm
population returns to refuge level.

Problem 3. Reproduce the bifurcation diagram (7.5) for the differential equation

dx

dτ
= rx(1− x/k)− x2

1 + x2
,

where r = 0.56. Be sure to include a legend.
Hint: Find a value for k that you know is in the middle of the plot (i.e. where there are

three possible solutions), then use the code from the previous problems to expand along each
contour till you obtain the desired curve. Now find the proper initial guesses that give you the
right bifurcation curve. The final plot will look like the one in Figure 7.7, but you will have to
run the embedding algorithm 4-6 times to get every part of the plot. In order to make a black
dashed line, add '--k' as the third argument in plt.plot() and use '-k' as the third argument
in plt.plot() to get the solid black line.
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Problem 4. Assume a time-dependent carrying capacity, defined by

k(t) =


8 t ∈ [0, 60)

12 t ∈ [60, 150)

8 t ∈ [150, 220)

6 t ∈ [220, 300)

and assume r = 0.56 and x(0) = x0 = 0.3. Plot the state-space diagram for the differential
equation

dx

dτ
= rx(1− x/k(t))− x2

1 + x2
,

using solve_ivp to solve the differential equation. Also plot the carrying capacity as a function
of time on the same axes. Be sure to include a legend.

Notice that returning the parameter k to 8 does not make the budworm population de-
crease back to the value it approached before increasing k to 12.

Two-Dimensional State Space
The Hopf bifurcation is one type of bifurcation that only occurs in a two- or higher-dimensional
space.1 Examples include railway vehicle stability, in which a vehicle’s motion transitions from
stable to unstable as speed increases. There are two types of Hopf bifurcations: supercritical and
subcritical. In polar coordinates, a simple supercritical system can take the form

r′ = µr − r3

θ′ = ω + br2.
(7.6)

We will be examining the effect of µ on the stability of the origin. We restrict our analysis with the
convention that r ≥ 0. At the origin (r = 0), we have r′ = 0. This suggests that the origin is an
equilibrium, and a conversion to Cartesian coordinates confirms this (see the “Additional Material”
section).

For r > 0, µ ≤ 0 implies that r′ < 0, so the origin is in fact asymptotically stable. However,
something interesting happens when µ becomes positive. In that case, we find that for r < √µ we
have r′ > 0, so the origin is unstable. On the other hand, for r > √µ we have r′ < 0. This means
that all trajectories not on the circle S = {r : r =

√
µ} tend toward S. Moreover, on S we have

r′ = 0, so trajectories on the circle will stay on it.
It turns out S is a special case of a stable limit cycle, defined by the property that nearby

trajectories approach the cycle as time goes to infinity. (The circle S is special in that it attracts
trajectories globally, rather than just in a neighborhood.)

1https://www.biodyn.ro/course/literatura/Nonlinear_Dynamics_and_Chaos_2018_Steven_H._Strogatz.pdf

https://www.biodyn.ro/course/literatura/Nonlinear_Dynamics_and_Chaos_2018_Steven_H._Strogatz.pdf
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Figure 7.8: The solution to Problem 5 at µ = −0.25 and at µ = 0.25. The points mark the initial
positions of the two trajectories.

Problem 5. Create an animation showing how two trajectories of the system (7.6) change as
the parameter µ changes from −0.25 to 0.25. Use 251 steps in your µ-linspace. Use the two
inital starting points (r0, θ0) = (0.1, 0) and (0.6, 0). Set ω = b = 1. Using solve_ivp, let
the two trajectories evolve from t0 = 0 to tf = 16π. Also plot the limit cycle (when µ > 0),
recalling from the above that it occurs at r = √µ. Be sure to include a legend. Compare with
Figure 7.8. Embed your animation in your notebook, and remember to push the animation as
well.
Hint: To fit the animation in the frame, it may be useful to set the plot view limits to (−0.7, 0.7)
(e.g., with ax.set_xlim).
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Additional Material
Conversion of the Hopf Bifurcation System to Cartesian Coordinates

We can convert the polar system (7.6) to Cartesian coordinates using x = r cos θ, y = r sin θ, and
x2 + y2 = r2:

x′ = r′ cos θ − rθ′ sin θ
=
(
µr − r3

)
cos θ − r

(
ω + br2

)
sin θ

=
(
µ− r2

)
r cos θ −

(
ω + br2

)
r sin θ

=
(
µ−

(
x2 + y2

))
x−

(
ω + b

(
x2 + y2

))
y

= µx− x3 − xy2 − ωy − bx2y − by3

y′ = r′ sin θ + rθ′ cos θ

=
(
µr − r3

)
sin θ + r

(
ω + br2

)
cos θ

=
(
µ− r2

)
r sin θ +

(
ω + br2

)
r cos θ

=
(
µ−

(
x2 + y2

))
y +

(
ω + b

(
x2 + y2

))
x

= µy − x2y − y3 + ωx+ bx3 + bxy2
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8 The Finite Difference
Method

Lab Objective: The finite difference method provides a solid foundation for solving partial dif-
ferential equations. Understanding and applying finite difference is key to understanding numerical
solutions to PDEs.

A finite difference for a function f(x) is an expression of the form f(x+ s)− f(x+ t). Finite
differences can give a good approximation of derivatives.

Suppose we have a function u(x), defined on an interval [a, b]. Let a = x0, x1, . . . xn−1, xn = b

be a grid of n+ 1 evenly spaced points, with xi+1 − xi = h, where h = (b− a)/n.

You are used to seeing the derivative u′(x), which can written in centered-difference form as:

u′(x) = lim
h→∞

u(x+ h)− u(x− h)
2h

.

Suppose we are interested in knowing the value of the derivative at the points {xi}. Even if we don’t
have a formula for u′(x), we can approximate it using finite differences. We first write the Taylor
polynomial expansion of u(x+ h) and u(x− h) centered at x. This gives

u(x+ h) = u(x) + u′(x)h+
1

2
u′′(x)h2 +

1

6
u′′′(x)h3 +O(h4) (8.1)

u(x− h) = u(x)− u′(x)h+
1

2
u′′(x)h2 − 1

6
u′′′(x)h3 +O(h4) (8.2)

Subtracting (8.2) from (8.1) and rearranging gives

u′(x) =
u(x+ h)− u(x− h)

2h
+O(h2).

In terms of our grid points {xi}, we have:

u′(xi) ≈
u(xi + h)− u(xi − h)

2h
=
u(xi+1)− u(xi−1)

2h
.
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We won’t worry about the derivative at the endpoints, u′(x0) and u′(xn). This allows us to approx-
imate the values {u′(xi)} as the solution to a system of equations:

1

2h


−1 0 1

−1 0 1
. . . . . . . . .

−1 0 1

−1 0 1


(n−1)×(n+1)

·


u(x0)

u(x1)
...

u(xn−1)

u(xn)


(n+1)×1

≈


u′(x1)

u′(x2)
...

u′(xn−2)

u′(xn−1)


(n−1)×1

. (8.3)

This can be rewritten with a (n− 1)× (n− 1) tridiagonal matrix instead:

1

2h


0 1

−1 0 1
. . . . . . . . .

−1 0 1

−1 0


(n−1)×(n−1)

·


u(x1)

u(x2)
...

u(xn−2)

u(xn−1)


(n−1)×1

+


−u(x0)/(2h)

0
...
0

u(xn)/(2h)


(n−1)×1

≈


u′(x1)

u′(x2)
...

u′(xn−2)

u′(xn−1)


(n−1)×1

. (8.4)

Next, we will consider the approximation for u′′(x). If we let

u′(x) ≈
u(x+ h

2 )− u(x−
h
2 )

h

then

u′′(x) ≈
u′(x+ h

2 )− u
′(x− h

2 )

h
≈

u((x+h
2 )+

h
2 )−u((x+h

2 )−
h
2 )

h − u((x−h
2 )+

h
2 )−u((x−h

2 )−
h
2 )

h

h

=
u(x+ h)− 2u(x) + u(x− h)

h2

You can achieve the same result by again consider the Taylor polynomial expansion and adding (8.1)
and (8.2) and rearranging. Thus

u′′(xi) ≈
u(xi + h)− 2u(xi) + u(xi − h)

h2
=
u(xi+1)− 2u(xi) + u(xi−1)

h2

Again ignoring the second derivative at the endpoints, this can be written in matrix form as

1

h2


1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1

1 −2 1


(n−1)×(n+1)

·


u(x0)

u(x1)
...

u(xn−1)

u(xn)


(n+1)×1

≈


u′′(x1)

u′′(x2)
...

u′′(xn−2)

u′′(xn−1)


(n−1)×1

. (8.5)

This can also be written with a (n− 1)× (n− 1) tridiagonal matrix:

1

h2


−2 1

1 −2 1
. . . . . . . . .

1 −2 1

1 −2


(n−1)×(n−1)

·


u(x1)

u(x2)
...

u(xn−2)

u(xn−1)


(n−1)×1

+


u(x0)/h

2

0
...
0

u(xn)/h
2


(n−1)×1

=


u′′(x1)

u′′(x2)
...

u′′(xn−2)

u′′(xn−1)


(n−1)×1

(8.6)
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Each of these matrices consists mostly of zeros; that is, they are sparse. So make sure to use
scipy.sparse when constructing these matrices and those that follow in this lab.1

Problem 1. Let u(x) = sin((x + π)2 − 1). Use (8.3) - (8.6) to approximate 1
2u

′′ − u′ at the
grid points where a = 0, b = 1, and n = 10. Graph the result.

Hint: You may find scipy.sparse.diags useful.

The previous equations are not only useful for approximating derivatives, but they can be also
used to solve differential equations. Suppose that instead of knowing the function u(x), we know
that 1

2u
′′ − u′ = f , where the function f(x) is given. How do we solve for u(x)?

Finite Difference Methods
Numerical methods for differential equations seek to approximate the exact solution u(x) at some
finite collection of points in the domain of the problem. Instead of analytically solving the original
differential equation, defined over an infinite-dimensional function space, they use a well-chosen finite
system of algebraic equations to approximate the original problem.

Consider the following differential equation:

εu′′(x)− u(x)′ = f(x), x ∈ (0, 1),

u(0) = α, u(1) = β.
(8.7)

Equation (8.7) can be written Du = f, where D = ε d2

dx2 − d
dx is a differential operator defined on the

infinite-dimensional space of functions that are twice continuously differentiable on [0, 1] and satisfy
u(0) = α, u(1) = β.

We look for an approximate solution {Ui}, where

Ui ≈ u(xi)

on an evenly spaced grid of points, a = x0, x1, . . . , xn = b,. Our finite difference method will replace
the differential operator D = ε d2

dx2 − d
dx , (which is defined on an infinite-dimensional space), with

finite difference operators (defined on a finite dimensional space). To do this, we replace derivative
terms in the differential equation with appropriate difference expressions.

Recalling that

d2

dx2
u(xi) =

u(xi+1)− 2u(xi) + u(xi−1)

h2
+O(h2),

d

dx
u(xi) =

u(xi+1)− u(xi−1)

2h
+O(h2).

we define the finite difference operator Dh by

DhUi = ε
1

h2
(Ui+1 − 2Ui + Ui−1)−

1

2h
(Ui+1 − Ui−1) . (8.8)

Thus we discretize equation (8.7) using the equations

ε

h2
(Ui+1 − 2Ui + Ui−1)−

1

2h
(Ui+1 − Ui−1) = f(xi), i = 1, . . . , n− 1,

1See the Volume 1 lab “Linear Systems” for a refresher on sparse matrices.
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along with boundary conditions U0 = α, Un = β.
This gives n+ 1 equations and n+ 1 unknowns, and can be written in matrix form as

1

h2


h2 0 0 . . . 0

(ε+ h/2) −2ε (ε− h/2) . . . 0
...

. . .
...

0 . . . (ε+ h/2) −2ε (ε− h/2)
0 . . . 0 h2


(n+1)×(n+1)

·


U0

U1

...
Un−1

Un


(n+1)×1

=


α

f(x1)
...

f(xn−1)

β


(n+1)×1

.

As before, we can remove two equations to modify the system to obtain an (n−1)×(n−1) tridiagonal
system:

1

h2


−2ε (ε− h/2) 0 . . . 0

(ε+ h/2) −2ε (ε− h/2) . . . 0
...

. . .
...

0 . . . (ε+ h/2) −2ε (ε− h/2)
0 . . . (ε+ h/2) −2ε


(n−1)×(n−1)

·


U1

U2

...
Un−2

Un−1


(n−1)×1

=


f(x1)− α(ε+ h/2)/h2

f(x2)
...

f(xn−2)

f(xn−1)− β(ε− h/2)/h2


(n−1)×1

.

(8.9)

Problem 2. Use equation (8.9) to solve the singularly perturbed BVP (8.7) on the interval
[0, 1] with ε = 1/10, f(x) = −1, α = 1, and β = 3 on a grid with n = 30 subintervals. Graph
the solution. This BVP is called singularly perturbed because of the location of the parameter
ε. For ε = 0 the ODE has a drastically different character—it then becomes first-order, and
can no longer support two boundary conditions.

Hint: Use scipy.sparse.linalg.spsolve to solve for U .

A heuristic test for convergence
The finite differences used above are second-order approximations of the first and second derivatives
of a function. It seems reasonable to expect that the numerical solution would converge at a rate of
about O(h2). How can we check that a numerical approximation is reasonable?

Suppose a finite difference method is O(hp) accurate. This means that the error E(h) ≈ Chp

for some constant C as h→ 0 (in other words, for h > 0 small enough).
So compute the approximation yk for each stepsize hk, h1 > h2 > . . . > hm. ym should be

the most accurate approximation, and will be thought of as the true solution. Then the error of the
approximation for stepsize hk, k < m, is

E(hk) = max(|yk − ym|) ≈ Chpk,
log(E(hk)) = log(C) + p log(hk).
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Figure 8.1: The solution to Problem 2. The solution gets steeper near x = 1 as ε gets small.
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Figure 8.2: Demonstration of second-order convergence for the finite difference approximation (8.8)
of the BVP given in (8.7) with ε = .5.

Thus on a log-log plot of E(h) vs. h, these values should be on a straight line with slope p when
h is small enough to start getting convergence. We should note that demonstrating second-order
convergence does NOT imply that the numerical approximation is converging to the correct solution.
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Problem 3. Implement a function singular_bvp to compute the finite difference solution to
(8.7). Using n = 5 × 20, 5 × 21, . . . , 5 × 29 subintervals, compute 10 approximate solutions.
Use these to visualize the O(h2) convergence of the finite difference method from Problem 2
by producing a loglog plot of error against subinterval count; this will be similar to Figure 8.2,
except with ε = 0.1. Also plot h2 on the same plot, as in Figure 8.2. Remember to use sparse
matrices.

To produce the plot, treat the approximation with n = 5 × 29 subintervals as the “true
solution,” and measure the error for the other approximations against it. Note that, since the
ratios of numbers of subintervals between approximations are multiples of 2, we can compute
the L∞ error for the n = 5× 2j approximation by using the step argument in the array slicing
syntax:

# best approximation; the vector has length 5*2^9+1
sol_best = singular_bvp(eps, alpha, beta, f, 5*(2**9))

# approximation with 5*(2^j) intervals; the vector has length 5*2^j+1
sol_approx = singular_bvp(eps, alpha, beta, f, 5*(2**j))

# approximation error; slicing results in a vector of length 5*2^j+1,
# which allows it to be compared
error = np.max(np.abs(sol_approx - sol_best[::2**(9-j)]))

Consider a similar, but somewhat generalized ODE of the form in (8.7),

a1(x)y
′′(x) + a2(x)y

′(x) + a3(x)y(x) = f(x), x ∈ (a, b),

y(a) = α, y(b) = β.

The functional coefficients a1, a2, a3 can be treated similarly to constant coefficients, but with each
row corresponding to a gridpoint in x (but not including the endpoints). Applying the finite difference
approximations gives the following system of equations:

1

h2

((
−2a1(x1) + h2a3(x1)

)
U1 +

(
a1(x1) +

h

2
a2(x1)

)
U2

)
= f(x1)− α

(
a1(x1)

h2
− a2(x1)

2h

)
1

h2

((
a1(x2)−

h

2
a2(x2)

)
U1 +

(
−2a1(x2) + h2a3(x2)

)
U2 +

(
a1(x2) +

h

2
a2(x2)

)
U3

)
= f(x2)

...
1

h2

((
a1(xk)−

h

2
a2(xk)

)
Uk−1 +

(
−2a1(xk) + h2a3(xk)

)
Uk +

(
a1(xk) +

h

2
a2(xk)

)
Uk+1

)
= f(xk)
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...
1

h2

((
a1(xn−1)−

h

2
a2(xn−1)

)
Un−2 +

(
−2a1(xn−1) + h2a3(xn−1)

)
Un−1

)
= f(xn−1)− β

(
a1(xn−1)

h2
+
a2(xn−1)

2h

)
This can (and should) be put into matrix form to be solved. It was not done here because it

requires more page space than is available.

Problem 4. Extend your finite difference code to the case of a general second-order linear
BVP with boundary conditions:

a1(x)y
′′(x) + a2(x)y

′(x) + a3(x)y(x) = f(x), x ∈ (a, b),

y(a) = α, y(b) = β.

Use your code to solve the boundary value problem

εy′′ − 4(π − x2)y = cosx,

y(0) = 0, y(π/2) = 1,

for ε = 0.1 on a grid with n = 30 subintervals. Be sure to modify the finite difference operator
Dh in (8.8) correctly. Remember to use sparse matrices.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8.3: The solution to Problem 4.

The next few problems will help you test your finite difference code.
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Problem 5. Numerically solve the boundary value problem

εy′′(x) + xy′(x) = −επ2 cos(πx)− πx sin(πx),
y(−1) = −2, y(1) = 0,

for ε = 0.1, 0.01, and 0.001. Use a grid with n = 150 subintervals. Plot your solutions.

Problem 6. Numerically solve the boundary value problem

(ε+ x2)y′′(x) + 4xy′(x) + 2y(x) = 0,

y(−1) = 1/(1 + ε), y(1) = 1/(1 + ε),

for ε = 0.05, 0.02. Use a grid with n = 150 subintervals. Plot your solutions.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
2

1

0

1

2 = 0.1
= 0.01
= 0.001

Figure 8.4: The solution to Problem 5.
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Figure 8.5: The solution to Problem 6.
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9 Wave Phenomena

Advection Equation
The advection equation (or transport equation) is given by ut + sux = 0, where s is a nonzero
constant. Consider the Cauchy problem

ut + sux = 0, −∞ < x <∞,
u(x, 0) = f(x).

The function f(x) may be thought of as an initial wave or signal. The general solution of this initial
boundary value problem is u(x, t) = f(x− st) (check this!). The solution u(x, t) is a traveling wave
that takes the signal f(x) and moves it along at a constant speed s — to the right if s > 0, and to
the left if s < 0.

Wave Equation
Many different wave phenomena can be described using a hyperbolic PDE called the wave equation.
These wave phenomena occur in fields such as electromagnetics, fluid dynamics, and acoustics. This
equation is given by

utt = s2∇2u (9.1)

where ∇2 = ∇ · ∇ is the Laplace operator. The 1D equation can be derived in the context of many
physical models; a common derivation describes the motion of a string vibrating in a plane. Another
nice derivation uses Hooke’s law from the theory of elasticity.

After making the change of variables (ξ, η) = (x− st, x+ st) and using the chain rule, we find
that the 1D wave equation utt = s2uxx is equivalent to uξη = 0. The general solution of this last
equation is

u(ξ, η) = F (ξ) +G(η)

for some scalar functions F and G. In (x, t) coordinates the solution is

u(x, t) = F (x− st) +G(x+ st).

Thus the general solution of the wave equation is the sum of two parts: one is a signal traveling to
the right with constant speed |s|, and the other is a signal traveling to the left with speed |s|.
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Given two homogeneous Dirichlet boundary conditions (for the second-order spatial derivative)
and two sets of initial conditions (because the second-order time derivative), the wave equation takes
the form

utt = s2uxx, 0 < x < l, t > 0,

u(0, t) = u(l, t) = 0,

u(x, 0) = f(x),

ut(x, 0) = g(x).

(9.2)

Numerical solution of the wave equation

We look to approximate u(x, t) on a grid of points (xj , tm)J,Mj=0,m=0. Denote the approximation to
u(xj , tm) by Um

j . Note that the superscipt index m denotes the time index and runs from 0 to
M , while the subscript j denotes the spatial index and runs from 0 to J . Recall that the centered
approximations in space and time are

DttU
m
j =

Um+1
j − 2Um

j + Um−1
j

(∆t)2
,

DxxU
m
j =

Um
j+1 − 2Um

j + Um
j−1

(∆x)2
.

(9.3)

The resulting method is given by

Um+1
j − 2Um

j + Um−1
j

(∆t)2
= s2

Um
j+1 − 2Um

j + Um
j−1

(∆x)2
,

Um+1
j = −Um−1

j + 2(1− λ2)Um
j + λ2(Um

j+1 + Um
j−1),

where λ = s(∆t)/(∆x). This method may be written in matrix form as

Um+1 = AUm − Um−1 (9.4)

where

A =


2(1− λ2) λ2

λ2 2(1− λ2) λ2

. . . . . . . . .
λ2 2(1− λ2) λ2

λ2 2(1− λ2)


and

Um =


Um
1

Um
2
...

Um
J−1

 .
In the matrix equation above, we have already used the boundary conditions to determine that

Um
0 = Um

J = 0 at each time tm. Note that, to obtain the approximation Um+1
j of u(xj , tm+1), the

method uses the value of the approximation at the previous two time steps. We can find the solution
for the first two time steps by using the initial conditions. Using the initial conditions directly gives
an approximation at t = t0 = 0:

U0
j = f(xj), 1 ≤ j ≤ J − 1
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To obtain an approximation at the second time step, we consider the Taylor expansion

u(xj , t1) = u(xj , 0) + ut(xj , 0)∆t+ utt(xj , 0)
∆t2

2
+ uttt(xj , t

∗
1)
∆t3

6
.

Recalling that the solution u(x, t) satisfies the wave equation, we substitute in expressions from our
initial conditions:

u(xj , t1) = u(xj , 0) + g(xj)∆t+ s2f ′′(xj)
∆t2

2
+ uttt(xj , t

∗
1)
∆t3

6
.

Ignoring the third-order term, we obtain a second-order approximation for the second time step:

U1
j = U0

j + g(xj)∆t+ s2f ′′(xj)
∆t2

2
, 1 ≤ j ≤ J − 1,

or if f is not readily differentiable,

U1
j = U0

j + g(xj)∆t+
λ2

2
(U0

j−1 − 2U0
j + U0

j+1). (9.5)

This method is conditionally stable; the CFL condition (a necessary condition for convergence of
PDEs) is that λ ≤ 1.

Notice that the matrix A is sparse. As such, you’ll want to use sparse matrices and routines
from scipy.sparse.

Problem 1. Define a function solve_wave to numerically approximate solutions to equations
of the form (9.2). Your function should accept the following as parameters:

• a spatial domain (x0, xf ),

• a time domain (t0, tf ),

• a number of spatial intervals J ,

• a number of time intervals M ,

• the parameter s,

• an initial condition f(x) = u(x, 0), and

• an initial condition g(x) = ut(x, 0).

Compute and return the numerical approximation U as an array using equations (9.4) and
(9.5).

Hint: Remember to use scipy.sparse when defining A, though U may be returned as a
dense matrix (that is, a NumPy array). You may find scipy.sparse.diags useful.
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Problem 2. Consider the initial boundary value problem

utt = uxx,

u(0, t) = u(1, t) = 0,

u(x, 0) = sin(2πx),

ut(x, 0) = 0.

Numerically approximate the solution u(x, t) for t ∈ [0, 0.5]. Use J = 50 subintervals in the
x dimension and M = 50 subintervals in the t dimension. Animate the results. Compare
your results with the analytic solution u(x, t) = sin (2πx) cos (2πt) graphically. This function is
known as a standing wave. See Figure 9.1.

Hint: Consider writing a function to create the animation, as you’ll need to create similar
animations for the next several problems as well.

0.0 0.2 0.4 0.6 0.8 1.0
x

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

U

Figure 9.1: u(x, t = 0).

Problem 3. Consider the initial boundary value problem

utt = uxx,

u(0, t) = u(1, t) = 0,

u(x, 0) = 0.2e−m2(x− 1
2 )

2

ut(x, 0) = 0.4m2

(
x− 1

2

)
e−m2(x− 1

2 )
2

.
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The solution of this problem is a Gaussian pulse. It travels to the right at a constant speed.
This solution models, for example, a wave pulse in a stretched string. Note that the fixed
boundary conditions reflect the pulse back when it meets the boundary.

Numerically approximate the solution u(x, t) for t ∈ [0, 1]. Set m = 20. Use 200 subin-
tervals in space and 220 in time, and animate your results. Then use 200 subintervals in space
and 180 in time, and animate your results. Note that the stability condition is not satisfied for
the second mesh. See Figure 9.2.
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Figure 9.2: u(x, t = 0).

Problem 4. Consider the initial boundary value problem

utt = uxx,

u(0, t) = u(1, t) = 0,

u(x, 0) = 0.2e−m2(x−1/2)2

ut(x, 0) = 0.

The initial condition separates into two smaller, slower-moving pulses, one traveling to the right
and the other to the left. This solution models, for example, a plucked guitar string

Numerically approximate the solution u(x, t) for t ∈ [0, 2]. Set m = 20. Use 200 subin-
tervals in space and 440 in time, and animate your results. It is rather easy to see that the
solution to this problem is the sum of two traveling waves, one traveling to the left and the
other to the right, as described earlier.
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Problem 5. Consider the initial boundary value problem

utt = uxx,

u(0, t) = u(1, t) = 0,

u(x, 0) =

{
1/3 if 5/11 < x < 6/11,

0 otherwise

ut(x, 0) = 0.

Numerically approximate the solution u(x, t) for t ∈ [0, 2]. Use 200 subintervals in space
and 440 in time, and animate your results. Even though the method is second-order and stable
for this discretization, since the initial condition is discontinuous there are large dispersive
errors. See Figure 9.3.
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(a) u(x, t = 0).
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(b) u(x, t = 0.1).

Figure 9.3: The graphs for Problem 5 at various times t.

Traveling Wave Solutions of an Evolution Equation

Recall that the advection (transport) equation with initial conditions, given by

ut + sux = 0, −∞ < x <∞,
u(x, 0) = f(x),

has as its general solution u(x, t) = f(x− st). Consider a general evolutionary PDE of the form

ut = G(u, ux, uxx, . . .). (9.6)

An interesting question to ask is whether (9.6) has traveling wave solutions: is there a signal or wave
profile f(x), so that u(x, t) = f(x − st) is a solution of (9.6) that carries the signal at a constant
speed s? These traveling waves are often significant physically. For example, in a PDE modeling
insect population dynamics a traveling wave could represent a swarm of locusts; in a PDE describing
a combustion process a traveling wave could represent an explosion or detonation.
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Burgers’ equation

We will examine the process of studying traveling wave solutions using Burgers’ equation, a nonlinear
PDE from gas dynamics. It is given by

ut +

(
u2

2

)
x

= νuxx, (9.7)

where u and ν represent the velocity and viscosity of the gas, respectively. It models both the process
of transport with the nonlinear advection term (u2/2)x = uux, as well as diffusion due to the viscosity
of the gas (νuxx).

Let us look for a traveling wave solution u(x, t) = û(x−st) for Burgers’ equation. We transform
(9.7) into the moving frame (x, t)→ (x̄, t̄) = (x− st, t). In this frame (9.7) becomes

ut̄ − sux̄ +

(
u2

2

)
x̄

= νux̄x̄

This new frame of reference corresponds to an observer moving along with the wave, so that the
wave appears stationary as the observer studies it. Thus, ût̄ = 0, so that the wave profile û satisfies
the ordinary differential equation

−sux̄ +

(
u2

2

)
x̄

= νux̄x̄. (9.8)

From here on we will drop the bar notation for simplicity. We seek a traveling wave solution
with asymptotically constant boundary conditions; that is, limx→±∞ û(x) = u± both exist, and
limx→±∞ û′(x) = 0. We will suppose that u− > u+ > 0.

Note that to this point we still don’t know the speed of the traveling wave. Integrating both
sides of this differential equation, and then taking the limit as x→ +∞, we obtain

−s
∫ x

−∞
u′ +

∫ x

−∞

(
u2

2

)′

= ν

∫ x

−∞
u′′,

−s(u(x)− u−) +
u2(x)

2
−
u2−
2

= ν(u′(x)− u′(−∞)),

−s(u+ − u−) +
u2+
2
−
u2−
2

= 0.

Thus given boundary conditions u± at ±∞, the speed of the traveling wave must be s = u−+u+

2 .
Usually at this point, the traveling wave must be numerically solved using the profile ODE

((9.8) for Burgers equation). However, the profile ODE for Burgers’ is simple enough that it is
possible to obtain an analytic solution. The traveling wave is given by

û(x) = s− a tanh
(ax
2ν

+ δ
)

(9.9)

where a = (u− − u+)/2 and δ is a fixed real number. We get a family of solutions because any
translation of a traveling wave solution is also a traveling wave solution.

Stability of traveling waves

Suppose that an evolutionary PDE

ut = G(u, ux, uxx, . . .). (9.10)
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has a traveling wave solution u(x, t) = û(x− st). An interesting question to consider is whether the
mathematical solution, û, has a physical analogue. In other words, does the traveling wave show up
in real life? This question is the start of the mathematical study of stability of traveling waves.

We begin by translating (9.10) into the moving frame (x, t)→ (x̄, t̄) = (x− st, t). In this frame
the PDE becomes

ut − sux = G(u, ux, uxx, . . .).

In these coordinates the traveling wave is stationary. Thus, the solution of

ut − sux = G(u, ux, uxx, . . .),

u(x, t = 0) = û(x),

is given by u(x, t) = û(x). We say that the traveling wave û is asymptotically orbitally stable if
whenever v(x) is a small perturbation of û(x), the general solution of

ut − sux = G(u, ux, uxx, . . .),

u(x, t = 0) = v(x),

converges to some translation of û as t → ∞. Using this definition to prove stability of a traveling
wave is a nontrivial task.

Visualizing stability of the traveling wave solution of Burgers’ equation

The traveling wave solution of Burgers’ equation is a stable wave. To view this numerically, we
discretize the PDE

ut − sux + uux = uxx

using the second-order centered approximations

DtU
m+1/2
j =

Um+1
j − Um

j

∆t
, DxxU

m+1/2
j =

1

2

(
Um+1
j+1 − U

m+1
j−1

2∆x
+
Um
j+1 − Um

j−1

2∆x

)
,

DxxU
m+1/2
j =

1

2

(
Um+1
j+1 − U

m+1
j + Um+1

j−1

(∆x)2
+
Um
j+1 − Um

j + Um
j−1

(∆x)2

)
.

Substituting these expressions into the PDE we obtain a second-order, implicit Crank–Nicolson
method

Um+1
j − Um

j = K1

[
(s− Um+1

j )(Um+1
j+1 − U

m+1
j−1 ) + (s− Um

j )(Um
j+1 − Um

j−1)
]

+K2

[
(Um+1

j+1 − 2Um+1
j + Um+1

j−1 ) + (Um
j+1 − 2Um

j + Um
j−1)

] (9.11)

where K1 = ∆t
4∆x and K2 = ∆t

2(∆x)2 .

Unlike the previous problems, this equation is implicit in Um+1. That is, we can’t solve each
iteration for the next step Um+1 explicitly. Instead, we’ll need to use a root-finding algorithm like
Newton’s method.

Problem 6. Numerically solve the initial value problem

ut − sux + uux = uxx, x ∈ (−∞,∞),

u(x, 0) = û(x) + v(x),
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for t ∈ [0, 1], where û is given in (9.9) with ν = 1 and δ = 0. Let the perturbation v(x) be given
by

v(x) = 3.5(sin (3x) + 1)
1√
2π

exp (−x2/2).

Approximate the x domain, (−∞,∞), numerically by the finite interval [−20, 20], and fix
u(−20) = u−, u(20) = u+. Let u− = 5, u+ = 1 which makes s = 3. Use 150 intervals in space
and 350 steps in time. Animate your solution U . Also include in your animation the original
traveling wave û. You should see the solution converge to a translate of û. See Figure 9.4. For
your root-finding algorithm, use scipy.optimize.fsolve.

Hint: To solve for each Um+1, define a function cranknicolson that accepts a guess for
Um+1 and returns the expression obtained from moving all the terms in (9.11) to one side
(call the expression Ũ). At each iteration, use fsolve to find the value of Um+1 that makes
Ũ = 0—that is, it solves (9.11). You can use Um as a good guess.

We still need to enforce the boundary conditions. Before returning Ũ , set the value of, for
example, the first value Ũ0 to be Um+1

0 − u−. This will ensure fsolve finds Um+1 such that
Um+1
0 = u−.

Also note that fsolve accepts an additional parameter args that it passes to the function
whose root it is finding. You might consider setting up cranknicolson to accept the previous
value Um.
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U

(a) u(x, t = 0).

20 15 10 5 0 5 10 15 20
x

0

1

2

3

4

5

6

U

u(t = 1)
u(t)

(b) u(x, t = 1) vs û.

Figure 9.4: The graphs for Problem 6.

Two-Dimensional Wave

Consider the two-dimensional wave equation:

utt = α2∇2u = α2(uxx + uyy) (9.12)
u(x, y, t) = 0, (x, y) ∈ ∂

(
[x0, xf ]× [y0, yf ]

)
(9.13)

u(x, y, 0) = f(x, y)

ut(x, y, 0) = g(x, y)
(9.14)

for some real, non-negative α.
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As with the one-dimensional wave equation, we’ll use the second-order centered difference ap-
proximations (as in (9.3)) for each of the second derivatives. Let Um

i,j be the numerical approximation
for u(xi, yj , tm). We can approximate (9.12) with

Um+1
i,j − 2Um

i,j + Um−1
i,j

(∆t)2
= α2

[
Um
i+1,j − 2Um

i,j + Um
i−1,j

(∆x)2
+
Um
i,j+1 − 2Um

i,j + Um
i,j−1

(∆y)2

]
.

Assuming the same step size in each spatial dimension h = ∆x = ∆y, we can rearrange:

Um+1
i,j =

α2(∆t)2

h2
(Um

i+1,j − 2Um
i,j + Um

i−1,j + Um
i,j+1 − 2Um

i,j + Um
i,j−1) + 2Um

i,j − Um−1
i,j

= λ
(
Um
i+1,j + Um

i−1,j + Um
i,j+1 + Um

i,j−1 − 4Um
i,j

)
+ 2Um

i,j − Um−1
i,j (9.15)

where λ = α2(∆t)2

h2 . Assume there are N subintervals in each spatial dimension so that there are
N + 1 points, x0 < . . . < xN and y0 < . . . < yN . Because of our homogeneous Dirichlet boundary
conditions (9.13), we have Um

i,j = 0 for i = 0, N or j = 0, N , so we can just compute Um+1
i,j for

1 ≤ i ≤ N − 1 and 1 ≤ j ≤ N − 1, and ignore Um
i,j terms on the boundary. We’ll flatten each Um

and write this scheme as the matrix equation

Um+1 = AUm − Um−1 (9.16)

where

A =


T Λ

Λ T Λ
. . . . . . Λ

Λ T


Λ = λI

T =


2− 4λ λ

λ 2− 4λ λ
. . . . . . . . .

λ 2− 4λ λ

λ 2− 4λ

 .

We have that T and Λ are both (N − 1)× (N − 1), and each Um has length (N − 1)2. Note that we
may flatten each Um either by columns or by rows due to the spatial symmetry of (9.15).

However, for a given time step our iterative matrix algorithm (9.16) requires two previous time
steps, so for the first time step we’ll need a different method. We’ll start with a Taylor approximation
centered at t = 0 and then use (9.12) and (9.14):

u(x, y,∆t) = u(x, y, 0) + ∆t ut(x, y, 0) +
(∆t)2

2
utt(x, y, 0) +O

(
(∆t)3

)
= u(x, y, 0) + ∆t g(x, y) +

(∆t)2

2
α2∇2u(x, y, 0) +O

(
(∆t)3

)
.
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We then expand the last term using second-order centered second-derivative approximations as in
(9.3):

(∆t)2

2
α2∇2u(x, y, 0) =

α2(∆t)2

2

(
uxx(x, y, 0) + uyy(x, y, 0)

)
=
α2(∆t)2

2

(
u(x+ h, y, 0)− 2u(x, y, 0) + u(x− h, y, 0)

h2

+
u(x, y + h, 0)− 2u(x, y, 0) + u(x, y − h, 0)

h2
+O

(
(∆t)2

))
=
α2(∆t)2

2h2

(
u(x+ h, y, 0) + u(x− h, y, 0)

+ u(x, y + h, 0) + u(x, y − h, 0)− 4u(x, y, 0)

)
+O

(
(∆t)4

)
.

Using our Um
i,j notation, u(x, y,∆t) becomes

U1
i,j = U0

i,j +∆t g(x, y) +
λ

2

(
U0
i+1,j + U0

i−1,j + U0
i,j+1 + U0

i,j−1 − 4U0
i,j

)
+O

(
(∆t)3

)
.

Problem 7. Solve the 2D wave equation (9.12). UseN = 200 spatial subintervals andM = 500

time subintervals. Use a spatial domain (x, y) ∈ [−10, 10] × [−10, 10] and a time domain
t ∈ (t0, tf ) = (0, 40). Set f(x, y) = 3 1

2π exp
(
− 1

2

(
x2 + y2

))
, and set g(x, y) = 0. Finally, use

α = 0.8. Animate the result, and compare with Figure 9.5. Remember to use sparse matrices.
Hint: You may find useful the functions scipy.sparse.diags, scipy.sparse.block_diag,

and <sparse_matrix>.setdiag. Also note that f(x, y) is equal to 3 times the probability den-
sity function of the standard two-dimensional normal distribution.
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Figure 9.5: The solution to Problem 7 (the 2D wave equation) u(x, y, t = 6).



10 Conservation Laws
and Heat Flow

Many physical phenomena have a conservation law associated with them. For instance, matter,
energy, and momentum are all conserved quantities. The fundamental conservation law states that
the rate of change of the total quantity in the system is equal to the rate that the quantity enters
the system plus the rate at which the quantity is produced by sources inside the system. While this
is a global property, we can use it to obtain a local differential equation that the concentration of the
quantity must obey everywhere in the system. Because of this, conservation laws are very important
in modeling a wide variety of phenomena.

Derivation of the Conservation equation in multiple dimensions
Suppose Ω is a region in Rn, and V ⊂ Ω is bounded with a reasonably well-behaved boundary ∂V .
Let u(x⃗, t) represent the density (concentration) of some quantity throughout Ω. Let n⃗(x⃗) represent
the normal direction to V at x⃗ ∈ ∂V , and let J⃗(x⃗, t) be the flux vector for the quantity, so that
J⃗(x⃗, t) · n⃗(x⃗) dA represents the rate at which the quantity leaves V by crossing a boundary element
with area dA. Note that the total amount of the quantity in V is∫

V

u(x⃗, t) dx⃗,

and the rate at which the quantity enters V is

−
∫
∂V

J⃗(x⃗, t) · n⃗(x⃗) dA.

We let the source term be given by g(x⃗, t, u); we may interpret this to mean that the rate at
which the quantity is produced in V is ∫

V

g(x⃗, t, u) dx⃗.

Then the integral form of the conservation law for u is expressed as

d

dt

∫
V

u(x⃗, t) dx⃗ = −
∫
∂V

J⃗ · n⃗ dA+

∫
V

g(x⃗, t, u) dx⃗.

If u and J are sufficiently smooth functions, then we have

d

dt

∫
V

u dx⃗ =

∫
V

ut dx⃗,

97
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and ∫
∂V

J⃗ · n⃗ dA =

∫
V

∇ · J⃗ dx⃗.

Putting these together yields∫
V

ux⃗(x⃗, t) dx⃗ =

∫
V

(
−∇ · J⃗ + g(x⃗, t, u)

)
dx⃗

Since this holds for all nice subsets V ⊂ Ω with V arbitrarily small, the integrands must be equal
everywhere, and we obtain the differential form of the conservation law for u:

ut +∇ · J⃗ = g(x⃗, t, u),

where ∇ is the gradient operator and ∇ · J⃗ = ∂J1

∂x1
+ · · ·+ ∂Jn

∂xn

Constitutive Relations
So far, our conservation law consists of 2 unknowns (u and J) but only 1 equation. To this equation
we need to add other equations, called constitutive relations, which are used to fully determine the
system.

For example, suppose we wish to model the flow of heat. Since heat flows from warmer regions
to colder regions, and the rate of heat flow depends on the difference in temperature between regions,
we usually assume that the flux vector J⃗ is given by

J⃗(x⃗, t) = −ν∇u(x⃗, t),

where ν is called the diffusion constant and ∇u(x⃗, t) = [∂x1
u, . . . , ∂xn

u]
T. This constitutive relation is

called Fick’s law, and is the basic model for any diffusive process. Substituting into the conservation
law we obtain

ut − ν∇2u(x⃗, t) = g(x⃗, t, u)

where ∇2 is the Laplace operator:

∇2u(x⃗, t) =
∂2u

∂x21
+ · · ·+ ∂2u

∂x2n
.

The function g represents heat sources and sinks within the region.

Numerically modeling heat flow
Consider the heat flow equation in one dimension together with an appropriate initial condition
u(x, 0) = f(x), homogeneous Dirichlet boundary conditions, and g(x, t, u) = 0:

ut = νuxx, x ∈ [a, b], t ∈ [0, T ],

u(a, t) = 0, u(b, t) = 0,

u(x, 0) = f(x).

We will create an approximation Um
j to u(xj , tm) on the grid xj = a+ j∆x, tm = m∆t, where j and

m are indices, j = 0, . . . , J and m = 0, . . . ,M . Thus Um
j denotes the approximate value of u at the

j-th grid point and the m-th time step.
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Figure 10.1: The graph of U0, the approximation to the solution u(x, t = 0) for Problem 1.

As before, we will use the finite difference method to create this approximation. Recall that by
using Taylor’s theorem, we have the first-order forward difference approximation

ut(x, t) =
u(x, t+∆t)− u(x, t)

∆t
+O(∆t).

and the second-order centered difference approximation

uxx(xj , tm) =
u(xj +∆x, tm)− 2u(xj , tm)− u(xj −∆x, tm)

(∆x)2
+O

(
(∆x)2

)
.

Applying these difference approximations give us the O
(
(∆x)2 +∆t

)
explicit method

Um+1
j − Um

j

∆t
= ν

Um
j+1 − 2Um

j + Um
j−1

(∆x)2
, (10.1)

Um+1
j = Um

j +
ν∆t

(∆x)2
(Um

j+1 − 2Um
j + Um

j−1). (10.2)

This method can be written in matrix form as

Um+1 = AUm, (10.3)
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Figure 10.2: The graph of U4, the approximation to the solution u(x, t = 0.4) for Problem 1.

where A is the (J + 1)× (J + 1) tridiagonal matrix given by

A =


1 0

λ 1− 2λ λ
. . . . . . . . .

λ 1− 2λ λ

0 1

 ,

where λ = ν∆t/(∆x)2, n is the number of spatial subintervals, and Um represents the approximation
at time tm. We can initialize this method using the initial condition given in our problem, which
tells us that U0

j = f(xj).
To account for our constant boundary conditions using this differencing scheme, simply set the

boundary points to the appropriate values in the initial conditions, then avoid modifying them as
you update for each time step. Note that the first and last rows of the matrix representation of the
differencing scheme are the same as the first and last rows of the identity matrix. This has the effect
of keeping the boundary points the same as in the previous step, and thus the same as in the initial
condition.
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Problem 1. Consider the initial/boundary value problem

ut = 0.05uxx, x ∈ [0, 1], t ∈ [0, 1]

u(0, t) = 0, u(1, t) = 0,

u(x, 0) = 2max{0.2− |x− 0.5|, 0}.
(10.4)

Using (10.3), approximate the solution u(x, t) by taking J = 6 subintervals in the x dimension
and M = 10 subintervals in time. Plot the solution at the times t = 0, t = 0.4, and t = 1. The
graphs for U0 and U4 are given in Figures 10.1 and 10.2. Be sure to use scipy.sparse when
defining the matrix A.

Hint: sparse.diags may be useful.

Problem 2. Solve the initial/boundary value problem

ut = uxx, x ∈ [−12, 12], t ∈ [0, 1],

u(−12, t) = 0, u(12, t) = 0,

u(x, 0) = max{1− x2, 0}
(10.5)

using the first-order explicit method (10.3). Use J = 140 subintervals in the x dimension and
M = 70 subintervals in time. The initial and final states are shown in Figure 10.3. Animate
your results.

Explicit methods usually have a stability condition, called a CFL condition (for Courant–
Friedrichs–Lewy). For method (10.3) the CFL condition that must be satisfied is that

λ =
ν∆t

(∆x)2
≤ 1

2
.

Repeat your computations using J = 140 subintervals in the x dimension and M = 66 subin-
tervals in time. Animate the results. For these values, the CFL condition is broken; you should
be able to clearly see the result of this instability in the approximation U66.

Implicit Methods

Implicit methods often have better stability properties than explicit methods. The Crank–Nicolson
method, for example, is unconditionally stable and has order O

(
(∆x)2 + (∆t)2

)
. To derive the

Crank–Nicolson method, we use the following approximations:

ut(xj , tm+1/2) =
u(xj , tm+1)− u(xj , tm)

∆t
+O

(
(∆t)2

)
,

uxx(xj , tm+1/2) =
uxx(xj , tm+1) + uxx(xj , tm)

2
+O

(
(∆x)2

)
.
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Figure 10.3: The initial and final states for equation Problem 2.

The first equation is a finite difference approximation for ut, and the second is a midpoint approxi-
mation applied to uxx. Then for the equation ut = νuxx, these approximations give the relation

Um+1
j − Um

j

∆t
=
ν

2

(
Um
j+1 − 2Um

j + Um
j−1

(∆x)2
+
Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2

)
,

Um+1
j = Um

j +
ν∆t

2(∆x)2
(
Um
j+1 − 2Um

j + Um
j−1 + Um+1

j+1 − 2Um+1
j + Um+1

j−1

)
.

(10.6)

This method can be written in matrix form as

BUm+1 = AUm,

where A and B are tridiagonal matrices given by

B =


1 0

−λ 1 + 2λ −λ
. . . . . . . . .

−λ 1 + 2λ −λ
0 1

 ,

A =


1 0

λ 1− 2λ λ
. . . . . . . . .

λ 1− 2λ λ

0 1

 ,
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Figure 10.4: E(h) represents the (approximate) maximum error in the numerical solution U to
Problem 3 at time t = 1, using a spatial step size of h.

where λ = ν∆t/
(
2(∆x)2

)
, and Um represents the approximation at time tm. Note that here we have

defined λ differently than we did before!

Accuracy of Numerical Approximations
How do we know if a numerical approximation is reasonable? One way to determine this is to compute
solutions for various spatial step sizes h and see if the solutions are converging to something, which
we hope to be the true solution. To be more specific, suppose our finite difference method is O(hp)
accurate. This means that the error E(h) ≈ Chp for some constant C as h → 0 (that is, for h > 0

small enough).
So, we will compute the approximation yk for each step size hk, h1 > h2 > . . . > hq. We will

think of yq as the true solution. Then the error of the approximation for step size hk, k < q, is

E(hk) = max(|yk − yq|) ≈ Chpk,
log(E(hk)) = log(C) + p log(hk).

Thus on a log–log plot of E(h) vs. h, these values should be on a straight line with slope p when h

is small enough to start getting convergence.
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Problem 3. Using the Crank–Nicolson method, numerically approximate the solution u(x, t)

of the problem

ut = uxx, x ∈ [−12, 12], t ∈ [0, 1],

u(−12, t) = 0, u(12, t) = 0,

u(x, 0) = max{1− x2, 0}.
(10.7)

Note that this is an implicit linear scheme; hence, the most efficient way to find Um+1 is to
create the matrix B as a sparse matrix and use scipy.sparse.linalg.spsolve.

Demonstrate that the numerical approximation at t = 1 converges. Do this by computing
U at t = 1 using 20, 40, 80, 160, 320, and 640 intervals for both time and space (i.e., J = M).
Reproduce the log–log plot shown in Figure 10.4. The slope of the line there shows the order
of convergence.

To measure the error, let h be the spatial step size ∆x. Use the solution with the smallest
h (largest number of intervals) as if it were the exact solution, then compare each solution
only at the x-values that are represented in the solution with the largest h (smallest number of
intervals). Use the maximum absolute difference as the value of the error for each solution.

Notice that, since the Crank–Nicolson method is unconditionally stable, there is no CFL
condition, and we can safely use the same number of intervals in time and space.



11 Anisotropic Diffusion

Lab Objective: Demonstrate the use of finite difference schemes in image analysis.

A common task in image processing is to remove extra static from an image. This is most easily
done by simply blurring the image, which can be accomplished by treating the image as a rectangular
domain and applying the diffusion (heat) equation:

ut = c∆u

where c is some diffusion constant and ∆ is the Laplace operator. Unfortunately, this also blurs the
boundary lines between distinct elements of the image.

A more general form of the diffusion equation in two dimensions is:

ut = ∇ · (c(x, y, t)∇u)

where c is a function representing the diffusion coefficient at each given point and time. In this case,
∇· is the divergence operator and ∇ is the gradient.

To blur a picture uniformly, choose c to be a constant function. Since c controls how much
diffusion is allowed at each point, it can be modified so that diffusion is minimized across edges in
the image. In this way we attempt to limit diffusion near the boundaries between different features
of the image, and allow smaller details of the image (such as static) to blur away. This method for
image denoising is especially useful for denoising low quality images, and was first introduced by
Pietro Perona and Jitendra Malik in 1987. It is known as Anisotropic Diffusion or Perona-Malik
Diffusion.

A Finite Difference Scheme
Suppose we have some estimate E of the rate of change at a given point in an image. E will be
largest at the boundaries in the image. We will then let c(x, y, t) = g(E(x, y, t)) where g is some
function such that g(0) = 1 and lim

x→∞
g(x) = 0. Thus c will be small where E is large, so that little

diffusion occurs near the boundaries of different portions of the image.
We will model this system using a finite differencing scheme with an array of values at a 2D

grid of points, and iterate through time. Let Un
l,m be the discretized approximation of the function

u, n be the index in time, l be the index along the x-axis, and m be the index along the y-axis.
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The Laplace operator can be approximated with the finite difference scheme

∆u = uxx + uyy ≈
Un
l−1,m − 2Un

l,m + Un
l+1,m

(∆x)2
+
Un
l,m−1 − 2Un

l,m + Un
l,m+1

(∆y)2
.

A good metric to use with images is to let the distance between each pixel be equal to one, so
∆x = ∆y = 1. Rearranging terms, we obtain

∆u ≈ (Un
l−1,m − Un

l,m) + (Un
l+1,m − Un

l,m) + (Un
l,m−1 − Un

l,m) + (Un
l,m+1 − Un

l,m).

Again, since we are working with images and not some time based problem, we can without loss of
generality let ∆t = 1, so we obtain the finite difference scheme

Un+1
l,m = Un

l,m + (Un
l−1,m − Un

l,m) + (Un
l+1,m − Un

l,m) + (Un
l,m−1 − Un

l,m) + (Un
l,m+1 − Un

l,m).

We will now limit the diffusion near the edges of objects by making the modification

Un+1
l,m = Un

l,m+λ
(
g(|Un

l−1,m − Un
l,m|)(Un

l−1,m − Un
l,m)

+ g(|Un
l+1,m − Un

l,m|)(Un
l+1,m − Un

l,m)

+ g(|Un
l,m−1 − Un

l,m|)(Un
l,m−1 − Un

l,m)

+ g(|Un
l,m+1 − Un

l,m|)(Un
l,m+1 − Un

l,m)
)
,

(11.1)

where λ ≤ 1
4 is the stability condition.

In this difference scheme, each term is affected most by nearby terms that are most similar to
it, so less diffusion will happen anywhere there is a sharp difference between pixels. This scheme
also has the useful property that it does not increase or decrease the total brightness of the image.
Intuitively, this is because the effect of each point on its neighbors is exactly the opposite effect its
neighbors have on it.

Two commonly used functions for g are g(x) = e−(
x
σ )

2

and g(x) = 1

1+( x
σ )

2 . The parameter σ

allows us to control how much diffusion decreases across boundaries, with larger σ values allowing
more diffusion. Note that g(0) = 1 and lim

x→∞
g(x) = 0 for both functions. In this lab we use g(x) =

e−(
x
σ )

2

.
It is worth noting that this particular difference scheme is not an accurate finite difference

scheme for the version of the diffusion equation we discussed before, but it does accomplish the same
thing in the same way. As it turns out, this particular scheme is the solution to a slightly different
diffusion PDE, but can still be used the same way.

For this lab’s examples we read in the image using the imageio.v3.imread function, and
normalized it so that the colors are represented as floating point values between 0 and 1. An image
can converted to black and white when it is read by including the argument mode='F'.

from matplotlib import cm, pyplot as plt
from imageio.v3 import imread

# To read in an image, convert it to grayscale, and rescale it.
picture = imread("coke_balloon.jpg", mode='F') * 1./255

# To display the picture as grayscale
plt.imshow(picture, cmap=cm.gray)
plt.show()
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Simplifying Calculations for Edges and Corners

You will notice that the algorithm given in (11.1) does not describe what to do for the edges and
corners of Un+1. In these cases we will simply eliminate the undefined terms in the algorithm. For
example, the top edge equation becomes

Un+1
l,m = Un

l,m+λ(g(|Un
l+1,m − Un

l,m|)(Un
l+1,m − Un

l,m)

+ g(|Un
l,m+1 − Un

l,m|)(Un
l,m+1 − Un

l,m))

+ g(|Un
l,m−1 − Un

l,m|)(Un
l,m−1 − Un

l,m)),

and top left corner equation becomes

Un+1
l,m = Un

l,m+λ(g(|Un
l+1,m − Un

l,m|)(Un
l+1,m − Un

l,m)

+ g(|Un
l,m+1 − Un

l,m|)(Un
l,m+1 − Un

l,m)).

Essentially we are only using the terms of the difference scheme that are actually defined.
Coding special cases for the edges and corners is tedious and error-prone, however. To help

facilitate this we can create a larger "padded" matrix that will make these calculations easy to do.
This padded matrix will have an extra row on the top and bottom, and an extra column on either
side of the original matrix. These extra rows and columns will duplicate the outer edge of the original
matrix.

So, if our original array X has shape l,m, then our padded array Y has shape l+2,m+2. The top
edge of Y will be defined so that Y[0,1:-1] == X[0,:] is true, and the rest of the edges of Y follow
the same pattern.

If we do this, we can simply apply (11.1) without having to make special cases for the edges
and corners, since those previously undefined terms are each zero when using the padded matrix.

Problem 1. Complete the following function, by implementing the anisotropic diffusion algo-
rithm found in 11.1 for black and white images. Use the padded array technique found in the
Simplifying Calculations section.

In your function, use
g(x) = e−(x/σ)2

def anisdiff_bw(U, N, lambda_, g):
""" Run the Anisotropic Diffusion differencing scheme
on the array U of grayscale values for an image.
Perform N iterations, use the function g
to limit diffusion across boundaries in the image.
Operate on U inplace to optimize performance. """
pass

Run the function on coke_balloon.jpg. Show the original image and the diffused image for
σ = .1, λ = .25, N = 5, 20, 100.

Hint: Use the np.pad function to implement the padded array technique.



108 Lab 11. Anisotropic Diffusion

original image 5 iterations with σ = .1 and λ = .25

20 iterations 100 iterations
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Color Schemes
Colored images can be processed in a similar manner. Instead of being represented as a two-
dimensional array, colored images are represented as three dimensional arrays. The third dimension
is used to store the intensities of each of the standard 3 colors. This diffusion process can be carried
out in the exact same way, on each of the arrays of intensities for each color, but instead of detecting
edges just in one color, we need to detect edges in any color, so instead of using something of the
form g(|Un

l+1,m −Un
l,m|) as before, we will now use something of the form g(||Un

l+1,m −Un
l,m||), where

Un
l+1,m and Un

l,m are vectors now instead of scalars. The difference scheme can be treated as an
equation on vectors in 3-space and now reads:

Un+1
l,m = Un

l,m+λ(g(||Un
l−1,m − Un

l,m||)(Un
l−1,m − Un

l,m)

+ g(||Un
l+1,m − Un

l,m||)(Un
l+1,m − Un

l,m)

+ g(||Un
l,m−1 − Un

l,m||)(Un
l,m−1 − Un

l,m)

+ g(||Un
l,m+1 − Un

l,m||)(Un
l,m+1 − Un

l,m))

(11.2)

When implementing this scheme for colored images, use the 2-norm on 3-space, i.e

||x|| =
√
x21 + x22 + x23 (11.3)

where x1, x2, and x3 are the different coordinates of x.

Problem 2. Complete the following function to process a colored image using Equation (11.2).
You may modify your code from the previous problem. Measure the difference between pixels
using the 2-norm. Use the corresponding vector versions of the boundary conditions given in
Problem 1.

def anisdiff_color(U, N, lambda_, g):
""" Run the Anisotropic Diffusion differencing scheme
on the array U of color values for an image.
Perform N iterations, use the function g = e^{-x^2/sigma^2}
to limit diffusion across boundaries in the image.
Operate on U inplace to optimize performance. """
pass

Run the function on balloons_color.jpg. Show the original image and the diffused image for
σ = .1, λ = .25, N = 5, 20, 100.

Hint: If you have an m×n×3 matrix representing the RGB differences of each pixel, then
to find a matrix representing the norm of the differences, you can use the following code. This
code squares each value and sums along the last axis, and takes the square root. In order to
keep the dimension size of the matrix and aid in broadcasting, you must use keepdims=True.

# x is mxnx3 matrix of pixel color values
norm = np.sqrt(np.sum(x**2, axis=2, keepdims=True))
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original image After 50 iterations

Figure 11.1: Smearing of similar colors when using an anisotropic diffusion filter.

Noisy Images

Problem 3. Use the following code to add noise to your grayscale image.

from numpy.random import randint

image = imread("balloon.jpg", mode='F')
x, y = image.shape
for i in range(x*y//100):

image[randint(x), randint(y)] = 127 + randint(127)

Run anisdiff_bw() on the noisy image with σ = .1, λ = .25, N = 20. Display the
original image and the noisy image. Explain why anisotropic diffusion does not smooth out the
noise.

Hint: Don’t forget to rescale.
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Minimum Bias
This sort of anisotropic diffusion can be very effective, but, depending on the image, it may also
smear out edges that do not have large differences between them. An example of this limitation can
be seen in Figure 11.1

As we can see, after 100 iterations, some of the boundaries between similar shades of grey have
smeared unevenly. This can be counteracted somewhat by further decreasing the σ value, but if we
have random noise throughout the image, this will not remove it.

If we have random static in the image, we can remove this using a modified version of the
filter. Instead of measuring the rate of change in the picture in each direction, we change each point
according to whether or not any of its adjacent points have roughly the same value it has. This is
called a minimum-biased filter. This sort of trick is especially good for removing isolated pixels that
are different from those around them.

To do this, we will define an iterative scheme similar to (11.2), but with g having a different
value at each pixel and for each timestep. Using the 2-norm, we first find

gnl,m = mean of 2 smallest
(
∥Un

l−1,m − Un
l,m∥, ∥Un

l+1,m − Un
l,m∥, ∥Un

l,m−1 − Un
l,m∥, ∥Un

l,m+1 − Un
l,m∥

)
.

(11.4)

The update process then becomes

Un+1
l,m = Un

l,m+λ(gnl,m(Un
l−1,m − Un

l,m)

+ gnl,m(Un
l+1,m − Un

l,m)

+ gnl,m(Un
l,m−1 − Un

l,m)

+ gnl,m(Un
l,m+1 − Un

l,m))

= Un
l,m+λgnl,m(Un

l−1,m + Un
l+1,m + Un

l,m−1 + Un
l,m+1 − 4Un

l,m)

(11.5)

To compute the values of gnl,m, it is helpful to construct (l,m)-shape arrays of the ∥Un
l±1,m±1 −

Un
l,m∥, put them together into a (4,l,m)-shape array [∥Un

l−1,m − Un
l,m∥, ∥Un

l+1,m − Un
l,m∥, ∥Un

l,m−1 −
Un
l,m∥, ∥Un

l,m+1 − Un
l,m∥], and then using np.argsort with the argument axis=0.

If the pixel values are scaled to be in [0, 1] and λ ≤ 1
4 , the method will be stable, as the scheme’s

tendency is to move points closer to the values of their neighbors. Below, we include an example of
using a minimum-bias filter to diminish the noise in a color image.

Problem 4. Implement the minimum-biased finite difference scheme described above. Add
noise to balloons_color.jpg using the provided code below, and clean it using your imple-
mentation. Show the original image, the noised image, and the cleaned image.

image = imread("balloons_color.jpg") * 1./255
x,y,z = image.shape
for dim in range(z):

for i in range(x*y//30):
# Assign a random value to a random place
image[randint(x), randint(y), dim] = (127 + randint(127)) /255.
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Hint: You may need to reshape the array g so that it has dimension (l, m, 1). That way you
can array broadcast it into U , which is (l,m,3).
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Original image Randomly changed 48,000 color values

50 iterations of a min-biased scheme
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12 The Finite Element
Method

Lab Objective: The finite element method is commonly used for numerically solving partial
differential equations. We introduce the finite element method via a simple BVP describing the
steady state distribution of heat in a pipe as fluid flows through.

Advection-Diffusion of Heat in a Fluid
We wish to study the distribution of heat in a fluid that is moving at some constant speed a. Let
y denote the temperature of the fluid at any given location and time. The equation modeling this
situation can be obtained from the differential form of the conservation law, where the flux is the
sum of a diffusive term −εyx and an advection (or transport) term ay:

J = ay − εyx
The one-dimension conservation law states that y must then obey the partial differential equation
yt + Jx = f(x), where f represents heat sources in the system. Since Jx = ayx− εyxx, we obtain the
advection-diffusion equation

yt + ayx = εyxx + f(x).

As time progresses, we expect the temperature of the fluid in the pipe to reach a steady state
distribution, with yt = 0. Once this steady state has been reached, the heat distribution y then
satisfies the ODE

εy′′ − ay′ = −f(x).

We consider the scenario of a fluid flowing through a pipe from x = 0 to x = 1 with speed
a = 1, and as it travels it is warmed at a constant rate f(x) = 1. Note that since this a second-order
ODE, we need two boundary conditions. Suppose that the fluid is already at a known temperature
y = 2 as it enters the pipe. This imposes the boundary condition y(0) = 2. Suppose further that
a device is installed on the end of the pipe that nearly instantaneously brings the heat of the water
up to y = 4. Physically, we expect this extra heat that is introduced at x = 1 to diffuse backward
through the water in the pipe and thus influence the steady-state temperature. Putting this together
leads to a well defined BVP:

εy′′ − y′ = −1, 0 < x < 1,

y(0) = 2, y(1) = 4.
(12.1)

The analytic solution for ε = 0.1 is shown in Figure 12.1.
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Figure 12.1: The analytic solution of (12.1) for ε = 0.1.

The Weak Formulation
Stepping back momentarily, consider the equation

εy′′ − y′ = −f, 0 < x < 1,

y(0) = α, y(1) = β.
(12.2)

To approximate the solution y using the finite element method, we reframe the problem into one
involving integrals, known as its weak formulation.

Let w be a smooth function on [0, 1] satisfying w(0) = w(1) = 0. Multiplying (12.2) by w and
integrating over [0, 1] yields ∫ 1

0

−fw dx =

∫ 1

0

(εy′′w − y′w) dx,

=

∫ 1

0

(−εy′w′ − y′w) dx,

where the second equality follows by integration by parts. For notational convenience, define the
functionals a and l by

a(y, w) =

∫ 1

0

−εy′w′ − y′w dx,

l(w) =

∫ 1

0

−fw dx.

Then, any solution to (12.2) will also satisfy

a(y, w) = l(w) (12.3)
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This equation is the weak formulation of (12.2). Note that any solution to the original ODE is also a
solution to the weak formulation. However, solutions to the weak formulation need not be solutions
to the original ODE, as they may not even be differentiable everywhere. While this may seem like an
undesirable property, it allows us to use a wider variety of functions to approximate the true solution.

Now, we choose some appropriate vector space V of functions, and consider the problem of
finding a function y ∈ V that satisfies the weak formulation (12.3) for all w ∈ V0 = {w ∈ V |w(0) =
w(1) = 0}. The finite element method consists of choosing V to be some set of piecewise polynomial
functions. In this lab, we will consider the case of using piecewise linear functions.

The Finite Element Method
Let Pn be some partition of [0, 1], 0 = x0 < x1 < . . . < xn = 1, and let Vn be the set of continuous
linear piecewise functions v on [0, 1] such that v is linear on each subinterval [xj , xj+1]. These
subintervals are the finite elements for which this method is named. Note that Vn has dimension
n+ 1, since each of the continuous piecewise linear functions in V are uniquely determined by their
values at the n + 1 points x0, x1 . . . , xn. Let Vn,0 be the subspace of Vn of dimension n − 1 whose
elements are zero at the endpoints of [0, 1].

Let the ϕi be the hat functions

ϕi(x) =


(x− xi−1)/hi if x ∈ [xi−1, xi]

(xi+1 − x)/hi+1 if x ∈ [xi, xi+1]

0 otherwise

where hi = xi − xi−1; see Figures 12.2 and 12.3. These hat functions form a basis for Vn. Note that
the points x0, . . . , xn need not be evenly spaced, and the hi do not need to be equal. This is in fact
one of the major strengths of this approach, as it allows adapting the points in the partition to the
problem, which can reduce the error in the approximation. When applied to PDEs, it also is a simple
way to handle unusually-shaped domains.

We now can write our approximate solution for y and the arbitrary function w as a linear com-
bination of these basis elements, which will enable us to solve the system numerically. In particular,
we can write ŷ(x) =

∑n
i=0 kiϕi(x), where the ki are to be determined.

To make things more concrete, consider the case of n = 5 with the partition P5 = {x0, x1, . . . , x5}.
We look for an approximation ŷ =

∑5
i=0 kiϕi ∈ V5 of the true solution y; to do this, we must deter-

mine appropriate values for the constants ki. We impose the condition on ŷ that

a(ŷ, w) = l(w)

for all w ∈ V5,0. This can be written equivalently as

a

(
5∑

i=0

kiϕi, ϕj

)
= l(ϕj) for j = 1, 2, 3, 4,

since a and l are linear in w and ϕ1, ϕ2, ϕ3, ϕ4 form a basis for V5,0. Since a is also linear in y, we
further obtain

5∑
i=0

kia(ϕi, ϕj) = l(ϕj) for j = 1, 2, 3, 4.

To satisfy the boundary conditions, we necessarily have that k0 = α, k5 = β. These equations can
be written together in matrix form as

AK = Φ, (12.4)
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x2 x3 x4

0.0

0.2

0.4

0.6

0.8

1.0 3

Figure 12.2: The basis function ϕ3, when the xi are evenly spaced.

where

A =



1 0 0 0 0 0

a(ϕ0, ϕ1) a(ϕ1, ϕ1) a(ϕ2, ϕ1) 0 0 0

0 a(ϕ1, ϕ2) a(ϕ2, ϕ2) a(ϕ3, ϕ2) 0 0

0 0 a(ϕ2, ϕ3) a(ϕ3, ϕ3) a(ϕ4, ϕ3) 0

0 0 0 a(ϕ3, ϕ4) a(ϕ4, ϕ4) a(ϕ5, ϕ4)

0 0 0 0 0 1

 (12.5)

and

K =



k0
k1
k2
k3
k4
k5

 , Φ =



α

l(ϕ1)

l(ϕ2)

l(ϕ3)

l(ϕ4)

β

 . (12.6)
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Figure 12.3: The six basis functions for V5, when the xi are evenly spaced.

Note that since a(ϕi, ϕj) = 0 for most values of i, j (in particular, when the hat functions do not
have overlapping domains), the finite element method results in a sparse linear system. To compute
the coefficients of (12.4) we begin by evaluating some integrals. Since

ϕi(x) =


(x− xi−1)/hi if x ∈ [xi−1, xi]

(xi+1 − x)/hi+1 if x ∈ [xi, xi+1]

0 otherwise

ϕ′i(x) =


1/hi for xi−1 < x < xi,

−1/hi+1 for xi < x < xi+1,

0 otherwise,
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we obtain

∫ 1

0

ϕ′iϕ
′
j =


−1/hi+1 if j = i+ 1,

1/hi + 1/hi+1 if j = i,

0 otherwise,

∫ 1

0

ϕ′iϕj =


−1/2 if j = i+ 1,

1/2 if j = i− 1,

0 otherwise,

which can be put together to obtain (for f(x) = 1)

a(ϕi, ϕj) =


ε/hi+1 + 1/2 if j = i+ 1,

−ε/hi − ε/hi+1 if j = i,

ε/hi − 1/2 if j = i− 1,

0 otherwise,

(12.7)

l(ϕj) = −
1

2
(hj + hj+1). (12.8)

Equation (12.4) may now be solved using any standard linear solver. To handle the large number of
elements required for Problem 3, you will want to use sparse matrices from scipy.sparse.1

If you have become completely lost in the math at this point, do not fear. To summarize, we
need to solve 12.4 for K, where A is defined by 12.5 and Φ is defined in 12.6. The elements of A and
Φ are defined in 12.7 and 12.8. The vector K is the approximated solution to the ODE given in 12.9
and can be plotted very simply using plt.plot(x, k), where x and k are arrays of the xi and ki.
Note that hi is indexed from 1 to N + 1, and that hi = xi − xi−1. You should now have everything
you need to know to tackle the problems below.

Problem 1. Use the finite element method to solve

εy′′ − y′ = −1,
y(0) = α, y(1) = β,

(12.9)

where α = 2, β = 4, and ε = 0.02. Use N = 100 finite elements (101 grid points). Be sure to
include a legend. Compare your solution with the analytic solution

y(x) = α+ x+ (β − α− 1)
ex/ε − 1

e1/ε − 1
.

Hint: Make sure that your code does not assume that the grid points are evenly spaced.
You may find scipy.sparse.diags useful.

1See the Volume 1 lab “Linear Systems” for a refresher on sparse matrices.
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Problem 2. One of the strengths of the finite element method is the ability to generate grids
that better suit the problem. The solution of (12.9) changes most rapidly near x = 1. Compare
the numerical solution when the grid points are unevenly spaced versus when the grid points
are clustered in the area of greatest change; see Figure 12.4. Specifically, use the grid points
defined by

even_grid = np.linspace(0, 1, 15)
clustered_grid = np.linspace(0, 1, 15)**(1./8)

Be sure to include a legend with your plot.

0.0 0.2 0.4 0.6 0.8 1.0

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00 Analytic solution
Evenly spaced grid points
Clustered grid points

Figure 12.4: Two finite element approximations using 15 grid points, with different spacings.

Problem 3. Higher order methods promise faster convergence, but typically require more work
to code. So why do we use them when a low order method will converge just as well, albeit
with more grid points? The answer concerns the roundoff error associated with floating point
arithmetic. Low order methods generally require more floating point operations, so roundoff
error has a much greater effect.
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The finite element method introduced here is a second-order method, even though the
approximate solution is piecewise linear. (To see this, note that if the grid points are evenly
spaced, the matrix A in (12.4) is exactly the same as the matrix for the second-order centered
finite difference method.)

Solve (12.9) with the finite element method using N = 2i evenly-spaced finite elements,
i = 4, 5, . . . , 21. Remember to use sparse matrices, as this greatly reduces the memory and
computation needed for the larger N . Compute the error as the maximum absolute value of
the difference of the values of the approximate and true solutions at each of the xi. Use a
log-log plot to graph the error, and compare with Figure 12.5. Be sure to label your axes.
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r

Figure 12.5: Error for the second-order finite element method, as the number of subintervals N
grows. Round-off error eventually overwhelms the approximation.



13 Poisson’s Equation

Suppose that we want to describe the distribution of heat throughout a region Ω. Let h(x) represent
the temperature on the boundary of Ω (∂Ω), and let g(x) represent the initial heat distribution at
time t = 0. If we let f(x, t) represent any heat sources/sinks in Ω, then the flow of heat can be
described by the boundary value problem (BVP)

ut = △u+ f(x, t), x ∈ Ω, t > 0,

u(x, t) = h(x), x ∈ ∂Ω,
u(x, 0) = g(x).

(13.1)

When the source term f does not depend on time, there is often a steady-state heat distribution u∞
that is approached as t→∞. This steady state u∞ is a solution of the BVP

△u+ f(x) = 0, x ∈ Ω,

u(x, t) = h(x), x ∈ ∂Ω.
(13.2)

This last partial differential equation, △u = −f , is called Poisson’s equation. This equation
is satisfied by the steady-state solutions of many other evolutionary processes. Poisson’s equation is
often used in electrostatics, image processing, surface reconstruction, computational fluid dynamics,
and other areas.

Poisson’s equation in two dimensions
Consider Poisson’s equation together with Dirichlet boundary conditions on a rectangular domain
R = [a, b]× [c, d]:

uxx + uyy = f, x in R ⊂ R2,

u = g, x on ∂R.
(13.3)

Let a = x0, x1, . . . , xn = b and c = y0, y1, . . . , yn = d be evenly spaced grids. Furthermore, suppose
that b− a = d− c, so the rectangular domain is also square. Thus we have a single stepsize h, where
h = xi+1 − xi = yi+1 − yi

We look for an approximation Ui, j on the grid {(xi, yj)}ni,j=0.
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Recall that

△u = uxx(x, y) + uyy(x, y)

=
u(x+ h, y)− 2u(x, y) + u(x− h, y)

h2

+
u(x, y + h)− 2u(x, y) + u(x, y − h)

h2
+O(h2).

We replace △ with the finite difference operator △h, defined by

△hUij =
Ui+1, j − 2Ui, j + Ui−1, j

h2
+
Ui, j+1 − 2Ui, j + Ui, j−1

h2
, (13.4)

=
1

h2
(Ui−1, j + Ui+1, j + Ui, j−1 + Ui, j+1 − 4Ui, j). (13.5)

These equations are linear, so we can expect to write them in matrix form. However, since
our unknown variables are doubly-indexed (for xi and yj), we first need to rewrite them as a 1-
dimensional array. We can do this by "stacking" the columns of the 2-dimensional array. Let the
vector of unknowns U be:

U =


U1

U2

...
Un−1

 where U j =


U1, j

U2, j

...
Un−1, j

 for each j, 1 ≤ j ≤ n− 1.

Then the set of equations

△hUij = fij , i, j = 1, . . . , n− 1,

can be written in matrix form as

AU + p+ q = f. (13.6)

A is the (n− 1)× (n− 1) block tridiagonal matrix (of total size (n− 1)2 × (n− 1)2) given by

1

h2


T I

I T I
. . . . . . . . .

I T I

I T

 (13.7)

where I is the n− 1× n− 1 identity matrix, and T is the n− 1× n− 1 tridiagonal matrix
−4 1

1 −4 1
. . . . . . . . .

1 −4 1

1 −4

 .

The vectors p and q come from the boundary conditions of (13.3), and are given by

p =

 p1

...
pn−1

 , q =

 q1

...
qn−1

 ,
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where

pj =
1

h2


g(x1, yj)

0
...
0

g(xn−1, yj)

 , 1 ≤ j ≤ n− 1,

and

q1 =
1

h2


g(x1, y0)

g(x2, y0)
...

g(xn−2, y0)

g(xn−1, y0)

 , qn−1 =
1

h2


g(x1, yn)

g(x2, yn)
...

g(xn−2, yn)

g(xn−1, yn)

 , qj =


0

0
...
0

0

 , 2 ≤ j ≤ n− 2.

Note that both p and q have a total size of (n− 1)2 × 1, and each pj and qj is (n− 1)× 1.
The vector f (which is the same size as p and q) comes from the source term of (13.3), and is

given by

f =

 f1

...
fn−1

 , where f j =


f(x1, yj)

f(x2, yj)
...

f(xn−1, yj)


Note that this linear system is very large (A has (n − 1)4 entries) and very sparse (most of

the entries in A are zero). Thus we will should make use of sparse matrix routines (such as those in
scipy.sparse and scipy.sparse.linalg) in order to reduce the time and memory used in setting
up and solving the linear system.

Problem 1. Complete the function poisson_square by implementing the finite difference
method (13.6), returning the approximate solution U as a an array. Use scipy.sparse.linalg
.spsolve to solve the linear system. Use your function to solve the boundary value problem:

∆u = 0, x ∈ [0, 1]× [0, 1],

u(x, y) = x3, (x, y) ∈ ∂([0, 1]× [0, 1]).
(13.8)

Use n = 100 subintervals for both x and y. Plot the solution as a 3D surface.
Hint: scipy.sparse.block_diag and scipy.sparse.diags may be useful.

Poisson’s equation and conservative forces
In physics Poisson’s equation is used to describe the scalar potential of a conservative force. In
general

∆V = −f

where V is the scalar potential of the force, or the potential energy a particle would have at that
point, and f is a source term. Examples of conservative forces include Newton’s Law of Gravity
(where matter is the source term) and Coulomb’s Law, which gives the force between two charge
particles (where charge is the source term).
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Figure 13.1: The solution of (13.8).

In electrostatics the electric potential is also known as the voltage, and is denoted by V. From
Maxwell’s equations it can be shown that that the voltage obeys Poisson’s equation with the electric
charge density (like a continuous cloud of electrons) being the source term:

∆V = − ρ

ε0
,

where ρ is the charge density and ε0 is the permissivity of free space, which is a constant that we’ll
leave as 1.

Usually a nonzero V at a point will cause a charged particle to move to a lower potential,
changing ρ and the solution to V . However, in this analysis we’ll assume that the charges are fixed
in place.
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Suppose we have 3 nested pipes. The outer pipe is attached to "ground," which usually we
define to be V = 0, and the inner two have opposite relative charges. Physically the two inner pipes
would function like a capacitor.

The following code will plot the charge distribution of this setup.

import matplotlib.colors as mcolors
def source(X, Y):

"""
Takes arbitrary arrays of coordinates X and Y and returns an array of the ←↩

same shape
representing the charge density of nested charged squares
"""
src = np.zeros(X.shape)

src[np.logical_or(np.logical_and(np.logical_or(abs(X - 1.5) < .1, abs(X + ←↩
1.5) < .1), abs(Y) < 1.6),
np.logical_and(np.logical_or(abs(Y - 1.5) < .1, abs(Y + 1.5) < .1), abs←↩

(X) < 1.6))] = 1

src[np.logical_or(np.logical_and(np.logical_or(abs(X - 0.9) < .1, abs(X + ←↩
0.9) < .1), abs(Y) < 1),
np.logical_and(np.logical_or(abs(Y - 0.9) < .1, abs(Y + 0.9) < .1), abs←↩

(X) < 1))] = -1

return src

# Generate a color dictionary for use with LinearSegmentedColormap
# that places red and blue at the min and max values of data
# and white when data is zero.
def genDict(data):

zero = 1 / (1 - np.max(data) / np.min(data))
cdict = {

"red": [(0, 1, 1), (zero, 1, 1), (1, 0, 0)],
"green": [(0, 0, 0), (zero, 1, 1), (1, 0, 0)],
"blue": [(0, 0, 0), (zero, 1, 1), (1, 1, 1)]

}
return cdict

a1 = -2
b1 = 2
c1 = -2
d1 = 2
n = 100
X = np.linspace(a1, b1, n)
Y = np.linspace(c1, d1, n)
X, Y = np.meshgrid(X, Y)

plt.imshow(source(X, Y), cmap=mcolors.LinearSegmentedColormap("cmap", genDict(←↩
source(X, Y))))
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Figure 13.2: The charge density of the 3 nested pipes.

plt.colorbar(label="Relative Charge")
plt.show()

The function genDict scales the color values to be white when the charge density is zero. This
is mostly to help visualize where there are neutrally charged zones by forcing them to be white. You
may find it useful to also apply it when you solve for the electric potential.

With this definition of the charge density, we can solve Poisson’s equation for the potential
field.

Problem 2. Using the poisson_square function, solve

∆V = −ρ(x, y), x ∈ [−2, 2]× [−2, 2],
u(x, y) = 0, (x, y) ∈ ∂([−2, 2]× [−2, 2]).

(13.9)

for the electric potential V.Use the source function defined above, such that ρ(x, y) = source(x, y).
Use n = 100 subintervals for x and y. Using the code provided above, plot your solution along
with the source function. Compare your solution with Figure 13.3.

Poisson’s Equation and Image Editing
The Poisson equation is also very useful for things outside of physics. For example, it can be used
for image editing. We will use it to photoshop one image v onto another image u0.
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Figure 13.3: The electric potential of the 3 nested pipes.

Let u0 : S → R, S ⊂ R2 be the original image, which is a 2D grid of values between 0 and 255.
We want to insert a new image, v : P → R into P ′ ⊂ S. Numerically, we will treat these as arrays
where v ∈Mm×n, u0 ∈Mm′×n′ ,m′ > m,n′ > n, and u ∈Mm×n is the smoothed image inside of u0.
A visual representation can be seen in Figure 13.4.

Achtung!

Note that u0 is defined on P ′ since P ′ ⊂ S.
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v : P → R u : P ′ → R

u0 : S → R

P P ′ ⊂ S

S

Figure 13.4: Photoshopping of v into the space defined by P ′ by solving for u.

We will use v to create the source function f in Equation (13.3).

f(x, y) = △v(x, y). (13.10)

We want to use the original picture u0 to constrain the boundary of P ′, so let g from Equation
(13.3) be defined as

g(x, y) = u0(x, y), (x, y) ∈ ∂P ′. (13.11)

Using these equations, we can blend an image v in very well. There are, of course, ways to
make this better (but also more complicated), such as adding some of the original texture from u0
to the final image u, but we’ll leave those aside for now. If you’re interested, see this paper for more
information on using the Poisson equation for image editing.

Problem 3. Using the data file dr_jarvis.jpg as the source image v and mount_rushmore
.jpg as the destination image u0, put Dr. Jarvis’ face on Mount Rushmore using Poisson’s
equation to blend it in.

We’ll follow a similar process to what we did in Problem 1. Use equation (13.5) (letting
h = 1) with equation (13.10) to calculate f(x, y) from v. Consruct the matrices T and A. Then
note that instead of flattening the source function f(x, y) and the boundary conditions g(x, y)
into vectors f , p, and q to insert into the matrix equation AU = f − p− q (see (13.6)), we can
instead subtract the boundary condition matrix g(x, y) from the source function matrix f(x, y)
first and then flatten. That is, construct a matrix

r(x, y) =

{
f(x, y), (x, y) ∈ P ′

f(x, y)− g(x, y), (x, y) ∈ ∂P ′,

https://www.cs.jhu.edu/~misha/Fall07/Papers/Perez03.pdf
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then flatten

r =

 r1

...
rn−1

 , rj =

 r(x1, yj)
...

r(xn−1, yj)

 ,
and finally solve AU = r.

Hint: Consider the region P ′ of the original image to be the set of matrix indices included
in [x0, x0+w-1] × [y0, y0+w-1]. Then the boundary ∂P ′ is the border along the rows x0-1
and x0+w and along the columns y0-1 and y0+w.

Hint: You will only want to use part of the image from dr_jarvis.jpg to paste onto
Mount Rushmore. The following code will help you import the image, select the appropriate
part, and paste it in the correct place so that it looks like the image in Figure 13.5. Note that
you will need to transpose the image again before displaying it.

source_im = np.mean(imageio.v3.imread("dr_jarvis.jpg"), axis=2).transpose←↩
() / 255

dest_im = np.mean(imageio.v3.imread("mount_rushmore.jpg"), axis=2).←↩
transpose() / 255

# Width of space (number of pixels) to replace in destination image
w = 130

# Position in destination image
x0 = 322
y0 = 215

# Position in source image
x0s = 60
y0s = 84

# Show original image
plt.imshow(dest_im.transpose(), cmap="gray")
plt.show()

# Source image with a buffer of 1 pixel for the finite difference method.
# The buffer will be excluded when inserting into the Mount Rushmore image←↩

.
# The "*0.58" will make it look better when displayed.
image = source_im[x0s-1 : x0s+w+1, y0s-1 : y0s+w+1] * 0.58

# Calculate f(x, y)...

# Calculate the solution U...

# Paste Dr. Jarvis into the original image
new_image = dest_im.copy()
new_image[x0:x0+w, y0:y0+w] = U.reshape(w,w)



132 Lab 13. Poisson’s Equation

plt.imshow(new_image.transpose(), cmap="gray")
plt.show()
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Figure 13.5: A Founding Father. Also the solution to Problem 3.



14 Spectral 1: Method of
Mean Weighted
Residuals

Lab Objective: We introduce the method of mean weighted residuals (MWR) and use it to derive
a pseudospectral method. This method will then be used to solve several boundary value problems.

Consider a linear differential equation

Lu = f

defined on the interval [−1, 1], together with associated boundary conditions. We will approximate
the solution u(x) by a linear combination of N + 1 basis functions ϕi, so that

u(x) ≈ uN (x) =

N∑
i=0

aiϕi(x).

To determine appropriate constants ai, we then minimize the residual function

R(x, uN ) = LuN − f.

Note that R(x, u) = Lu− f = 0 for the true solution u(x).
This general strategy is often called the method of mean weighted residuals (MWR method).

The MWR method is a general framework that describes many other, more specific methods. These
more specific methods come from differing approaches to minimizing the residual R(x, uN ), and the
choice of basis functions ϕi.

The Pseudospectral Method
The pseudospectral or collocation method is obtained from the MWR method by forcing the residual
function R(x, uN ) to equal zero at N + 1 points in [−1, 1], called collocation points. When done
correctly, the pseudospectral method gives high accuracy and converges rapidly.

Let the collocation points be the Gauss-Lobatto points, xi = cos(πi/N), i = 0, . . . , N . The
appropriate solution uN may be represented with two equivalent forms. First, uN can be described
by the first N+1 coefficients {ai}Ni=0 of its expansion with a polynomial basis ϕi (e.g. the Chebyshev
Polynomials). Second, since uN is a polynomial of order N , it may also be uniquely described by its
values at the collocation points, that is, the unknown values {uN (xi)}Ni=0.

These equivalent forms satisfy

MA = F (14.1)
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and

LU = F (14.2)

where

Ui = u(xi)

Ai = ai

Fi = f(xi)

Lij = LCj(x)

∣∣∣∣
x=xi

Mij = Lϕj(x)

∣∣∣∣
x=xi

The functions Cj above are the cardinal functions, defined to be the polynomials of least degree
satisfying

Cj(xi) =

{
1 i = j

0 i ̸= j.

Thus, uN can also be expanded in the basis of cardinal functions

uN (x) =

N∑
j=0

uN (xj)Cj(x),

which effectively becomes the Lagrange interpolating polynomials at the Gauss-Lobatto points. When
L = d/dx, the matrix corresponding to equation (14.2) is given by

Lij =
dCj

dx
(xi) =


(1 + 2N2) / 6 i = j = 0,

−(1 + 2N2) / 6 i = j = N,

−xj / [2(1− x2j )] i = j, 0 < j < N,

(−1)i+jαi / [αj(xi − xj)] i ̸= j.

where α0 = αN = 2, and αj = 1 otherwise.
This matrix is often called the differentiation matrix (D), and can be used to piece together

the matrix L for more complicated differential operators. A stable, vectorized function to build the
differentiation matrix is given below.

import numpy as np

def cheb(N):
x = np.cos((np.pi/N)*np.linspace(0, N, N+1))
x.shape = (N+1, 1)
lin = np.linspace(0, N, N+1)
lin.shape = (N+1, 1)

c = np.ones((N+1, 1))
c[0], c[-1] = 2., 2.
c = c*(-1.)**lin
X = x*np.ones(N+1) # Broadcast along 2nd dimension (columns)
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dX = X - X.T

D = (c*(1./c).T)/(dX + np.eye(N+1))
D = D - np.diag(np.sum(D.T, axis=0))
x.shape = (N+1,)
# Here we return the differentiation matrix and the Chebyshev points,
# numbered from x_0 = -1 to x_N = 1
return D[::-1, ::-1], x[::-1]

Problem 1. Use the differentiation matrix to numerically approximate the derivative of u(x) =
ex cos(6x) on a grid ofN Chebyshev points whereN = 6, 8, and 10. (Use the linear systemDU ≈
U ′.) Then use barycentric interpolation (scipy.interpolate.barycentric_interpolate) to
approximate u′ on a grid of 100 evenly spaced points.

Graphically compare your approximation to the exact derivative. Note that this conver-
gence would not be occurring if the collocation points were equally spaced.

To approximate u′′(x) on the grid {xi}, we use

U ′′ ≈ D2U.

The BVP

u′′ = f(x), x ∈ [−1, 1],
u(−1) = 0, u(1) = 0,

can be discretized by the linear system

D2U = F, (14.3)

where F = [f(x0), . . . , f(xN )]T. Since we have Dirichlet boundary conditions of 0, we can satisfy
the boundary condition by forcing U [0] = U [N ] = 0. This is done by replacing the first and last
equations in (14.3) by the boundary conditions.

# The following code will force U[0] = U[N] = 0
D, x = cheb(N) # For some N
D2 = np.dot(D, D)
D2[0, :], D2[-1, :] = 0, 0
D2[0, 0], D2[-1, -1] = 1, 1
F[0], F[-1] = 0, 0

Problem 2. Use the pseudospectral method to solve the boundary value problem

u′′ = e2x, x ∈ (−1, 1),
u(−1) = 0, u(1) = 0.
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Use N = 8 in the cheb(N) method and use barycentric interpolation to approximate u on
100 evenly spaced points. Compare your numerical solution with the exact solution,

u(x) =
− cosh(2)− sinh(2)x+ e2x

4
.

Problem 3. Use the pseudospectral method to solve the boundary value problem

u′′ + u′ = e3x, x ∈ (−1, 1),
u(−1) = 2, u(1) = −1.

Use N = 8 in the cheb(N) method and use barycentric interpolation to approximate u on
100 evenly spaced points.

Hint: Apply the Dirichlet boundary conditions to the left-hand side of the equation only
after adding the differentiation matrices D +D2.

The previous exercise involved setting up and solving a linear system

AU = F,

where F is a vector whose entries are e3x evaluated at the collocation points xj , and U represents
the approximation to the solution u at those points. However, whenever the ODE is nonlinear, the
discretization becomes a nonlinear system of equations that must be solved using Newton’s method.
The next exercise contains a BVP whose ODE is nonlinear, with the additional complexity that the
domain of the problem is not [−1, 1].

Problem 4. Use the pseudospectral method to solve the boundary value problem

u′′ = λ sinh(λu), x ∈ (0, 1),

u(0) = 0, u(1) = 1

for several values of λ: λ = 4, 8, 12. Begin by transforming this BVP onto the domain −1 <
x < 1. Use N = 20 in the cheb(N) method and use barycentric interpolation to approximate
u on 100 evenly spaced points.

Below is sample code for implementing Newton’s Method

from scipy.optimize import root

N = 20
D, x = cheb(20)

def F(U):
out = None # Set up the equation you want the root of.
# Make sure to set the boundaries correctly

return out # Newtons Method updates U until the output is all 0's.



137

guess = np.ones_like(x) # Your guess is same size as the cheb(N) output
solution = root(F, guess).x

Hint: use an array of ones for your guess, as shown in the code above.

Minimizing the Area of a Surface of Revolution
A surface of revolution that minimizes its area is an example of a larger class of surfaces called
minimal surfaces. A famous example of a minimal surface is a soap bubble. Soap bubbles minimize
their surface area while containing a fixed volume of air. This behavior extends to merged bubbles,
and a soap film whose boundary is a wire frame. Minimal surfaces have applications in molecular
engineering and material science, and general relativity, where they describe the apparent horizon of
a black hole.

Consider a function y(x) defined on [−1, 1] satisfying y(−1) = a, y(1) = b. The area of the
surface obtained by revolving the graph of y(x) about the x-axis is given by

T [y(x)] =

∫ 1

−1

2πy(x)
√

1 + (y′(x))2 dx.

To find the function y(x) whose surface of revolution minimizes surface area, we must minimize the
functional T [y]. This is a classical problem from a branch of mathematics called the calculus of
variations. Standard derivatives allow us to find the minimum values of functions defined on Rn,
and where they occur. The calculus of variations allows us to find the minimum values of functions
whose input are other functions.

From the calculus of variations we know that a necessary condition for y(x) to minimize T [y]
is that the Euler-Lagrange equation must be satisfied:

Ly −
d

dx
Ly′ = 0,

where L(x, y, y′) = 2πy
√
1 + (y′)2. Simplifying the Euler-Lagrange equation for our problem results

in the ODE
yy′′ − (y′)2 − 1 = 0.

Discretizing this ODE using the pseudospectral method results in the (nonlinear) system of equations

Y ⊙ (D2Y )− (DY )⊙ (DY )− 1 = 0,

where ⊙ is the Hadamard product (denoting element-wise multiplication) and 1 is a vector of ones.

Problem 5. Find the function y(x) that satisfies y(−1) = 1, y(1) = 7, and whose surface of
revolution (about the x-axis) minimizes surface area. Compute the surface area, and plot the
surface. Use N = 50 in the cheb(N) method and use barycentric interpolation to approximate
u on 100 evenly spaced points. Your solution should look like Figure 14.1

Below is sample code for creating the 3D wireframe figure.

barycentric = None # This is the output of barycentric_interpolate() on ←↩
100 points
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Figure 14.1: The minimal surface corresponding to Problem 5.

lin = np.linspace(-1, 1, 100)
theta = np.linspace(0, 2*np.pi, 401)
X, T = np.meshgrid(lin, theta)
Y, Z = barycentric*np.cos(T), barycentric*np.sin(T)
fig = plt.figure()
ax = fig.add_subplot(projection="3d")
ax.plot_wireframe(X, Y, Z, color='b', rstride=10, cstride=10, lw=0.5)
plt.show()

Hint: This problem is sensitive to initial conditions; use a vector of twos as the initial guess.



15 Spectral 2: A
Pseudospectral
Method for Periodic
Functions

Lab Objective: We look at a pseudospectral method with a Fourier basis, and numerically solve
two PDEs using a pseudospectral discretization in space and a Runge-Kutta integration scheme in
time.

Let f be a periodic function on [0, 2π]. Let x1, . . . , xN be N evenly spaced grid points on
[0, 2π]. Since f is periodic on [0, 2π], we can ignore the grid point xN = 2π. We will further assume
that N is even; similar formulas can be derived for N odd. Let h = 2π/N ; then {x0, . . . , xN−1} =
{0, h, 2h, . . . , 2π − h}.

The discrete Fourier transform (DFT) of f , denoted by f̂ or F(f), is given by

f̂(k) = h

N−1∑
j=0

e−ikxjf(xj) where k = −N/2 + 1, . . . , 0, 1, . . . , N/2.

The inverse DFT is then given by

f(xj) =
1

2π

N/2∑
k=−N/2

eikxj

ck
f̂(k), j = 0, . . . , N − 1, (15.1)

where

ck =

{
2 if k = −N/2 or k = N/2,

1 otherwise.
(15.2)

The inverse DFT can then be used to define a natural interpolant (sometimes called a band-limited
interpolant) by evaluating (15.1) at any x rather than xj :

p(x) =
1

2π

N/2∑
k=−N/2

eikxf̂(k). (15.3)

The interpolant for f ′ is then given by

p′(x) =
1

2π

N/2−1∑
k=−N/2+1

ikeikxf̂(k). (15.4)
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Consider the function u(x) = sin2(x) cos(x) + e2 sin(x+1). Using (15.4), the derivative u′ may
be approximated with the following code. 1 We note that although we only approximate u′ at the
Fourier grid points, (15.4) provides an analytic approximation of u′ in the form of a trigonometric
polynomial.

import numpy as np
from scipy.fftpack import fft, ifft
import matplotlib.pyplot as plt

N=24
x1 = (2.*np.pi/N)*np.arange(1, N+1)
f = np.sin(x1)**2.*np.cos(x1) + np.exp(2.*np.sin(x1+1))

# This array is reordered in Python to
# accomodate the ordering inside the fft function in scipy.
k = np.concatenate(( np.arange(0, N/2) ,

np.array([0]) , # Because hat{f}'(k) at k = N/2 is zero.
np.arange(-N/2+1, 0, 1)))

# Approximates the derivative using the pseudospectral method
f_hat = fft(f)
fp_hat = ((1j*k)*f_hat)
fp = np.real(ifft(fp_hat))

# Calculates the derivative analytically
x2 = np.linspace(0, 2*np.pi, 200)
derivative = (2.*np.sin(x2)*np.cos(x2)**2. -

np.sin(x2)**3. +
2*np.cos(x2+1)*np.exp(2*np.sin(x2+1))
)

plt.plot(x2, derivative, "-k", linewidth=2.)
plt.plot(x1, fp, "*b")
plt.savefig("spectral2_derivative.pdf")
plt.show()

1See Spectral Methods in MATLAB by Lloyd N. Trefethen. Another good reference is Chebyshev and Fourier
Spectral Methods by John P. Boyd.
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Figure 15.1: The derivative of u(x) = sin2(x) cos(x) + e2 sin(x+1).

Problem 1. Consider again the function u(x) = sin2(x) cos(x) + e2 sin(x+1). Create a function
that approximates 1

2u
′′ − u′ on the Fourier grid points for N = 24.

The advection equation
Recall that the advection equation is given by

ut + cux = 0 (15.5)

where c is the speed of the wave (the wave travels to the right for c > 0). We will consider the
solution of the advection equation on the domain [0, 2π] and assume periodic boundary conditions.

A common method for solving time-dependent PDEs is called the method of lines. To apply
the method of lines to our problem, we use our Fourier grid points in [0, 2π]: given an even N , let
h = 2π/N , so that {x0, . . . , xN−1} = {0, h, 2h, . . . , 2π− h}. By using these grid points we obtain the
collection of equations

ut(xj , t) + cux(xj , t) = 0, t > 0, j = 0, . . . N − 1. (15.6)

Let U(t) be the vector-valued function given by U(t) = (u(xj , t))
N−1
j=0 . Let F(U)(t) denote the

discrete Fourier transform of u(x, t) (in space), so that

F(U)(t) = (û(k, t))
N/2
k=−N/2+1.
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Define F−1 similarly. Using the pseudospectral approximation in space leads to the system of ODEs

Ut + c⃗F−1
(
ik⃗F(U)

)
= 0 (15.7)

where k⃗ is a vector, and k⃗F(U) denotes element-wise multiplication. Similarly c⃗ could also be a
vector, if the wave speed c is allowed to vary. We can then use an ODE solver for the time derivative
and the pseudospectral method for spatial derivatives.

Problem 2. Using solve_ivp, solve the initial value problem

ut + c(x)ux = 0, (15.8)

where c(x) = 0.2+sin2(x−1), and u(x, t = 0) = e−100(x−1)2 . Plot your numerical solution from
t = 0 to t = 8 over 250 time steps and 200 x steps. Note that the initial data is nearly zero
near x = 0 and 2π, and so we can use the pseudospectral method.a Use the following code to
help graph. The solution can be seen in Figure 15.2.

t_steps = 250 # Time steps
x_steps = 200 # x steps

'''
Your code here to set things up
'''

sol = # use solve_ivp

X, Y = np.meshgrid(x_domain, t_domain)
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
surf = ax.plot_surface(X, Y, np.transpose(sol.y), cmap="coolwarm")
ax.set_zlim(0, 3)
ax.view_init(elev=40, azim=280, roll=0)
ax.set_xlabel(r"$x$")
ax.set_ylabel(r"$T$")
ax.set_zlabel(r"$z$")
ax.set_box_aspect(aspect=None, zoom=0.8)
plt.show()

aThis problem is solved in Spectral Methods in MATLAB using a leapfrog discretization in time.
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Figure 15.2: The solution of the variable speed advection equation; see Problem 2.

The wave equation

We can use the pseudospectral method to solve higher-order PDEs as well. A common example of a
second-order hyperbolic PDE is the wave equation, which is often used in physics. The wave equation
is given by

utt − cuxx = 0,
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where c is the wave speed. Unlike the advection equation, waves that encounter mediums of different
wave speeds will reflect part of the wave back. We will see this in Problem 3. First, we must change
this second-order method-of-lines ODE equation into a first-order equation. Using the method of
lines, the wave equation can be written as a system of first-order ODEs,

∂

∂t

[
u

ut

]
=

[
ut
cuxx

]
. (15.9)

We can then use an ODE solver, such as solve_ivp to solve for the time derivatives, while we use
the spectral method for the spatial derivatives.

Problem 3. Using solve_ivp, solve the initial value problem

utt − c(x)uxx = 0, (15.10)

where

c(x) =

{
4 0 ≤ x < π

1 π ≤ x < 2π
,

with u(x, t = 0) = 0.2e(−10(x−5)2) and ut(x, t = 0) = −4(x−5)e(−10(x−5)2). Plot your numerical
solution from t = 0 to t = 3 over 150 time steps and 100 x steps. As in the previous problem,
the initial data is nearly zero near x = 0 and 2π, and so we can use the pseudospectral method
(the solution is approximately periodic because the boundaries both stay near zero). Use the
code provided in the previous problem (but with different numbers of steps in the x and t

directions) to help with plotting. The solution can be seen in Figure 15.3. Note that the wave
speeds up at the barrier, and some of it is reflected.

Hints: The initial conditions for solve_ivp need to be in a one-dimensional array. Con-
catenate the initial conditions into a single (100 + 100) × 1 array to start solve_ivp. You
will need to make corresponding changes in the RHS derivative function (the first parameter of
solve_ivp) by returning a (100+100)×1 array, where the first 100 elements are the derivative
∂
∂tu, and the second 100 elements are the derivative ∂

∂tut.
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Figure 15.3: The solution of the wave equation for a pulse hitting a barrier at x = π; see Problem 3.
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16 Inverse Problems

An important concept in mathematics is the idea of a well posed problem. The concept initially
came from Jacques Hadamard. A mathematical problem is well posed if

1. a solution exists,

2. that solution is unique, and

3. the solution is continuously dependent on the data in the problem.

A problem that is not well posed is ill posed. Notice that a problem may be well posed, and yet still
possess the property that small changes in the data result in larger changes in the solution; in this
case the problem is said to be ill conditioned, and has a large condition number.

Note that for a physical phenomena, a well posed mathematical model would seem to be a
necessary requirement! However, there are important examples of mathematical problems that are
ill posed. For example, consider the process of differentiation. Given a function u together with its
derivative u′, let ũ(t) = u(t) + ε sin(ε−2t) for some small ε > 0. Then note that

∥u− ũ∥∞ = ε,

while

∥u′ − ũ′∥∞ = ε−1.

Since a small change in the data leads to an arbitrarily large change in the output, differentiation is
an ill posed problem. And we haven’t even mentioned numerically approximating a derivative!

For an example of an ill posed problem from PDEs, consider the backwards heat equation with
zero Dirichlet conditions:

ut = −uxx, (x, t) ∈ (0, L)× (0,∞),

u(0, t) = u(L, t) = 0, t ∈ (0,∞),

u(x, 0) = f(x), x ∈ (0, L).

(16.1)

For the initial data f(x) = 0, the unique1 solution is u(x, t) = 0. Given the initial data f(x) =
1
n sin(nπxL ), one can check that there is a unique solution u(x, t) = 1

n sin(nπxL ) exp((nπL )2t). Thus,
on a finite interval [0, T ], as n → ∞ we see that a small difference in the initial data results in an
arbitrarily large difference in the solution.

1See Partial Differential Equations by Lawrence C. Evans, chapter 2.3, for a proof of uniqueness.
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Figure 16.1: Cause and effect within a given physical system.

Inverse Problems
As implied by the name, inverse problems come in pairs. For example, differentiation and integration
are inverse problems. The easier problem (in this case integration) is often called the direct problem.
Historically, the direct problem is usually studied first.

Given a physical system, together with initial data (the “cause”), the direct problem will usually
predict the future state of the physical system (the “effect”); see Figure 16.1. Inverse problems often
turn this on its head—given the current state of a physical system at time T , what was the physical
state at time t = 0?

Alternatively, suppose we measure the current state of the system, and we then measure the
state at some future time. An important inverse problem is to determine an appropriate mathematical
model that can describe the evolution of the system.

Another look at heat flow through a rod
Consider the following ordinary differential equation, together with natural boundary conditions at
the ends of the interval2: {

−(au′)′ = f, x ∈ (0, 1),

a(0)u′(0) = c0, a(1)u′(1) = c1.
(16.2)

This BVP can, for example, be used to describe the flow of heat through a rod. The boundary
conditions would correspond to specifying the heat flux through the ends of the rod. The function
f(x) would then represent external heat sources along the rod, and a(x) the thermal conductivity of
the rod at each point.

2This example of an ill-posed problem is given in Inverse Problems in the Mathematical Sciences by Charles W
Groetsch.
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Typically, the thermal conductivity a(x) would be specified, along with any heat sources f(x),
and the (direct) problem is to solve for the steady-state heat distribution u(x). Here we shake things
up a bit: suppose the heat sources f are given, and we can measure the heat distribution u(x). Can
we find the thermal conductivity of the rod? This is an example of a parameter estimation problem.

Let us consider a numerical method for solving (16.2) for the thermal conductivity a(x). Sub-
divide [0, 1] into N equal subintervals, and let xj = jh, j = 0, . . . , N , where h = 1/N . Let ϕj(x) be
the tent functions (used earlier in the finite element lab), given by

ϕj(x) =


(x− xj−1)/h x ∈ [xj−1, xj ],

(xj+1 − x)/h x ∈ [xj , xj+1],

0 otherwise.

We look for an approximation ah(x) that is a linear combination of tent functions. This will be of
the form

ah =

N∑
j=0

αjϕj , αj = a(xj). (16.3)

The h in this equation indicates that each of the tent functions in the linear combination rely on
h = 1/N , and that a different h or N will result in different tent functions, so ah will be different.
The second half of (16.3) says that a good choice of ah is found by taking αj = a(xj). Integrating
(16.2) from 0 to x, we obtain

∫ x

0

−(au′)′ ds =
∫ x

0

f(s) ds,

− [a(x)u′(x)− c0] =
∫ x

0

f(s) ds,

u′(x) =
c0 −

∫ x

0
f(s) ds

a(x)
.

(16.4)

Thus for each xj

u′(xj) =
c0 −

∫ xj

0
f(s) ds

a(xj)
,

=
c0 −

∫ xj

0
f(s) ds

αj
.

The coefficients αj in (16.3) can now be approximated as α∗
j by minimizing

α∗
j = argmin

αj


(
c0 −

∫ xj

0
f(s) ds

αj
− u′(xj)

)2
 . (16.5)
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Figure 16.2: The solution a(x) to Problem 1

Problem 1. Use (16.5) to solve (16.2) for a(x) using the following conditions:
c0 = 3/8, c1 = 5/4, u(x) = x2 + x/2 + 5/16, xj = 0.1j for j = 0, 1, . . . , 10, and

f =

{
−6x2 + 3x− 1 x ≤ 1/2,

−1 1/2 < x ≤ 1,

Produce the plot shown in Figure 16.2.
Hint: use the minimize function in scipy.optimize and some initial guess to find the

αj . Alternatively, notice that (16.5) is simple enough that it can be solved explicitly for αj .

Problem 2. Find the thermal conductivity function a(x) satisfying{
−(au′)′ = −1, x ∈ (0, 1),

a(0)u′(0) = 1, a(1)u′(1) = 2.
(16.6)

where u(x) = x+1+ε sin(ε−2x). Using several values of ε > 0.66049142, plot the corresponding
thermal conductivity a(x) for x in np.linspace(0,1,11) to demonstrate that the problem is
ill-posed, as in Figure 16.3. Be sure to add a legend to your plot.
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Figure 16.3: The thermal conductivity function a(x) satisfying (16.6) for ε = 0.8.

Time-Dependent Inverse Problems
We can also expand our use of inverse problems from time-independent PDEs to time-dependent
variables. In this section of the lab, we will do it with the nonlinear time-dependent diffusion
equation. We will also introduce noise to the measurements, making this much more realistic.

Time-Dependent Heat Diffusion Update

The nonlinear time-dependent diffusion equation is

∂

∂t
u(x, t) =

∂

∂x

(
ν(x)

∂u(x, t)

∂x

)
=

(
∂ν(x)

∂x

)(
∂u(x, t)

∂x

)
+ ν(x)

(
∂2u(x, t)

∂x2

)
.

(16.7)

Note that this form of the diffusion equation is slightly more general than the one in the heat
diffusion lab, since the diffusion coefficient ν is not a constant.

If our spatial grid is indexed by j ∈ {0, . . . , J − 1} with step h, and our time grid is indexed by
m ∈ {0, . . . ,M − 1} with step k, then the time derivative can be approximated as

ut(xj , tm) =
u(xj , tm + k)− u(xj , tm)

k
+O(k).

and the second-order centered difference approximation for the second spatial derivative is

uxx(xj , tm) =
u(xj + h, tm)− 2u(xj , tm) + u(xj − h, tm)

h2
+O(h2).
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The second-order centered difference approximations for the first spatial derivatives (of u and ν) are

ux(xj , tm) =
u(xj + h, tm)− u(xj − h, tm)

2h
+O(h2)

νx(xj) =
ν(xj + h)− ν(xj − h)

2h
+O(h2).

Letting ν⃗ be a vector of νj = ν(xj) evaluated at each grid point in space, the update iteration scheme
then becomes

Um+1
j (ν⃗) = Um

j +
k

h2

[
νj(U

m
j+1 − 2Um

j + Um
j−1) +

(
(νj+1 − νj−1)(U

m
j+1 − Um

j−1)

4

)]
. (16.8)

where we omit (or suppress) the dependence of Um
j , Um

j+1, and Um
j−1 on ν⃗ for brevity. Note that this

update equation is the same as the one in the Heat Diffusion Lab, but with an added last term.

Inverse Problems with Noise

We want to find the heat diffusion coefficient ν⃗ that minimizes the difference between the measured
heat Û and our approximation U(ν⃗) which we compute using (16.8). That is, we want to find ν⃗ such
that the sum of squared errors

SSE =

J−1∑
j=0

M−1∑
m=0

[Um
j (ν⃗)− Ûm

j ]2 (16.9)

is minimized. Note that since Û is a measurement of a true heat distribution u∗(x, t), it is subject to
noise. Also note that this is a least-squares problem (like Problem 1), but the solution is not trivial
since each νj is constant in time, but multiple noisy measurements are taken at the same point xj
at different times tm.

To solve this problem, we will choose a guess for our initial heat diffusion coefficient, solve for
the heat flow using our guess, and then using a minimization method (such as BFGS), we will update
our vector of parameters, ν⃗. Here is some code to help get you started:

# This is an MxJ matrix of measured, noisy data.
U_hat = np.load("measured_heat.npy")
M, J = U_hat.shape

def sse(nu, U_hat):

# Initialize U with the the first row (time) of `U_hat`, then loop
# forward in time using `nu` and equation (8).

return # Result of equation (9)

# This is a good guess. There are others that will work fine too.
guess = np.full(J, 2)

sol = minimize(sse, guess, args=U_hat, method="BFGS")
nu = sol.x
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Problem 3. The file measured_heat.npy contains measurements over time (t ∈ [0, 2]) of the
temperature along an insulated rod with a varying diffusion coefficient ν(x). The first row
corresponds to the iniital state of the heat distribution in the rod. Use equation (16.8) and the
code above to find an estimate ν⃗ of ν(x) that minimizes the sum of squared errors (16.9). For
x ∈ [−10, 10], plot ν⃗ along with the true ν(x), which is given by

ν(x) =
5

1 + e−x
+

1

2
.

Compare with Figure 16.4. Be sure to add a legend to your plot. Notice that the model does
worse at the endpoints. This is partially because the endpoints in the PDE are fixed at zero with
Dirichlet conditions, so the value of ν at the endpoints has little little effect on the evolution of
the PDE.

Hint: Use array broadcasting when possible. Note that the array in measured_heat.npy
is 21× 11, so M = 21 and J = 11.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x
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5
Numerical 
Exact 

Figure 16.4: Solution to Problem 3
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17 The Shooting Method
for Boundary Value
Problems

Consider a boundary value problem of the form

y′′ = f(x, y, y′), a ≤ x ≤ b,
y(a) = α, y(b) = β.

(17.1)

One natural way to approach this problem is to study the initial value problem (IVP) associated
with this differential equation:

y′′ = f(x, y, y′), a ≤ x ≤ b,
y(a) = α, y′(a) = s.

(17.2)

The goal is to determine an appropriate value s so that the solution of the IVP (17.2) is also a
solution of the BVP (17.1).

Note that we can consider the value y(x) for a given initial condition y′(a) = s as a function of
both x and s. Let y(x, s) be the solution of (17.2). The initial value conditions are then

y(a, s) = α,
∂y

∂x
(a, s) = s. (17.3)

We wish to find a value of s so that y(b, s) = β. Consider the function h(s) = y(b, s)− β; this
function is called the residual function. If h(s) = 0, then y(b, s) = β and the boundary condition is
satisfied, so zeros of the function h correspond to initial conditions that are solutions to the BVP
(17.1). Applying Newton’s method to the function h(s), we obtain the iterative method

sn+1 = sn −
h(sn)

h′(sn)
,

= sn −
y(b, sn)− β
∂
∂s y(b, s)

∣∣
sn

, n = 0, 1, . . . .

Provided our initial guess s0 is sufficiently good, this will converge to a value of s such that the initial
value problem is also a solution to the boundary value problem. Notice that finding y(b, sn) requires
solving the initial value problem using RK4 or some other method.

We recall that Newton’s method generally requires a good initial guess s0. A plausible initial
guess for this setup would be the average rate of change of the solution across the entire interval,
which gives s0 = (β − α)/(b − a). If this initial guess is insufficient, it may be refined by manually
inspecting the solution y(x, s0) of the initial value problem.
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Using Newton’s method requires us to evaluate or approximate the function h′(sn). This term
may be approximated with a finite difference h′(sn) ≈ h(sn)−h(sn−1)

sn−sn−1
, giving us the iterative method

sn+1 = sn − h(sn)
(sn − sn−1)

h(sn)− h(sn−1)

= sn − (y(b, sn)− β)
sn − sn−1

y(b, sn)− y(b, sn−1)
, n = 1, 2, . . .

This variation of Newton’s method is called the secant method, and requires two initial values instead
of one. The secant method generally does not converge as quickly as standard Newton’s method, but
it avoids needing to compute the actual derivative of h(s).

As an example, consider the boundary value problem

y′′ = −4y − 9 sin(x), x ∈ [0, 3π/4],

y(0) = 1,

y(3π/4) = −1 + 3
√
2

2
.

(17.4)

This has the exact solution

y(x) = cos(2x) +
1

2
sin(2x)− 3 sin(x).

The following code implements the secant method to solve (17.4) numerically. We use scipy.
integrate.solve_ivp to solve the initial value problems.

import numpy as np
from scipy.integrate import solve_ivp
from matplotlib import pyplot as plt

# Secant method
def secant_method(h, s0, s1, max_iter=100, tol=1e-8):

"""
Finds a root of h(s)=0 using the secant method with the
initial guesses s0, s1.
"""
for i in range(max_iter):

# Get the residuals
h0 = h(s0)
h1 = h(s1)
# Update
s2 = s1 - h1 * (s1 - s0)/(h1 - h0)
s0, s1 = s1, s2

# Check convergence
if abs(h1) < tol:

return s2

print("Secant method did not converge")
return s2
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# Define the ODE right-hand side
def ode(x, y):

return np.array([
y[1],
-4*y[0]-9*np.sin(x)

])

# Endpoint values
a = 0
b = 3/4 * np.pi
alpha = 1
beta = - (1+3*np.sqrt(2))/2

# Define a residual function
def residual(s):

# Find the right endpoint
sol = solve_ivp(ode, (a, b), [alpha, s])
yb = sol.y[0,-1]
return yb - beta

# Find the right value of s using the secant method
s = secant_method(residual, (beta-alpha)/2, -1)

# Compute and plot the solution
x = np.linspace(0,3*np.pi/4,100)
y = solve_ivp(ode, (a, b), (alpha, s), t_eval=x).y[0]

plt.plot(x, y)
plt.show()
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Figure 17.1: The solution to the BVP (17.4) from the above example.

Problem 1. Appropriately defined initial value problems will usually have a unique solution.
Boundary value problems are not so straightforward; they may have no solution or they may
have several, and you may have to determine which solutions are physically interesting.

Use the secant method to solve the following BVP:a

y′′ = −ey−1, x ∈ [0, 1],

y(0) = y(1) = 1.

This BVP has two solutions. Using the secant method, find both numerical solutions and print
their initial slopes. Plot the solutions and compare with Figure 17.2. What initial values s0, s1
did you use to find them?

aThis example is from Numerical Solution of Boundary Value Problems for Ordinary Differential Equations
by Ascher, Mattheij, and Russell, page 89.
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Figure 17.2: Both solutions to the boundary value problem given in Problem 1.

Instead of using the secant method, let us consider how to solve for h′(s) = ∂
∂sy(b, s) for

problems of the form given in (17.1). For typical systems of ODEs, the solution y(x, s) is smooth
enough that it can be differentiated with respect to x and s in any order.1 Let z(x, s) = ∂

∂sy(x, s),

and note that h′(s) = z(b, s). Using the chain rule, we obtain

z′′ =
∂

∂s
y′′(x, s) =

∂f

∂y
(x, y(x, s), y′(x, s)) · dy

ds
(x, s),

+
∂f

∂y′
(x, y(x, s), y′(x, s)) · ∂y

′

∂s
(x, s),

Using the initial conditions associated with y(x, s) and noting that z(x, s) = ∂
∂sy(x, s) and z′(x, s) =

∂
∂sy

′(x, s), we obtain the following initial value problem for z(x, s):

z′′ = z
∂f

∂y
(x, y, y′) + z′

∂f

∂y′
(x, y, y′), a ≤ x ≤ b,

z(a, s) = 0, z′(a, s) = 1.

1This is guaranteed to be the case if the right hand side of the ODE is C1, as in all of the examples here, as this
guarantees both partial derivatives of y are continuous.
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To use Newton’s method, the IVPs for y and z must be solved simultaneously. The iterative
method then becomes

sn+1 = sn −
h(s)

h′(s)

= sn −
y(b, sn)− β
z(b, sn)

, n = 0, 1, . . . (17.5)

We will run through an example to demonstrate this method. Let

y′′ = 3 +
2y

x2
, x ∈ [1, e],

y(1) = 6,

y(e) = e2 +
6

e
,

and let s = y′(1). Then

f = y′′ = 3 +
2y

x2
,

and

h(s) = y(b, s) = y(e, s),

h′(s) =
∂

∂s
y(e, s).

We then solve iteratively for s using Newton’s method, starting with an initial guess s0. With each
iteration, we need to solve the initial value problem for y and z, given an sn, using the first order
system defined by 

y

y′

z

z′


′

=


y′

3 + 2y
x2

z′

z ∂f
∂y (x, y, y

′) + z′ ∂f∂y′ (x, y, y
′)

 =


y′

3 + 2y
x2

z′
2z
x2

 ,
z(1, sn) = 0, z′(1, sn) = 1,

y(1, sn) = 6, y′(1, sn) = sn.

We then use the solutions for y(x, sn) and z(x, sn) to find sn+1, using equation (17.5), and iterate.

Problem 2. Use Newton’s method to solve the BVP

y′′ = 3 +
2y

x2
, x ∈ [1, e],

y(1) = 6,

y(e) = e2 +
6

e
.

Plot your solution, and compare with Figure 17.3. What is an appropriate initial guess?
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Figure 17.3: The solution of y′′ = 3 + 2y/x2, satisfying the boundary conditions y(1) = 6, y(e) =

e2 + 6/e, given in Problem 2.

The Cannon Problem
Consider the problem of aiming a projectile at a given target. Here we will construct a differential
equation that describes the path of the projectile and takes into account air resistance. We will then
use the shooting method to determine the angle at which the projectile should be launched.

Let t denote time, and the coordinates of the projectile be given by r(t) = (x(t), y(t)). If θ(t)
represents the angle of the velocity vector from the positive x-axis and v(t) = ∥v(t)∥ represents the
speed of the projectile, then we have

ẋ = v cos θ,

ẏ = v sin θ.

Note that each of x, y, θ, and v are functions of t, so the dot denotes d
dt . The tangent vector to

the path traced by the projectile is the unit vector in the direction of the projectile’s velocity, so
T(t) = (cos θ, sin θ). The unit normal vector N(t) is given by N(t) = (− sin θ, cos θ). Thus the
relationship between basis vectors i, j, and T(t),N(t) is given by[

cos θ sin θ

− sin θ cos θ

] [
i

j

]
=

[
T(t)

N(t)

]
Let Fg represent the force on the projectile due to gravity, and Fd represent the force on the projectile
due to air resistance. (We assume the air is still.) From Newton’s law we have

mv̇ = Fg + Fd.
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The drag equation from fluid dynamics says that the force on the projectile due to air resistance
is kv2 = (1/2)ρcDAv

2, where ρ is the mass density of air (about 1.225 kg/m3), v is the speed of
the projectile, and A is its cross-sectional area. The drag coefficient cD is a dimensionless quantity
that changes with respect to the shape of the object. (If we assume our projectile is spherical with
a diameter of .2 m, then its drag coefficient cD ≈ 0.47, its cross-sectional area is π/100 m2, and we
obtain k ≈ 0.009.)

Thus the total force on the shell is

mv̇ = −mgj− kv2T,
= −mg(T sin θ +N cos θ)− kv2T,
= (−mg sin θ − kv2)T−mgN cos θ. (17.6)

From the identity v = (ẋ, ẏ) = (v cos θ, v sin θ) we have

mv̇ = m(v̇ cos θ − vθ̇ sin θ, v̇ sin θ + vθ̇ cos θ)

= m(v̇ cos θ − vθ̇ sin θ)(cos θT− sin θN)

+m(v̇ sin θ + vθ̇ cos θ)(T sin θ +N cos θ),

= m(Tv̇ +Nvθ̇). (17.7)

From equations (17.6) and (17.7) we have

mv̇ = −mg sin θ − kv2,

mvθ̇ = −mg cos θ.

Thus we have the system of differential equations

ẋ = v cos θ,

ẏ = v sin θ,

v̇ = −g sin θ − kv2/m,

θ̇ = −g cos θ/v.

We can actually write this problem to be independent of t, which will make solving it simpler,
since we do not know the final time of impact. If we assume that t is an smooth invertible function
of x (that is, t = t(x)), then we obtain

dy

dx
=
dy

dt

dt

dx
,

=
dy

dt

1
dx
dt

,

=
v sin θ

v cos θ
= tan θ.

We find dv
dx and dθ

dx in a similar manner. Thus our system of differential equations becomes

dy

dx
= tan θ,

dv

dx
= −g sin θ + µv2

v cos θ
,

dθ

dx
= − g

v2
,

(17.8)

where µ = k/m. We can now consider y, v, and θ to be functions of x, and x to be the independent
variable.
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Problem 3. Suppose we have a cannon that fires a projectile at a velocity of 45 m/s, and the
projectile has a mass of about 60 kg, so that µ = .0003. At what angle θ(0) should it be fired
to land at a distance of 195 m? Use the secant method to find initial values for θ that give
solutions to the following BVP:

dy

dx
= tan θ,

dv

dx
= −g sin θ + µv2

v cos θ
,

dθ

dx
= − g

v2
,

y(0) = y(195) = 0,

v(0) = 45 m/s

(17.9)

(g = 9.8067 m/s2.)
There are four angles θ(0) that produce solutions for this BVP when µ = 0.0003. However,

only two of the angles are physically meaningful for this problem as they lie in (0, π/2), while
the others lie in (π, 3π/2) and correspond to the projectile moving from right to left. Find and
plot the two solutions whose angles lie in (0, π/2). Also find the two solutions when µ = 0 (no
air resistance), and compare. Graphs of the solutions are given in Figure 17.5.

Keep in mind that the unknown initial condition is θ(0), not y′(0). What is the appropriate
residual function h(t) to apply the secant method to?
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Figure 17.4: Two solutions of the system of equations (17.8), both with initial conditions y(0) = 0 m,
v(0) = 45 m/s, and θ(0) = π/3. The black curve is the trajectory of a projectile with no air resistance
(µ = 0). The red curve describes the trajectory of a more realistic projectile (µ = .0003).
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0 25 50 75 100 125 150 175 200
0

10

20

30

40

50

60

70 = 0
= 0.0003

Figure 17.5: The two solutions of the boundary value problem (17.9) when the air resistance is
described by the parameter µ = 0.0003, and the two solutions with no air resistance (µ = 0).



18 Total Variation and
Image Processing

Lab Objective: Minimizing an energy functional is equivalent to solving the resulting Euler-
Lagrange equations. We introduce the method of steepest descent to solve these equations, and apply
this technique to a denoising problem in image processing.

The Gradient Descent method
Consider an energy functional J [u], defined over a collection of admissible functions u : Ω ⊂ Rn → R,
with the form

J [u] =

∫
Ω

L(x, u,∇u) dx

where L = L(x, u,∇u) is a function Rn × R × Rn → R. A standard result from the calculus of
variations states that a minimizing function u∗ satisfies the Euler-Lagrange equation

Lu −
n∑

i=1

∂Luxi

∂xi
= Lu −∇ · L∇u = Lu − div (L∇u) = 0. (18.1)

where L∇u = ∇′L = [Lx1 , . . . , Lxn ]
⊺.

This equation is typically an elliptic PDE, possessing boundary conditions associated with
restrictions on the class of admissible functions u. To more easily compute (18.1), we consider a
related parabolic PDE,

ut = −(Lu − divL∇u), t > 0,

u(x, 0) = u0(x), t = 0.
(18.2)

A steady state solution of (18.2) does not depend on time, and thus solves the Euler-Lagrange
equation. It is often easier to evolve an initial guess using (18.2), and stop whenever its steady state
is well-approximated, than to solve (18.1) directly.

Consider the energy functional

J [u] =

∫
Ω

∥∇u∥2 dx.

The minimizing function u∗ satisfies the Euler-Lagrange equation

−div∇u = −∆u = 0.

165
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The gradient descent flow is the well-known heat equation

ut = ∆u.

The Euler-Lagrange equation could equivalently be described as ∆u = 0, leading to the PDE
ut = −∆u. Since the backward heat equation is ill-posed, it would not be helpful in a search for the
steady-state.

Let us take the time to make (18.2) more rigorous. We recall that

δJ(u;h) =
d

dt
J(u+ εh)

∣∣∣∣
ε=0

,

=

∫
Ω

(Lu(u)− divL∇u(u))h dx,

= ⟨Lu(u)− divL∇u(u), h⟩L2(Ω),

for each u and each admissible perturbation h. Then using the Cauchy-Schwarz inequality,

|δJ(u;h)| ≤ ∥Ly(u)− divL∇u(u)∥ · ∥h∥

with equality iff h = α(Lu(u) − divL∇u(u)) for some α ∈ R. This implies that the “direction”
h = Lu(u)− divL∇u(u) is the direction of steepest ascent and maximizes δJ(u;h). Similarly,

h = −(Lu(u)− divL∇u(u))

points in the direction of steepest descent, and the flow described by (18.2) tends to move toward a
state of lesser energy.

Minimizing the area of a surface of revolution

The area of the surface obtained by revolving a curve u(x) about the x-axis is

A[u] =

∫ b

a

2πu
√
1 + (u′)2 dx.

To minimize the functional A over the collection of smooth curves with fixed end points u(a) = ua,
u(b) = ub, we use the Euler-Lagrange equation

0 = 1− u u′′

1 + (u′)2
,

= 1 + (u′)2 − uu′′,
(18.3)

with the gradient descent flow given by

ut = −1− (u′)2 + uu′′, t > 0, x ∈ (a, b),

u(x, 0) = g(x), t = 0,

u(a, t) = ua, u(b, t) = ub.

(18.4)

Numerical Implementation

We will construct a numerical solution of (18.4) using the conditions u(−1) = 1, u(1) = 7. A simple
solution can be found by using a second-order order discretization in space with a simple forward
Euler step in time. We create the grid and set our end states below.
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import numpy as np

a, b = -1, 1.
alpha, beta = 1., 7.
#### Define variables x_steps, final_T, time_steps ####
delta_t, delta_x = final_T/time_steps, (b-a)/x_steps
x0 = np.linspace(a, b, x_steps+1)

Most numerical schemes have a stability condition that must be satisfied. Our discretization
requires that ∆t

(∆x)2 ≤
1
2 . We continue by checking that this condition is satisfied, and use the straight

line connecting the end points as initial data.

# Check a stability condition for this numerical method
if delta_t/delta_x**2. > .5:

print("stability condition fails")

u = np.empty((2,x_steps+1))
u[0] = (beta - alpha)/(b-a)*(x0-a) + alpha
u[1] = (beta - alpha)/(b-a)*(x0-a) + alpha

Finally, we define the right hand side of our difference scheme, and time step until the scheme
converges.

def rhs(y):
# Approximate first and second derivatives to second order accuracy.
yp = (np.roll(y, -1) - np.roll(y, 1))/(2.*delta_x)
ypp = (np.roll(y, -1) - 2.*y + np.roll(y, 1))/delta_x**2.
# Find approximation for the next time step, using a first order Euler step
y[1:-1] -= delta_t*(1. + yp[1:-1]**2. - 1.*y[1:-1]*ypp[1:-1])
return y

# Time step until successive iterations are close
iteration = 0
while iteration < time_steps:

u[1] = rhs(u[1])
if norm(np.abs((u[0] - u[1]))) < 1e-5: break
u[0] = u[1]
iteration+=1

print("Difference in iterations is ", norm(np.abs((u[0] - u[1]))))
print("Final time = ", iteration*delta_t)

Problem 1. Using 20 x steps, 250 time steps, a = −1, b = 1, α = 1, β = 7, and a final time
of 0.2, plot the solution that minimizes (18.4). It should match figure 18.1.



168 Lab 18. Total Variation and Image Processing

1.0 0.5 0.0 0.5 1.0
x

0
1
2
3
4
5
6
7
8

u
Initial guess
Minimizing curve

Figure 18.1: The solution of (18.3), found using the gradient descent flow (18.4).

Image Processing: Denoising
A greyscale image can be represented by a scalar-valued function u : Ω→ R, Ω ⊂ R2. The following
code reads an image into an array of floating point numbers, adds some noise, and saves the noisy
image.

from numpy.random import randint, uniform, randn
import matplotlib.pyplot as plt
from matplotlib import cm
from imageio.v3 import imread, imwrite

imagename = "balloons_color.jpg"
changed_pixels=40000
# Read the image file imagename into an array of numbers, IM
# Multiply by 1. / 255 to change the values so that they are floating point
# numbers ranging from 0 to 1.
IM = imread(imagename, mode='F') * (1. / 255)
IM_x, IM_y = IM.shape

for lost in range(changed_pixels):
x_, y_ = randint(1, IM_x-2), randint(1, IM_y-2)
val = .1*randn() + .5
IM[x_, y_] = max( min(val, 1.), 0.)
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imwrite("noised_"+imagename, IM)

A color image can be represented by three functions u1, u2, and u3. In this lab we will work with
black and white images, but total variation techniques can easily be used on more general images.

A simple approach to image processing

Here is a first attempt at denoising: given a noisy image f , we look for a denoised image u minimizing
the energy functional

J [u] =

∫
Ω

L(x, u,∇u) dx, (18.5)

where

L(x, u,∇u) = 1

2
(u− f)2 + λ

2
|∇u|2,

=
1

2
(u− f)2 + λ

2
(u2x + u2y)

2.

This energy functional penalizes 1) images that are too different from the original noisy image, and 2)
images that have large derivatives. The minimizing denoised image u will balance these two different
costs.

Solving for the original denoised image u is a difficult inverse problem-some information is
irretrievably lost when noise is introduced. However, a priori information can be used to guess at the
structure of the original image. For example, here λ represents our best guess on how much noise
was added to the image, and is known as a regularization parameter in inverse problem theory.

The Euler-Lagrange equation corresponding to (18.5) is

Lu − div L∇u = (u− f)− λ∆u,
= 0.

and the gradient descent flow is

ut = −(u− f − λ∆u),
u(x, 0) = f(x).

(18.6)

Let unij represent our approximation to u(xi, yj) at time tn. We will approximate ut with a
forward Euler difference, and ∆u with centered differences:

ut ≈
un+1
ij − unij

∆t
,

uxx ≈
uni+1,j − 2unij + uni−1,j

∆x2
,

uyy ≈
uni,j+1 − 2unij + uni,j−1

∆y2
.
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Original image Image with white noise

Figure 18.2: Noise.

Problem 2. Using ∆t = 1e−3, λ = 40, ∆x = 1, and ∆y = 1, implement the numerical scheme
mentioned above to obtain a solution u. (So Ω = [0, nx] × [0, ny], where nx and ny represent
the number of pixels in the x and y dimensions, respectively.) Take 250 steps in time. Plot the
image with noise as well as the smoothed image. Compare your results with the first half of
Figure 18.3.

Hint: Use the function np.roll to compute the spatial derivatives. For example, the
second derivative can be approximated at interior grid points using

u_xx = np.roll(u, -1, axis=1) - 2*u + np.roll(u, 1, axis=1)

Image Processing: Total Variation Method

We represent an image by a function u : [0, 1] × [0, 1] → R. A C1 function u : Ω → R has bounded
total variation on Ω (BV (Ω)) if

∫
Ω
|∇u| < ∞; u is said to have total variation

∫
Ω
|∇u|. Intuitively,

the total variation of an image u increases when noise is added.
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Initial diffusion-based approach Total variation based approach

Figure 18.3: The solutions of (18.6) and (18.11), found using a first order Euler step in time and
centered differences in space.

The total variation approach was originally introduced by Ruding, Osher, and Fatemi1. It was
formulated as follows: given a noisy image f , we look to find a denoised image u minimizing∫

Ω

|∇u(x)| dx (18.7)

subject to the constraints ∫
Ω

u(x) dx =

∫
Ω

f(x) dx, (18.8)∫
Ω

|u(x)− f(x)|2 dx = σ|Ω|. (18.9)

Intuitively, (18.7) penalizes fast variations in f - this functional together with the constraint (18.8)
has a constant minimum of u = 1

|Ω|
∫
Ω
u(x) dx. This is obviously not what we want, so we add a

constraint (18.9) specifying how far u(x) is required to differ from the noisy image f . More precisely,
(18.8) specifies that the noise in the image has zero mean, and (18.9) requires that a variable σ be
chosen a priori to represent the standard deviation of the noise.

Chambolle and Lions proved that the model introduced by Rudin, Osher, and Fatemi can be
formulated equivalently as

F [u] = min
u∈BV (Ω)

∫
Ω

|∇u|+ λ

2
(u− f)2 dx, (18.10)

1L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms”, Physica D., 1992.
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where λ > 0 is a fixed regularization parameter2. Notice how this functional differs from (18.5):∫
Ω
|∇u| instead of

∫
Ω
|∇u|2. This turns out to cause a huge difference in the result. Mathematically,

there is a nice way to extend F and the class of functions with bounded total variation to functions
that are discontinuous across hyperplanes. The term

∫
|∇| tends to preserve edges/boundaries of

objects in an image.
The gradient descent flow is given by

ut = −λ(u− f) +
uxxu

2
y + uyyu

2
x − 2uxuyuxy

(u2x + u2y)
3/2

,

u(x, 0) = f(x).

(18.11)

Notice the singularity that occurs in the flow when |∇u| = 0. Numerically we will replace |∇u|3 in
the denominator with (ε+ |∇u|2)3/2, to remove the singularity.

Problem 3. Using ∆t = 1e− 3, λ = 1,∆x = 1, and ∆y = 1, implement the numerical scheme
mentioned above to obtain a solution u. Take 200 steps in time. Display both the diffusion-
based and total variaton images of the balloon. Compare your results with Figure 18.3. How
small should ε be?

Hint: To compute the spatial derivatives, consider the following:

u_x = (np.roll(u, -1, axis=1) - np.roll(u, 1, axis=1))/2
u_xx = np.roll(u, -1, axis=1) - 2*u + np.roll(u, 1, axis=1)
u_xy = (np.roll(u_x, -1, axis=0) - np.roll(u_x, 1, axis=0))/2.

2A. Chambelle and P.-L. Lions, “Image recovery via total variation minimization and related problems", Numer.
Math., 1997.



19 Transit Time Crossing
a River

Lab Objective: This lab discusses a classical calculus of variations problem: how is a river to be
crossed in the shortest possible time? We will look at a numerical solution using the pseudospectral
method.

Suppose a boat is to be rowed across a river, from a point A on one side of a river (x = −1),
to a point B on the other side (x = 1). Assuming the boat moves at a constant speed 1 relative to
the current, how must the boat be steered to minimize the time required to cross the river?

Let us consider a typical trajectory for the boat as it crosses the river. If T is the time required
to cross the river, then the position s of the boat at time t is

s(t) = (x(t), y(t)), t ∈ [0, T ],

s′(t) = (x′(t), y′(t))

= (cos θ(x(t)), sin θ(x(t))) + (0, c(x(t))).

Here (cos θ(x), sin θ(x)) represents the motion of the boat due to the rower, and (0, c(x)) is the motion
of the boat due to the current.

We can relate the angle at which the boat is steered to the graph of its trajectory by noting
that

y′(x) =
y′(t)

x′(t)
,

=
sin θ(x) + c(x)

cos θ(x)
,

= c(x) sec θ(x) + tan θ(x).

(19.1)

The time T required to cross the river is given by

T =

∫ 1

−1

t′(x) dx,

=

∫ 1

−1

1

x′(t)
dx

=

∫ 1

−1

sec θ(x) dx.

(19.2)
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Figure 19.1: The river’s current, along with a possible trajectory for the boat.

We would like to find an expression for the total time T required to cross the river from A to B, in
terms of the graph of the boat’s trajectory. To derive the functional T [y], we note that

T [y] =

∫ 1

−1

sec θ(x)dx,

=

∫ 1

−1

1

1− c(x)2
(c(x) tan θ(x) + sec θ(x)− c(x)2 sec θ(x)− c(x) tan θ(x)) dx,

=

∫ 1

−1

1

1− c(x)2
(c(x) tan θ(x) + sec θ(x)− c(x)y′(x)) dx.

Since

c(x) tan θ(x) + sec θ(x) =
√
1− c(x)2 + (c(x) sec θ(x) + tan θ(x))2,

=
√
1− c(x)2 + (y′(x))2,

we obtain at last

T [y] =

∫ 1

−1

[
α(x)

√
1 + (α(x)y′(x))2 − α2(x)c(x)y′(x)

]
dx, (19.3)

where α(x) = (1− c2(x))−1/2.
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Problem 1. Assume that the current is given by c(x) = − 7
10 (x

2− 1). (This function assumes,
for example, that the current is faster near the center of the river.) Write two python functions.
The first should accept as arguments a function y, its derivative y′, and an x-value, and return
L(x, y(x), y′(x)) (where T [y] =

∫ 1

−1
L(x, y(x), y′(x))). The second should use the first function

to compute and return T [y] for a given path y(x).
Hint: The integration for T [y] can be done use an approximation method such as the midpoint
method or can be done using the quad function from scipy.integrate.

Problem 2. Let y(x) be the straight-line path between A = (−1, 0) and B = (1, 5). Numeri-
cally calculate T [y] to get an upper bound on the minimum time required to cross from A to
B. Using (19.2), find a lower bound on the minimum time required to cross.
Hint: If G =

∫
f(x)dx and we want to minimize G, try minimizing f(x).

We look for the path y(x) that minimizes the time required for the boat to cross the river,
so that the function T is minimized. From the calculus of variations we know that a smooth path
y(x) minimizes T only if the Euler-Lagrange equation is satisfied. Recall that the Euler-Lagrange
equation is

Ly −
d

dx
Ly′ = 0.

Since Ly = 0, we see that the shortest time trajectory satisfies

d

dx
Ly′ =

d

dx

(
α3(x)y′(x)(1 + (α(x)y′(x))2)−1/2 − α2(x)c(x)

)
= 0. (19.4)

Problem 3. Numerically solve the Euler-Lagrange equation (19.4), using c(x) = − 7
10 (x

2 − 1)

and α(x) = (1− c2(x))−1/2, and y(−1) = 0, y(1) = 5. Plot y on x ∈ [−1, 1].
Hint: Since this boundary value problem is defined over the domain [−1, 1], it is easy to

solve using the pseudospectral method. Begin by replacing each d
dx with the pseudospectral

differentiation matrix D. Then impose the boundary conditions and solve implicitly using
fsolve from scipy.optimize.root. See the last two problems of Spectral 1 for a reminder on
how to do this.

Problem 4. Plot the angle at which the boat should be pointed at each x-coordinate.
Hint: Use Equation (19.1); see Figure 19.3. Note that the angle the boat should be steered

is not described by the tangent vector to the trajectory. Consider using scipy.optimize.root
or scipy.interpolate.barycentric_interpolate
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Figure 19.2: Numerical computation of the trajectory with the shortest transit time.
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Figure 19.3: The optimal angle to steer the boat.



20HIV Treatment Using
Optimal Control

Introduction
Viruses cause many common illnesses in society today, including influenza, the common cold, and
COVID-19. Viruses are obligate parasites, meaning that they must infect a host in order to replicate.
After entering a host cell, viruses hijack host machinery to replicate their genome and translate their
proteins. After this process, the new virus particles are assembled and lyse (break apart) the host
cell to find a new host.

Mammalian immune systems are composed of two interconnected systems: the innate immune
system and the adaptive immune system. While both branches of the immune system can combat
viruses, the adaptive immune system is especially suited to recognize and neutralize viral infections.
A major part of the adaptive immune response is helper T cells, as these cells moderate and regulate
all other facets of the immune response. Helper T cells are most characterized by the presence of a
receptor called CD4, which helps the cell recognize infections.

One of the most devastating viral illnesses today is acquired immunodeficiency syndrome
(AIDS), caused by the human immunodeficiency virus (HIV). HIV specifically targets and repli-
cates in helper T cells, rendering them nonfunctional and killing them. By taking out the most
important regulator of the immune system, HIV makes it difficult for the body to fight infection, so
sicknesses that would normally be trivial for the body to manage, such as the common cold, yeast
infections, and pneumonia, become deadly.

Currently, there is no cure for HIV, and vaccines are difficult to develop. Treatments that curb
the replication of HIV and help maintain healthy helper T cell population levels are available, but
they are expensive and must be taken for the rest of a patient’s life. Optimizing the dosage is essential
to maximize the drug’s effect while minimizing the cost and negative side-effects of long-term usage.
In this lab, we will use optimal control to find the optimum dosage of a two-drug combination to fight
HIV. In this lab we will use optimal control to find the optimal dosage of a two-drug combination1.

Derivation of Control
We begin by defining some variables. Let

• T represent the concentration of CD4+ T cells,
1SHORT COURSES ON THE MATHEMATICS OF BIOLOGICAL COMPLEXITY, Web. 15 Apr. 2015

http://www.math.utk.edu/ lenhart/smb2003.v2.html.
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• V the concentration of HIV particles,

• s1 and s2 the production of T cells by various processes,

• B1 and B2 the half saturation constants (like crowd control in the blood stream and plasma),

• µ the death rate of uninfected T cells,

• k the rate of infection of T cells,

• c the death rate of the virus,

• g the input rate of some external viral source, and

• u1 and u2 the control variables, corresponding to the amount of drugs that introduce new T
cells or kill the virus, respectively.2

Next we write the state system, the equations that describe the changes in T cells and viruses:3

dT (t)

dt
= s1 −

s2V (t)

B1 + V (t)
− µT (t)− kV (t)T (t) + u1(t)T (t), T (0) = T0,

dV (t)

dt
=

gV (t)

B2 + V (t)

(
1− u2(t)

)
− cV (t)T (t), V (0) = V0.

(20.1)

The term s1 − s2V
B1+V is the source/proliferation of unaffected T cells, µT the natural loss of T cells,

kV T the loss of T cells by infection, gV
B2+V the viral contribution to plasma, and cV T the viral loss.

We now seek to maximize the functional

J(u1, u2) =

∫ tf

0

[T − (A1u
2
1 +A2u

2
2)]dt .

This functional considers (1) the benefit of T cells, and (2) the systematic costs of drug treatments.
The constants A1 and A2 represent scalars to adjust the size of terms coming from u21 and u22
respectively. We seek an optimal control u∗1, u∗2 satisfying

J(u∗1, u
∗
2) = max

(u1,u2)∈U
J(u1, u2) = min

(u1,u2)∈U
−J(u1, u2),

where U = {(u1, u2) : ai ≤ ui(t) ≤ bi for t ∈ [0, tf ], i = 1, 2}.

Optimality System
The Hamiltonian is defined as:

H = λ⃗ · f⃗ − L

H = λ1

[
s1 −

s2V

B1 + V
− µT − kV T + u1T

]
+ λ2

[
g(1− u2)V
B2 + V

− cV T
]

+
[
T − (A1u

2
1 +A2u

2
2)
]
.

2‘Immunotherapy of HIV-1 Infection’, Kirschner, D. and Webb, G. F., Journal of Biological Systems, 6(1), 71-83
(1998)

3‘Optimal Control of an HIV Immunology Model’, H.R Joshi
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Note that the costate is represented with λ instead of p. The costate evolution equations are:

λ
′

1 = −∂H
∂T

= −1 + λ1[µ+ kV − u1] + λ2cV, λ1(tf ) = 0,

λ
′

2 = −∂H
∂V

= λ1

[
B1s2

(B1 + V )2
+ kT

]
− λ2

[
B2g(1− u2)
(B2 + V )2

− cT
]
, λ2(tf ) = 0.

(20.2)

Using Pontryagin’s maximum principle to find the control, we have

∂H

∂u1
= −2A1u1(t) + λ1T (t) = 0

∂H

∂u2
= −2A2u2(t) + λ2

[
−gV (t)

B2 + V (t)

]
= 0

which gives (provided these are within the bounds of the controls)

u∗1(t) =
1

2A1
[λ1T (t)] ,

u∗2(t) =
−1
2A2

[
λ2

gV (t)

B2 + V (t)

]
.

Taking into account the bounds on the controls, we have

u∗1(t) = min

{
max{a1,

1

2A1
(λ1T (t))}, b1

}
,

u∗2(t) = min

{
max{a2,

−λ2
2A2

gV (t)

B2 + V (t)
}, b2

}
.

(20.3)

Creating a Numerical Solver
In the preceding derivation, the states, costates, and controls all depend on each other, so we can’t
just solve the system once, not even numerically. Instead we must iteratively solve for the control u.
In each iteration we solve our state equations and our costate equations numerically, then use those
to find our new control. Lastly, we check to see if our control has converged. To solve each set of
differential equations, we will use solve_ivp. However, our state equations depend on u, our costate
equations depend on our state equations, and both depend on a lot of constants. Therefore, we will
define state_equations and costate_equations to accept these as additional arguments, and we
will give these additional arguments to solve_ivp with the args keyword.

We’ll use the following constants throughout this lab:

# Constants used in equations
a_1, a_2 = 0, 0
b_1, b_2 = 0.02, 0.9
s_1, s_2 = 2, 1.5
mu = 0.002
k = 0.000025
g = 30
c = 0.007
B_1, B_2 = 14, 1
A_1, A_2 = 250000, 75

constants = a_1, a_2, b_1, b_2, s_1, s_2, mu, k, g, c, B_1, B_2, A_1, A_2
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# Other constants
T0, V0 = 400, 3
n = 2000
t_f = 50

Problem 1. Create a function that defines the state equations as in (20.1) and returns both
equations in a single array. The function should be able to be passed into solve_ivp.

def state_equations(t, y, u_interpolation, constants):
'''
Parameters
---------------
t : float

the time
y : ndarray (2,)

the T cell concentration and the virus concentration at time t
u_interpolation : CubicSpline

the values of the control u_interpolation(t) = [u1(t), u2(t)]
constants : a_1, a_2, b_1, b_2, s_1, s_2, mu, k, g, c, B_1, B_2, A_1, ←↩

A_2

Returns
--------------
y_dot : ndarray (2,)

the derivative of the T cell concentration and the virus ←↩
concentration at time t

'''

a_1, a_2, b_1, b_2, s_1, s_2, mu, k, g, c, B_1, B_2, A_1, A_2 = ←↩
constants

You may use the following code to check that your function implements the state equations
correctly:

u = lambda _: np.full(2, 1/2)
state = np.ones(2)

state_equations(0, state, u, constants)
# This should result in [2.397975, 7.493].

Problem 2. Create a function that defines the costate equations as in (20.2) and returns both
equations in a single array. The function should be able to be passed into the solve_ivp.
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def costate_equations(t, y, u_interpolation, state_solution, constants):
'''
Parameters
---------------
t : float

the time
y : ndarray (2,)

the lambda values at time t
u_interpolation : CubicSpline

the values of the control u_interpolation(t) = [u1(t), u2(t)]
state_solution : result of solve_ivp on state_equations with

dense_output=True, i.e., state_solution.sol(t) = [T(t), V(t)]
constants : a_1, a_2, b_1, b_2, s_1, s_2, mu, k, g, c, B_1, B_2, A_1, ←↩

A_2

Returns
--------------
y_dot : ndarray (2,)

the derivative of lambda at time t
'''

a_1, a_2, b_1, b_2, s_1, s_2, mu, k, g, c, B_1, B_2, A_1, A_2 = ←↩
constants

You may use the following code to check that your function implements the costate equa-
tions correctly:

u = lambda _: np.full(2, 1/2)
costate = np.ones(2)
class test_state_solution(): sol = lambda self, _: np.ones(2)

costate_equations(0, costate, u, test_state_solution(), constants)
# This should result in [-1.490975, -3.64964167].

Finally, we can put these together to create our solver.

Problem 3. Create and run a numerical solver for the HIV two drug model using the code
below. Use (20.3) to solve for u∗1 and u∗2.

Note that while the state equations have initial conditions, the costate equations have
end conditions. Fortunately solve_ivp can handle this by reversing the start and end time
arguments and then making sure to index the results backwards. For example, you might use
<solve_ivp_result>.y[:, ::-1].
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Figure 20.1: The solution to Problem 3.

When using solve_ivp, specify max_step=0.5 to help with convergence, and make sure
you’re using the Runge–Kutta algorithm (method="RK45"). Also set dense_output=True so
that you can call <solve_ivp_result>.sol(t) at arbitrary values of t in your state and costate
equations. Finally, use np.linspace(0, t_f, n) for the CubicSpline interpolation of u and
to evaluate state_solution and costate_solution when solving for the next u1 and u2.

# Initialize state, costate, and u.
state0 = np.array([T0, V0])
costate0 = np.zeros(2)

u = np.zeros((2, n))
u[0], u[1] = b_1, b_2

max_step = 0.5

epsilon = 0.001
test = epsilon + 1

tls = np.linspace(0, t_f, n)
while(test > epsilon):

oldu = u.copy()
# u_interpolation = CubicSpline(...)
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# Solve the state equations forward in time.
# state_solution = solve_ivp(...)

# Solve the costate equations backward in time.
# costate_solution = solve_ivp(...)

# Solve for u1 and u2.

# Update control u with u1 and u2.

# Test for convergence
test = abs(oldu - u).sum()

Your solutions should match Figure 20.1.
Hint: To ensure the controls are within bounds, consider using np.minimum and np.maximum,
or np.clip. Also, when generating a CubicSpline interpolation of the control u, you may need
to specify an axis argument.

Patients usually take several different classes of drugs at a time to prevent HIV from replicating
and progressing into AIDS. Reverse transcriptase inhibitors prevent the HIV genome from inserting
itself into the host genome. These prevent helper T cell death by lowering the number of HIV
particles in the body. Protease inhibitors prevent the activation of HIV proteins that are needed for
replication. Fusion inhibitors can be taken early in the course of HIV infection and prevent the entry
of HIV into helper T cells. There are many unique drugs in each class, all with known and unknown
interactions and side effects. Physicians rotate through drugs to help their patients have a positive
outcome and to prevent the virus from becoming resistant to any one drug.
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21 Solitons

Lab Objective: Use a pseudospectral method to study solitons, the traveling wave solutions of the
Korteweg-de Vries equation.

The Korteweg-de Vries (KdV) equation is a partial differential equation given by

∂u

∂t
+ u

∂u

∂x
+
∂3u

∂x3
= 0.

that describes shallow water waves.

The KdV equation possesses traveling wave solutions called solitons. These traveling waves
have the form

u(x, t) = 3s sech2
(√

s

2
(x− st− a)

)
,

where s is the speed of the wave. Solitons were first studied by John Scott Russell in 1834, in the
Union Canal in Scotland. When a canal boat suddenly stopped, the water piled up in front of the
boat continued moving down the canal in the shape of a pulse.

Note that there is a soliton solution for each wave speed s, and that the amplitude and speed
of the soliton determine each other. Solitons are nonlinearly stable (bumped waves return to their
previous shape), and they maintain their energy as they travel. Two interacting solitons will also
both maintain their shapes after crossing paths.

Numerical solution
Consider the KdV equation on [−π, π], together with an appropriate initial condition:

ut = −
1

2

(
u2
)
x
− uxxx,

u(x, 0) = u0(x).

This form of the equation is slightly more convenient for the approach we will take. We will suppose
the initial condition is equal at the two endpoints; that is, u0(−π) = u0(π). This will allow us to use
the pseudospectral method to find a numerical approximation for the solution u(x, t).
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As a reminder, the pseudospectral method involves writing the solution at each point in time
using a set of basis functions, complex exponentials being the most common, and using this repre-
sentation to convert the PDE into an ODE. Specifically, we can write any solution u(x, t) as

u(x, t) =

∞∑
k=−∞

yk(t)e
ikx.

Recall that k is known as the wave number. Note that all time-dependence of the solution is contained
in the coefficients. We can only compute this to some finite precision, so we will choose some n and
truncate the series as

u(x, t) =

n∑
k=−n

yk(t)e
ikx.

The objective is to obtain an ordinary differential equation for the coefficients yk(t). We now plug it
into the PDE:

∂

∂t

n∑
k=−n

yk(t)e
ikx = −1

2

∂

∂x

(
n∑

k=−n

yk(t)e
ikx

)2

− ∂3

∂x3

n∑
k=−n

yk(t)e
ikx

n∑
k=−n

y′k(t)e
ikx = −1

2

∂

∂x

(
n∑

k=−n

yk(t)e
ikx

)2

+

n∑
k=−n

ik3yk(t)e
ikx

For this particular PDE, this leads to an apparent problem: the u2 term will be difficult and com-
putationally costly to differentiate. However, we can get around this difficulty using the fast Fourier
transform.

Divide [−π, π] into 2n+1 intervals of equal width 2π
2n+1 , and let−π = x−n, x−n+1, . . . , xn, xn+1 =

π be the 2n + 2 evenly-spaced gridpoints. For any function f on that interval with Fourier series
f(x) =

∑∞
k=−∞ ake

ikx, we can use the discrete Fourier transform on the values f(x−n), . . . , f(xn+1)

at the gridpoints to quickly get the Fourier coefficients a−n, . . . , an. The inverse Fourier transform
can be used to get the function values at the grid points from the Fourier coefficients. Both of these
operations are very efficient, having complexity O(n log n). This sets up our strategy.

At each time t, we can use the inverse Fourier transform to compute the values of u(xm, t) for
m = −n, . . . , n + 1. Then, we apply the Fourier transform to u2 to get its Fourier coefficients. We
will denote these as wk, so

u2(x, t) =

n∑
k=−n

wk(t)e
ikx.

Then,
∂

∂x
u2(x, t) =

n∑
k=−n

ikwk(t)e
ikx,

so the KdV equation can be written as

n∑
k=−n

y′k(t)e
ikx =

n∑
k=−n

(
−1

2
ikwk(t) + ik3yk(t)

)
eikx

Equating terms in the Fourier series yields the ordinary system of differential equations

y′k = −1

2
ikwk + ik3yk, k = −n, . . . , n.
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We can write this in a vectorized form as

y′ = −1

2
ik⊙F(F−1(y)2) + ik3 ⊙ y (21.1)

where F denotes the discrete Fourier transform. In this equation, all of the multiplication and
exponentiation is componentwise.

To obtain the initial condition for the yk, we can simply use the discrete Fourier transform
again:

y(0) = F(u0(x−n), . . . , u0(xn+1))

To compute the fast Fourier and inverse fast Fourier transforms numerically, we will use the
scipy.fft module, which has functions fft for the fast Fourier transform and ifft for the inverse
fast Fourier transform. These functions use an order for the coefficients that is slightly nonintuitive:
the coefficients for k ≥ 0 are all listed first, followed by the coefficients for k < 0. The vector of
wavenumbers can be created as follows:

k = np.concatenate([
np.arange(0, n+1),
np.arange(-n-1, 0)

])

We are now prepared to numerically solve the KdV equation.

Problem 1. Write a function that accepts the time value t (which won’t be used here, but will
be useful later) the vector y = (y0, y1, . . . , yn, y−n−1, . . . , y−1) and the vector k of wavenumbers
and returns y′ as given in (21.1).

To numerically solve this ODE, we’ll use solve_ivp. For this lab we want to specify a fixed time
step size to use with the RK4 algorithm, but scipy’s implementation uses an adaptive method to
control the time step. So we’ve defined an RK4 implementation that can be passed into solve_ivp
with the method argument, and we provide the time step dt through the call to solve_ivp.

from scipy.integrate import solve_ivp, OdeSolver
from scipy.integrate._ivp.common import warn_extraneous

class RK4(OdeSolver):
def __init__(self, fun, t0, y0, t_bound, dt, vectorized, **extraneous):

super().__init__(fun, t0, y0, t_bound, vectorized, support_complex=True←↩
)

self.dt = dt

# t-linspace
self.tls = np.arange(0, t_bound + dt, dt)

self.idx = iter(range(1, len(self.tls)))

warn_extraneous(extraneous)
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def _step_impl(self):
self.y_old = self.y

i = next(self.idx)
t = self.tls[i]
y = self.y
f = self.fun
dt = self.dt

# RK4 algorithm
K1 = f(t, y)
K2 = f(t + dt / 2, y + dt * K1 / 2)
K3 = f(t + dt / 2, y + dt * K2 / 2)
K4 = f(t + dt, y + dt * K3)
y_new = y + (dt / 6) * (K1 + 2 * K2 + 2 * K3 + K4)

self.t = t
self.y = y_new
return True, None

def _dense_output_impl(self):
return lambda xs: np.interp(

xs, (self.t_old, self.t), (self.y_old, self.y)
)

# `args` is passed to the ODE function you defined in Problem 1.
# `dt` is passed to `RK4`.
sol = solve_ivp(..., args=(k,), method=RK4, dt=dt)

Once we have solved for the coefficients y(t), we need to convert them back into function
values u(x, t) in order to visualize the solution. This is accomplished by using the ifft function on
the coefficient values at each time step. However, this function is designed to work with complex
numbers, and returns a complex-valued array. Due to numerical error, even though our ODE solution
is real-valued, there may be small imaginary components to the result; use np.real on the result to
discard these.

Problem 2. Write a function that accepts an initial condition u0, a final time T, the timestep
dt, an integer n for the number of coefficients to use, and another integer skip. Numerically
solve for the coefficients y(t) of a solution to the KdV equation.

Next, convert the Fourier coefficients back into function values at the gridpoints using the
inverse Fourier transform. However, only do this for every skip-th timestep; we will be using
far more timesteps than we want to plot. Return the gridpoints, the timesteps, and the solution
u(x, t).

Once we have the function values, we can plot them as a surface as follows:

fig = plt.figure()
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ax = fig.add_subplot(1,1,1, projection="3d")

T, X = np.meshgrid(t, x, indexing="ij")
ax.plot_surface(T, X, u, cmap="coolwarm", rstride=1, cstride=1)

Problem 3. Numerically solve the KdV equation on [−π, π] with initial conditions

u(x, t = 0) = 3s sech2
(√

s

2
(x+ a)

)
,

where s = 252, a = 2. Solve on the time domain [0, 0.0075], and use n = 127. Compare with
Figure 21.1; to get a similar viewpoint, use the following:

ax.view_init(elev=45, azim=-45)
ax.set_zlim(0, 4000)
ax.invert_xaxis()

How small of a timestep did you need to use for the numerical integration to be stable? (Hint:
it’s smaller than 10−5.) If your solution becomes full of NaN values, you are most likely using
too large of a timestep.
Hint: numpy does not have a sech function; use 1/cosh(x) to compute it instead.



190 Lab 21. Solitons

T 0.000
0.002

0.004
0.006

X2
0

2

Z

0
1000
2000
3000
4000

Figure 21.1: The solution to Problem 3.

Problem 4. Numerically solve the KdV equation on [−π, π]. This time we define the initial
condition to be the superposition of two solitons:

u(x, t = 0) = 3s1 sech
2

(√
s1
2

(x+ a1)

)
+ 3s2 sech

2

(√
s2
2

(x+ a2)

)
,

where s1 = 252, a1 = 2, and s2 = 162, a2 = 1.a Solve on the time domain [0, 0.0075]. The
solution is shown in Figure 21.2.

aThis problem is from Spectral Methods in MATLAB, by Trefethen.
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Figure 21.2: The solution to Problem 4.

Problem 5. Consider again equation (21.1). The linear term in this equation is ik3y. This
term contributes much of the exponential growth in the ODE, and contributes to how short
the time step must be to ensure numerical stability. Make the substitution zk(t) = e−ik3tyk(t)

and find a similar ODE for z. This essentially allows the exponential growth to be scaled out
(it’s solved for analytically, replacing it with rotation in the complex plane). Use the resulting
equation to solve the previous problem. How much larger of a timestep can you use while this
method remains stable?
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22 Obstacle Avoidance

Lab Objective: Solve boundary value problems that arise when using Pontryagin’s Maximum
principle.

Pontryagin’s Maximum Principle
Now that we understand how to solve boundary value problems, we can apply this to solve optimal
control problems. Pontryagin’s Maximum Principle is a very common way to formulate control
problems as BVPs.

Fixed Time, Fixed Endpoint

We will begin with the more simple fixed time horizon problems. Fixed time horizon problems
are commonly reformulated as boundary value problems, and we can apply what we have already
learned about solving BVPs to make these problems easier to solve. We introduce fixed time horizon
problems with a cost functional of the following form

J(u) =

∫ tf

t0

L(t, s(t), u(t))dt+K(tf , sf ), (22.1)

where t0 and tf are fixed. In this functional, L(t, s(t), u(t)) represents the cost of a certain path
determined by the control u, and K(tf , sf ) is the terminal cost. We also have that

ṡ = f(t, s, u), s0 = s(t0), sf = s(tf ). (22.2)

In these equations t is time, s is the state variable, and u is the control variable. The maximum
principle also uses the Hamiltonian equation

H(t, s, u, p) = ⟨p, f(t, s, u)⟩ − L(t, s, u), (22.3)

where p is a newly introduced variable called the costate. This Hamiltonian is then used to define
an ODE system. This first equation defines a costate ODE system

ṗ∗ = −Hs(t, s
∗, u∗, p∗), (22.4)
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where a variable marked with an asterisk is the optimal choice of that variable, meaning that equation
22.4 is only true for the optimal state s∗, costate p∗, and control u∗ functions. This next equation
will allow us to solve for the control in terms of the state and costate

0 = Hu(t, s
∗, u∗, p∗), ∀t ∈ [t0, tf ]. (22.5)

The combination of these equations will allow us to create a BVP that will solve for the optimal
control u∗ and the associated states s∗. Our ODE comes from 22.2, 22.4, and 22.5, and the boundary
values will come from our initial and final conditions on s.

A Specific Example

Let

J(u) =

∫ 30

0

x2 +
2π

5
u2dt,

ṡ =

[
x′

u

]
, and x′′ = u.

Then

H(t, s, u, p) = ⟨p, f(t, s, u)⟩ − L(t, s, u)

= p · ṡ− x2 − 2π

5
u2

= p ·
[
x′

u

]
− x2 − 2π

5
u2

= p1x
′ + p2u− x2 −

2π

5
u2.

We now need to find

Hs =

[
Hs1

Hs2

]
=

[
Hx

Hx′

]
=

[
−2x
p1

]
,

and we see that

p′ =

([
p1
p2

])′

= −Hs =

[
2x

−p1

]
.

Also, we know that Hu = 0 at the optimal solution, so

Hu = p2 −
4π

5
u = 0⇒ u =

5

4π
p2.

Thus, we have that 

x

x′

p1
p2




′

=


x′

u

2x

−p1

 =


x′
5
4πp2
2x

−p1

 . (22.6)

You will now implement this in problem 1.
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Problem 1. Given the following cost functional and boundary conditions, use the system of
ODEs found in 22.6 to solve for and plot the optimal path (position as a function of time, x(t))
and acceleration (control as a function of time, u(t) = ẍ(t)).

J(u) =

∫ 30

0

x2 +
2π

5
u2dt

s(t) =

[
x(t)

x′(t)

]
, s(0) =

[
0

1

]
, s(30) =

[
16

10

]
Plot your solutions for the optimal x(t) (position) and u(t) (acceleration) .

0 5 10 15 20 25 30
t

0

10

x(
t)

0 5 10 15 20 25 30
t

0.0

2.5

u(
t)

Figure 22.1: Solution to problem 1

Avoiding Collision

We now expand upon the technique learned above by adding an obstacle in our path. One area
of application that relies heavily on optimal control is autonomous driving. A common problem in
autonomous driving is the avoidance of obstacles. In this section we will outline a naïve solution to
obstacle avoidance with a fixed time horizon.

First we can begin by defining our state variable s. We will want to understand the position
and velocity at a given time so we will define the following state variable

s(t) =


x(t)

y(t)

ẋ(t)

ẏ(t)

 =


s1(t)

s2(t)

s3(t)

s4(t)

 , (22.7)
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which allows us to track those states in R2.
We can then establish the ODE defined in equation 22.2 by examining ṡ(t)

ṡ(t) =


ṡ1(t)

ṡ2(t)

ṡ3(t)

ṡ4(t)

 =


ẋ(t)

ẏ(t)

ẍ(t)

ÿ(t)

 ,
and if we define our control u1 and u2 to be acceleration in the x and y directions respectively, then
we have

ṡ(t) = f(t, s, u) =


s3(t)

s4(t)

u1(t)

u2(t)

 . (22.8)

Next we will define an obstacle. Since we are using integration to define cost, a reasonable way
to model an obstacle in this problem would be to use a function. It would be helpful if this function
is malleable, allowing us to reposition and resize it, based on the needs of the specific situation. This
function also needs to have a large, preferably positive, value in a concentrated location, and it needs
to vanish relatively quickly. A decent selection could be a function based on an ellipse, such as this
function

C(x, y) =
W1

((x− cx)2/rx + (y − cy)2/ry)λ + 1
. (22.9)

With the function 22.9, we can manipulate the center by changing cx and cy, and we can control the
size by changing rx and ry. Changing the constant W1 allows us to change the relative penalty of
occupying the same location as the obstacle, and a reasonable value for λ will control the vanishing
rate. We will also include a term in the cost functional that weights against high acceleration. This
will allow us to model the real world more accurately, though the term we will be using is not a
perfect representation of real world acceleration limitations. Our cost functional is the following

J(u) =

∫ tf

t0

1 + C(x(t), y(t)) +W2 |u(t)|2 dt, (22.10)

where W2 > 0 defines the relative penalty of high acceleration. This functional will penalize passing
near the obstacle and high levels of acceleration.

With the cost functional defined, we can now create the Hamiltonian and the rest of our BVP.
We get the following Hamiltonian

H(t, p, s, u) = p1s3 + p2s4 + p3u1 + p4u2 −
(
1 + C(x, y) +W2

(
u1(t)

2 + u2(t)
2
))
, (22.11)

which gives the following costate ODE by equation 22.4

ṗ =


ṗ1
ṗ2
ṗ3
ṗ4

 =


Cx(x, y)

Cy(x, y)

−p1
−p2

 . (22.12)

Since we’re given Hu = 0 in equation 22.5, then we also have the following relations

u1(t) =
1

2W2
p3(t)

u2(t) =
1

2W2
p4(t).

(22.13)
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Using Initial Guesses with solve_bvp

When solving boundary value problems in Python, we need to supply solve_bvp with an initial guess
y0 of the solution y. Note that this initial guess y0 differs from the initial guess provided to solve_ivp
and many other iterative solvers. Rather than providing solve_bvp with initial conditions, we are
providing a guess for the entire solution of the ODE (i.e. at every time step). For many applications,
providing an initial guess of ones is sufficient for solve_bvp to find the correct solution. However, for
obstacle avoidance, solutions are often unstable enough that it becomes useful to provide solve_bvp
with a better guess at the final solution. Note that our inital guess need not satisfy the boundary
conditions. Also note that solve_bvp does not necessarily find a globally optimal solution. In a lot
of cases, the solution it finds will be a local minimum, but for many practical applications (and for
the purposes of this lab) local minima are sufficient.

An easy way to create an initial guess is to approximate a solution using line segments. For
example, suppose we have an obstacle centered at (4, 1) and we use the ODE found in 22.8 and 22.12
with an initial condition of (6, 1.5, 0, 0) and a final condition of (0, 0, 0, 0). It could make sense for
the path to move “over" the obstacle going through a point at around (3, 1.75). Thus, we could make
our initial guess for x be a linspace from 6 to 0 and our initial guess for y be a line that moves from
(6, 1.5) to (3, 1.75) and then a line that moves from (3, 1.75) to (0, 0). It also makes sense for us
to initialize the derivatives of x as negative values since we will be moving from right to left. The
following code reflects these assumptions in the creation of the initial guess:

# Make initial guess
y0 = np.ones((8, t_steps))
x = np.linspace(0, 6, t_steps)
y1 = (1.75 / 3) * x[:int(t_steps/2)]
y2 = (1.5 - 1.75) / 3 * (x[int(t_steps/2):] - 3) + 1.75
y_init = np.concatenate((y1, y2))
y0[0,:] = x[::-1]
y0[1,:] = y_init[::-1]
y0[2,:] = -1*np.ones(t_steps)

Problem 2. Using the ODEs found in 22.8 and 22.12, the obstacle function 22.9, and the
following boundary conditions and parameters solve for and plot the optimal path.

t0 = 0, tf = 20

(cx, cy) = (4, 1)

(rx, ry) = (5, .5)

λ = 20

s0 =


6

1.5

0

0

, sf =


0

0

0

0
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You will need to choose a W1 and W2 which allow the solver to find a valid path. If these
parameters are not chosen correctly, the solver may find a path which goes through the obstacle,
not around it. Plot the obstacle using plt.contour() to be certain path doesn’t pass through
the obstacle. Also plot the initial guess for x and y provided to solve_bvp.

Hint: The default for a parameter of solve_bvp() called max_nodes is not large enough.
Try at least max_nodes = 30000. You may also find it helpful to use the function partial
from the module functools to preset the parameters for the functions you will be using. If
you are struggling to find viable values for W1 and W2, try W1 ∈ (1, 40) and W2 ∈ (0, 9).

0 1 2 3 4 5 6 7
x(t)

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

y(
t)

optimal path
Initial Guess

Figure 22.2: Solution to problem 2 for certain choice of parameters. Here we used W1 = 3 and
W2 = 70, but those parameters are a choice. Other choices work too, but will result in a different
optimal path around the obstacle.

Free Time Horizon Problems

In the previous sections and problems, we were working with BVPs that had a fixed start time t0,
and a fixed end time tf . However, we may also encounter systems that have a free end time. In order
to solve these problems we will need to make some alterations to the problem. First we will perform
a change of basis so that we can work with a fixed end time. Consider the following system

ẋ(t) = f(x(t), t) t ∈ [0, tf ],
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we can do the following change of basis for the time variable

t = tf t̂

=⇒ d

dt
=

d

dt̂

dt̂

dt

=⇒ d

dt
=

d

dt̂

1

tf
.

We can now define z(t̂) := x(tf t̂) which gives us the following new system

ż
(
t̂
)
= tff

(
z
(
t̂
)
, t̂
)

t̂ ∈ [0, 1].

This system can be solved in the same way we solve the fixed time horizon problems. But you may
notice that we now have an extra unknown parameter, the final time. Because of this, a free time
horizon problem will need one more boundary value to make the system solvable.

Lets now examine an example of a free time horizon problem. We start with a first-order ODE
system. Note that the fixed final time has been replaced with a free final time, and that a needed
third boundary condition has been included[

y1
y2

]′
=

[
y2

cos(t)− 9y1

]
, y1(0) = 5/3, y2(0) = 5, y1(tf ) = −

5

3
.

Now we make the coordinate change, giving the following system[
z1
z2

]′
= tf

[
z2

cos(tf t̂)− 9z1

]
, z1(0) = 5/3, z2(0) = 5, z1(1) = −

5

3
. (22.14)

Now we can solve this system using solve_bvp in python. The new argument p that we have included
in ode() and bc() is an ndarray that contains our parameter tf .

def ode(t,y,p):
''' define the ode system '''
return p[0]*np.array([y[1], np.cos(p[0]*t) - 9*y[0]])

def bc(ya,yb,p):
''' define the boundary conditions '''
return np.array([ya[0] - (5/3), ya[1] - 5, yb[0] + 5/3])

# give the time domain
t_steps = 100
t = np.linspace(0, 1, t_steps)

# give an initial guess
y0 = np.ones((2, t_steps))
p0 = np.array([6])

# solve the system
sol = solve_bvp(ode, bc, t, y0, p0)

The attribute sol.p[0] will give the final time the solver found.
When plotting we need to make sure that we remember that x(tf t̂) = z(t̂), so we plot in the

following way
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plt.plot(sol.p[0]*t,sol.sol(t)[0])
plt.xlabel('t')
plt.ylabel("y(t)")
plt.show()

0 1 2 3 4 5 6 7
t

2

1

0

1

2

y(
t)

Figure 22.3: The solution to 22.14

Problem 3. Solve the following boundary value problem, using 5π as the initial guess for p[0]:

y′′ + 3y = sin(t)

y(0) = 0, y(tf ) =
π

2
, y′(tf ) =

1

2

(√
3π cot(π

√
75)− 1

)
.

Plot your solution. What tf did the solver find?
Hint: Be careful with sin(t). We have made the substitution for t (it is now scaled by

p[0]).
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Free Time, Fixed Endpoint Control Problems

Now that we understand how to formulate free time horizon problems, we can modify our optimal
control BVP to become a free time horizon problem. This is actually the best way to formulate many
optimal control problems, as we usually don’t know exactly how long it takes to traverse the optimal
path. The methodology is exactly the same as we used in the last problem, we only need to find the
extra boundary value which will allow us to make the end time a free variable.

To find this extra boundary value, we will use the fact that the Hamiltonian is 0 for all t along
the optimal path. It is standard to use the final time as the representative so we will assert that

H(tf , p(tf ), s(tf ), u(tf )) = 0. (22.15)

You may notice that when you solve an optimal control problem as a free end time BVP, the
optimal path you get is different than what you found when it was a fixed end time BVP. This is
because the solution found in the fixed end time formulation is the optimal path for a certain end
time, but it may not be the optimal path when time is allowed to vary. The cost functional will
control how time constraints are balanced with other costs and thus determine the optimal path.

Problem 4. Refactor your code from problem 2 to create a free end time BVP and use a new
boundary value derived from 22.15. Let W1 = 4 and W2 = 0.1, and use max_nodes = 60000.
Plot the solution you found along with the initial guess for x and y and print the optimal time.

Hint: You may find that the initial guess provided for Problem 2 becomes more unstable
when used with this problem. Try using an initial guess for p[0] that is close to 3 or change the
initial guess y0 so that the path runs underneath the obstacle. One such initial guess is shown
in Figure 22.4. It does not matter which path your solution takes, it need only look reasonable
and have a reasonable optimal time.
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0 1 2 3 4 5 6 7
x(t)

0.0

0.5

1.0

1.5

2.0
y(
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optimal path
Initial Guess

Figure 22.4: The solution to Problem 4. Here we used W1 = 4 and W2 = 0.1 and got an optimal time
of about 4.47. Those parameters are a choice. Other choices work too, but will result in a different
optimal path around the obstacle and in a different optimal time.



23 The Inverted
Pendulum

Lab Objective: We will set up the LQR optimal control problem for the inverted pendulum and
compute the solution numerically.

Think back to your childhood days when, for entertainment purposes, you’d balance objects:
a book on your head, a spoon on your nose, or even a broom on your hand. Learning how to walk
was likely your initial introduction to the inverted pendulum problem.

A pendulum has two rest points: a stable rest point directly underneath the pivot point of the
pendulum, and an unstable rest point directly above. The generic pendulum problem is to simply
describe the dynamics of the object on the pendulum (called the ‘bob’). The inverted pendulum
problem seeks to guide the bob toward the unstable fixed point at the top of the pendulum. Since
the fixed point is unstable, the bob must be balanced relentlessly to keep it upright.

The inverted pendulum is an important classical problem in dynamics and control theory, and
is often used to test different control strategies. One application of the inverted pendulum is the
guidance of rockets and missiles. Aerodynamic instability occurs because the center of mass of the
rocket is not the same as the center of drag. Small gusts of wind or variations in thrust require
constant attention to the orientation of the rocket.

The Simple Pendulum

We begin by studying the simple pendulum setting. Suppose we have a pendulum consisting of a
bob with mass m rotating about a pivot point at the end of a (massless) rod of length l. Let θ(t)
represent the angular displacement of the bob from its stable equilibrium. By Hamilton’s Principle,
the path θ that is taken by the bob minimizes the functional

J [θ] =

∫ t1

t0

L, (23.1)

where the Lagrangian L = T − U is the difference between the kinetic and potential energies of the
bob.

203
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θ
l

m

Figure 23.1: The frame of reference for the simple pendulum problem.

The kinetic energy of the bob is given by mv2/2, where v is the velocity of the bob. In terms
of θ, the kinetic energy becomes

T =
m

2
v2 =

m

2
(ẋ2 + ẏ2),

=
m

2
((l cos(θ)θ̇)2 + (l sin(θ)θ̇)2),

=
ml2θ̇2

2
.

(23.2)

The potential energy of the bob is U = mg(l − l cos θ). From these expressions we can form the
Euler-Lagrange equation, which determines the path of the bob:

0 = Lθ −
d

dx
Lθ̇,

= −mgl sin θ −ml2θ̈,

= θ̈ +
g

l
sin θ.

(23.3)

Since in this setting the energy of the pendulum is conserved, the equilibrium position θ = 0 is
only Lyapunov stable. When forces such as friction and air drag are considered θ = 0 becomes an
asymptotically stable equilibrium.

The Inverted Pendulum

The Control System

We consider a gift suspended above a rickshaw by a (massless) rod of length l. The rickshaw and its
suspended gift will have masses M and m respectively, M > m. Let θ represent the angle between the
gift and its unstable equilibrium, with clockwise orientation. Let v1 and v2 represent the velocities of
the rickshaw and the gift, and F the force exerted on the rickshaw. The rickshaw will be restricted
to traveling along a straight line (the x-axis).

By Hamilton’s Principle, the path (x, θ) of the rickshaw and the present minimizes the functional

J [x, θ] =

∫ t1

t0

L, (23.4)

where the Lagrangian L = T − U is the difference between the kinetic energy of the present on the
pendulum, and its potential energy.
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Figure 23.2: The inverted pendulum problem on a mobile rickshaw with a present suspended above.

Since the position of the rickshaw and the present are (x(t), 0) and (x − l sin θ, l cos θ) respec-
tively, the total kinetic energy is

T =
1

2
Mv21 +

1

2
mv22

=
1

2
Mẋ2 +

1

2
m
(
(ẋ− lθ̇ cos θ)2 + (−lθ̇ sin θ)2

)
=

1

2
(M +m)ẋ2 +

1

2
ml2θ̇2 −mlẋθ̇ cos θ.

(23.5)

where v1 is the norm of the velocity vector of the rickshaw and v2 is that of the present.
The total potential energy is

U = mgl cos θ.

The path (x, θ) of the rickshaw and the present satisfy the Euler-Lagrange differential equations,
but the problem involves a nonconservative force F acting in the x direction. By way of D’Alambert’s
Principle, our normal Euler-Lagrange equations now include the nonconservative force F on the right
side of the equation:

∂L

∂x
− d

dt

∂L

∂ẋ
= F,

∂L

∂θ
− d

dt

∂L

∂θ̇
= 0.

(23.6)

After expanding (23.6) we see that x(t) and θ(t) satisfy

F = mlθ̈ cos θ − (M +m)ẍ−mlθ̇2 sin θ,

lθ̈ = g sin θ + ẍ cos θ.
(23.7)
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At this point we make a further simplifying assumption. If θ starts close to 0, we may assume
that the corresponding force F will keep θ small. In this case, we linearize1 (23.7) about (θ, θ̇) = (0, 0),
obtaining the equations

F = mlθ̈ − (M +m)ẍ,

lθ̈ = gθ + ẍ.

These equations can be further manipulated to obtain

ẍ = − 1

M
F +

m

M
gθ,

θ̈ = − 1

Ml
F +

g

Ml
(M +m)θ.

(23.8)

We will now write (23.8) as a first order system. Making the assignments x1 = x, x2 = x′1,
θ1 = θ, θ2 = θ′1, letting u = −F represent the control variable, we obtain

x1
x2
θ1
θ2


′

=


0 1 0 0

0 0 mg
M 0

0 0 0 1

0 0 g
Ml (M +m) 0



x1
x2
θ1
θ2

+ u


0
1
M

0
1
Ml

 ,
which can be written more concisely as

z′ = Az +Bu.

The Infinite Time Horizon LQR Problem

We consider the cost function

J [z] =

∫ ∞

0

(q1x
2
1 + q2x

2
2 + q3θ

2
1 + q4θ

2
2 + ru2) dt

=

∫ ∞

0

zTQz + uTRudt

(23.9)

where q1, q2, q3, q4, and r are nonnegative weights, and

Q =


q1 0 0 0

0 q2 0 0

0 0 q3 0

0 0 0 q4

 , R =
[
r
]
.

Problem 1. Write a function that returns the matrices A,B,Q, and R given above. Let
g = 9.8 m/s2.

def linearized_init(M, m, l, q1, q2, q3, q4, r):
'''
Parameters:
----------
M, m: floats

masses of the rickshaw and the present

1See Additional Material section for derivation.



207

l : float
length of the rod

q1, q2, q3, q4, r : floats
relative weights of the position and velocity of the rickshaw, ←↩

the
angular displacement theta and the change in theta, and the ←↩

control

Return
-------
A : ndarray of shape (4, 4)
B : ndarray of shape (4, 1)
Q : ndarray of shape (4, 4)
R : ndarray of shape (1, 1)
'''
pass

The optimal control problem (23.9) is an example of a Linear Quadratic Regulator (LQR), and
is known to have an optimal control ũ described by a linear state feedback law:

ũ = −R−1BTP z̃.

Here P is a matrix function that satisfies the Riccati differential equation (RDE)

Ṗ (t) = PA+ATP +Q− PBR−1BTP.

Since this problem has an infinite time horizon, we have Ṗ = 0. Thus P is a constant matrix, and
can be found by solving the algebraic Riccati equation (ARE)

PA+ATP +Q− PBR−1BTP = 0. (23.10)

The evolution of the optimal state vector z̃ can then be described by 2

˙̃z = (A−BR−1BTP )z̃. (23.11)

Problem 2. Write the following function to find the matrix P . Use scipy.optimize.root.
Since root takes in a vector and not a matrix, you will have to reshape the matrix P before
passing it in and after getting your result, using P.reshape(16) and P.reshape((4,4)).

def find_P(A, B, Q, R):
'''
Parameters:
----------
A, Q : ndarrays of shape (4, 4)
B : ndarray of shape (4, 1)
R : ndarray of shape (1, 1)

2See Calculus of Variations and Optimal Control Theory, Daniel Liberzon, Ch.6



208 Lab 23. The Inverted Pendulum

Returns
-------
P : the matrix solution of the Riccati equation
'''
pass

Using the values

M, m = 23., 5.
l = 4.
q1, q2, q3, q4 = 1., 1., 1., 1.
r = 10.

compute the eigenvalues of A − BR−1BTP . Are any of the eigenvalues positive? Consider
differential equation (23.11) governing the optimal state z̃. Using this value of P , will we
necessarily have z̃ → 0?

Problem 3. Write the following function that implements the LQR solution described earlier.
Use scipy.integrate.solve_ivp to solve the IVP.

def rickshaw(tv, X0, A, B, Q, R, P):
'''
Parameters:
----------
tv : tuple containing the start and end times (t0, tf) that can be ←↩

passed into solve_ivp
X0 : Initial conditions on state variables
A, Q: ndarrays of shape (4, 4)
B : ndarray of shape (4, 1)
R : ndarray of shape (1, 1)
P : ndarray of shape (4, 4)

Returns
-------
Z : ndarray of shape (n+1, 4), the state vector at each time
U : ndarray of shape (n+1,), the control values
'''
pass

Notice that we have no information on how many solutions (23.10) possesses. In general there
may be many solutions. We hope to find a unique solution P that is stabilizing : the eigenvalues of
A − BR−1BTP have negative real part. To find this P , use the function solve_continuous_are
from scipy.linalg. This function is designed to solve the continuous algebraic Riccati equation.
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P is found using scipy.optimize.root.
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P is found using solve_continuous_are.

Figure 23.3: The solutions of Problem 4.

Problem 4. Test the function made in Problem (3) with the following inputs:

M, m = 23., 5.
l = 4.
q1, q2, q3, q4 = 1., 1., 1., 1.
r = 10.
tf = None
X0 = np.array([-1, -1, .1, -.2])

Find the matrix P using the scipy.optimize.root method with tf=6 as well as the
solve_continuous_are method with tf=60. Plot the solutions z̃ and ũ. Your results should
show behavior similar to that in Figure 23.3. Be sure to include a legend.

The LQR solution we have found only works for the linearized version of the ODE system
that we found. What if we were to apply the control found in the LQR formulation to the original,
nonlinear ODE found in (23.7)? To do this, we need to first be able to interpolate the control variable
u found in Problem 4 using SciPy’s CubicSpline function (see the documentation for more details).
We also need to solve (23.7) for ẍ and θ̈. Note that −F in (23.7) is the control variable u in (23.12).

ẍ =
u+m sin θ(−lθ̇2 + g cos θ)

M +m(1− cos2 θ)
,

θ̈ =
g(m+M) sin θ + cos θ(u− lmθ̇2 sin θ)

l(M +m(1− cos2 θ))
.

(23.12)

Problem 5. Using the same variables and initial conditions as in Problem 4, and the cubic
spline interpolation of the control found in Problem 4, solve for the state variables z̃. Plot z̃,
as well as the solution ũ found in Problem 4 with tf=15. Compare your results with the first
image in Figure 23.4. Notice that the initial θ is large enough that the inverted pendulum is
not balanced. Instead, it falls over at about 5 seconds.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html
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The problem is that the the linearized system is only a valid approximation of the true
nonlinear system on small time intervals. So let’s solve for the optimal control of the linearized
system one small interval at a time.

Starting with the initial condition given in Problem 4, use your rickshaw solver (from
Problem 3) to solve the linearized system over a small interval t ∈ [t0, t1] and obtain the control
ũ. Interpolate this ũ (again using CubicSpline), then use this interpolation to evolve the true
nonlinear system on the same interval. Now we repeat the process by taking the final state z̃
on this interval as our new initial condition for the next interval t ∈ [t1, t2]. Plugging this initial
condition into rickshaw, we obtain a control which we then interpolate and use to evolve the
nonlinear system. Continue this until you have solved over the entire time interval t ∈ [0, 60].

Plot the pieced-together z̃ and ũ. Be sure to include a legend. Compare your results with
the second image in Figure 23.4.

Hint: use np.geomspace(1,61,120)-1 to get a list of {t0, t1, ...tf} that will work well.
Solving the equation more often at the beginning will keep the control variable approximately
continuous. You only need to solve for the control ũ at 3 points in each interval [ti, ti+1] for
the method to work well. Also, use solve_continuous_are rather than scipy.optimize.root
when solving the linearized system.
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Figure 23.4: The solutions of Problem 5.
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Additional Material
Linearization

Recall that a first-order Taylor approximation of a function f(x), centered at x0, is

f(x) ≈ f(x0) +Df(x0)(x− x0).

We linearize the right-hand sides of equations (23.7) around (θ, θ̇) = (0, 0) as follows:

H1(θ, θ̇) := mlθ̈ cos θ − (M +m)ẍ−mlθ̇2 sin θ

≈ H1(0, 0) +DH1(0, 0)

[
θ − 0

θ̇ − 0

]
= mlθ̈ − (M +m)ẍ

+
[
−mlθ̈ sin θ −mlθ̇2 cos θ,−2mlθ̇ sin θ

] ∣∣∣∣
(θ,θ̇)=(0,0)

[
θ

θ̇

]
= mlθ̈ − (M +m)ẍ+ [0, 0]

[
θ

θ̇

]
= mlθ̈ − (M +m)ẍ.

Similarly,

H2(θ, θ̇) := g sin θ + ẍ cos θ

≈ H2(0, 0) +DH2(0, 0)

[
θ

θ̇

]
= ẍ+ [g cos θ − ẍ sin θ, 0]

∣∣∣∣
(θ,θ̇)=(0,0)

[
θ

θ̇

]
= ẍ+ [g, 0]

[
θ

θ̇

]
= ẍ+ gθ.
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24 Linear Quadratic
Gaussian Control

Lab Objective: We explore the Linear Quadratic Gaussian (LQG) controller, a combination of
the Kalman filter and the Linear Quadratic Regulator (LQR).

The Linear Quadratic Regulator (LQR) finds the optimal control given certain restrictions on
the state evolution and cost functional. In a continuous-time system, the optimal control satisfies

min
u
J [u] = min

u

∫ tf

0

[
xTQx+ uTRu

]
dt+ x(tf )

TMx(tf )

x′(t) = A(t)x(t) +B(t)u(t), t ∈ (0, tf )

x(0) = x0

where x is the state vector, u is the control vector, and the cost matrices Q and M are positive
semi-definite and R is positive definite.

We’d like to handle noisy state evolution and noisy, incomplete observations of the state. LQR
alone isn’t able to handle this, but fortunately the Kalman filter comes to our rescue. In fact,
the combination of LQR with a Kalman filter is known as a Linear Quadratic Gaussian (LQG)
controller. The Kalman filter computes optimal state estimates given state observations, and the
LQR component computes optimal controls given these state estimates.

LQG is able to handle Gaussian noise processes in both the state evolution and measurements,
accounting for measurement errors, noise in the state evolution, and model error. In this lab we’ll
build a discrete LQG controller. We’ll start by building the LQR component.

We begin by discretizing the continuous-time LQR system above as follows:

min
u
J [u] = min

u

N−1∑
k=0

[
xT
kQxk + uT

kRuk

]
+ xT

NMxN (24.1)

xk = Axk−1 +Buk−1, k = 1, . . . , N (24.2)

with x0 fixed. Note that u is the concatenation of the uk, i.e., u = (u0, . . . ,uN−1).
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Using Pontryagin’s Maximum Principle, one can show that the optimal control is given by

Kk−1 = −
(
R+BTPkB

)−1
BTPkA, k = N, . . . , 1 (24.3)

Pk−1 = Q+ATPkA−ATPkB(R+BTPkB)−1BTPkA (24.4)

= Q+ATPkA−ATPkB(−Kk−1), k = N, . . . , 1

PN =M (24.5)
uk = Kkxk, k = 0, . . . , N − 1. (24.6)

Note that equation (24.4) is the discrete-time algebraic Riccati equation. See the Volume 4 textbook
for a derivation of these equations.

Problem 1. Build an LQR class. Define __init__ to accept and save as attributes the cost
matrices Q, M , and R, the transition matrices A and B, and the number of time stepsN . Define
a fit method that computes and saves the gain matricesKk. Finally, define a compute_control
method that accepts an index k and a state xk and returns the optimal control uk.

A Specific Example
Suppose we have a shuttle in outer space at position (sx0, sy0, sz0) = (−10, 20, 30) km with initial
velocity (vx0, vy0, vz0) = (0, 0, 0) km/s. We want to get the shuttle to the origin at some final time step
T and also end with zero velocity. Letting the state x = (sx, sy, sz, vx, vy, vz) be the concatenation
of the position and velocity and the control u = (ux, uy, uz) be the thrust, the continuous evolution
of this system is given by

x′ = f(x,u) =



s′x
s′y
s′z
v′x
v′y
v′z

 =



vx
vy
vz
ux
uy
uz

 (24.7)

We then discretize with forward Euler,

x′ =
xk+1 − xk

∆t

xk+1 = xk +∆tx′,

yielding the discrete evolution of the system

sx,k+1 = sx,k +∆t vx,k

sy,k+1 = sy,k +∆t vy,k

sz,k+1 = sz,k +∆t vz,k

vx,k+1 = vx,k +∆t ux,k

vy,k+1 = vy,k +∆t uy,k

vz,k+1 = vz,k +∆t uz,k.



215

Problem 2. Assuming the position and velocity vectors have been concatenated into one state
vector xk, create the evolution matrices A and B from the evolution equations given above and
Equation 24.2. Use ∆t = 1/10.

Problem 3. Use your LQR class from Problem 1 to get the shuttle to the origin. Use the initial
condition specified above, your transition matrices A and B from Problem 2, Q = 0 (the zero
matrix), choose R and M diagonal, and let N = 100. Make sure to choose a large enough M

relative to R so that your shuttle reaches the origin with velocity close to zero.
We’ve provided a Simulator class to handle the state evolution, that is, computing and

storing the state using the control you provide. The code below will help you use it. You may
also view the docstrings of the class and methods either with your code editor or by using
Python’s help() function (e.g., help(Simulator) and help(Simulator.<some_method>)).

import numpy as np
from utils import Simulator

x0 = ...

dt = 1/10
n = 6 # The dimension of the state vector

def f(x, u):
"""Return dx/dt using equation (24.7)."""
return np.concatenate([x[3:], u])

sim = Simulator(f, dt, n)

# Set the initial state of the simulation.
sim.set_initial_state(x0)

# 1. Compute the control `u0` with your LQR class.
# ...

# 2. Evolve the system.
sim.evolve(u0)

# 3. Get the next true state.
# (`Simulator` assumes the observation matrix H is the identity.)
x1 = sim.observe()

# Repeat 1-3

To verify your solution, plot the position, velocity, and sequence of controls. You should
see each position and velocity coordinate approach zero by the final time step. Compare with
Figure 24.1.
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Figure 24.1: Solution to Problem 3.

Incorporating Noise and Observations
We’ve now handled a deterministic discrete LQR problem, in which we assume that we can see
the whole state and that the state evolution has no noise. This of course isn’t realistic. In a real
scenario, we likely can’t observe the whole state—in the situation described above, it’s possible we
only measure the position but we don’t have access to the velocity. Moreover, there is probably noise
in the observations (no measurement is perfect) as well as noise in the evolution itself (such as air
currents once the shuttle enters an atmosphere, or our model of the physics isn’t quite right). LQR
alone simply isn’t equipped to handle this scenario, so we’ll build a Kalman filter class to complete
our LQG controller.

We now model the state evolution and state observations with the following equations:

x0 = µ0 +w0 (24.8)
xk = Axk−1 +Buk−1 +wk (24.9)
zk = Hxk + dk. (24.10)

We now have Gaussian noise vectors wk ∼ N (0,Wk) and dk ∼ N (0, Dk). We let µ0 be the
expected value of the initial condition x0, i.e., x0 ∼ N (µ0,W0). We also have noisy observations zk
obtained from the true state multiplied by some observation matrix H. It’s important to understand
that these equations represent theoretical assumptions—a model—used by the Kalman filter. When
solving a real world problem, we don’t know the real states xk, we have to design and choose the
matrices ourselves, and we choose µ0 using our best guess. Compare equation (24.9) with (24.2).

(Note that H is unrelated to the Hamiltonian which we frequently denote by the same symbol.
In this lab we don’t use the Hamiltonian, so H will have only one meaning.)

Because we now have noise, we must wrap our cost functional in an expectation:

min
u
J [u] = min

u
E

[
N−1∑
k=0

[
xT
kQxk + uT

kRuk

]
+ xT

NMxN

]
. (24.11)
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We can fit a Kalman filter ahead of time using the following equations:

S0|−1 =W0

Sk|k−1 = ASk−1|k−1A
T +Wk, k = 1, . . . , N (24.12)

Lk = Sk|k−1H
T(HSk|k−1H

T +Dk)
−1, k = 0, . . . , N (24.13)

Sk|k = (I − LkH)Sk|k−1, k = 0, . . . , N. (24.14)

where Sk|k are the state covariance matrices and Lk are the Kalman gain matrices. (In Volume 3,
we use Pk to denote the covariance matrices and Kk to denote the gain matrices, but this coincides
with our LQR co-state and gain matrices.)

At run-time, we use the following equations to compute the optimal state estimates x̂k|k using
our observations:

x̂0|−1 = µ0,

x̂k|k−1 = Ax̂k−1|k−1 +Buk−1, k = 1, . . . , N (24.15)
x̂k|k = x̂k|k−1 + Lk(zk −Hx̂k|k−1), k = 0, . . . , N. (24.16)

Equation (24.15) is known as the “predict” step and (24.16) is the “update” step. We use our LQR
class to compute each optimal control uk using equation (24.6). However, since we don’t know the
true state xk, we must substitute the state estimate x̂k|k instead.

Problem 4. Build a KalmanFilter class. Define __init__ to accept and save as attributes
the transition matrices A and B and the observation matrix H. We will assume that the
noise covariance matrices are the same for all k, so also save as attributes the noise covariance
matrix W and D, and the number of time steps N . Define a fit method that computes and
saves the gain matrices Lk. Define a predict_state method that accepts the last estimated
state x̂k−1|k−1 and a control uk−1 and returns the predicted state x̂k|k−1. Finally, define an
update_state method that accepts an index k, a predicted state x̂k|k−1, and an observation
zk and returns the updated state estimate x̂k|k.

Problem 5. Use LQG—your LQR and KalmanFilter classes—to solve the same scenario as in
Problem 3. However, define H to allow observation of position s but not velocity v. Use the
same initial condition µ0 = (sx0, sy0, sz0, vx0, vy0, vz0), and set Wk = 0.05I and Dk = 0.5I for
all k.

Again, use the provided Simulator class. This time, in addition to letting it handle the
state evolution (as it did in Problem 3), it will also provide the state observations. To do so,
initialize it with the observation matrix and the noise covariances, and use its observe method
in addition to its evolve method, as in the code below. Part of the purpose of the Simulator
class is to make the problem more realistic by hiding the true states. Although true states are
artificially generated in this lab (and in most example code demonstrating the Kalman filter),
in real problems the true states are never known. The Simulator class handles the true states
behind-the-scenes so that the only information dealt with here are the observations and the
estimated states.

mu0 = ...
W = ...
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D = ...
H = ...

dt = 1/10
def f(x, u):

"""Return dx/dt using equation (24.7)."""
return np.concatenate([x[3:], u])

sim = Simulator(f, dt, W=W, D=D, H=H)

# Set the initial state of the simulation.
sim.set_initial_state(mu0)

# 1. Compute the control `u0` with your LQR class and the first
# estimated state (in this case mu0).
# ...

# 2. Evolve the system.
sim.evolve(u0)

# 3. Get the observation.
z1 = sim.observe()

# 4. Estimate x1 using the observation and the last estimated state.
# ...

# Repeat 1-4

Again, plot the true position and velocity (accessible through sim.true_states) along
with the sequence of controls. You should see each position and velocity coordinate approach
zero, though it’s likely none will reach zero due to noise. Your plots should look similar to
Figure 24.2.

Nonlinear Problems

In the real world, we don’t always have the luxury of working on linear problems. We often want to
compute optimal controls and state estimates on nonlinear systems. Various algorithms have been
devised, each with strengths and weaknesses, but this is still an active area of research. For the final
part of this lab, we’ll use one algorithm known as iterative LQG (iLQG).1

1E. Todorov and W. Li, “A generalized iterative LQG method for locally-optimal feedback control of constrained
nonlinear stochastic systems,” in Proceedings of the 2005 American Control Conference, 2005, pp. 300-306, doi:
10.1109/ACC.2005.1469949.
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Figure 24.2: Solution to Problem 5.

Rescuing Neil Armstrong

Michael Collins, the command module pilot of Apollo 11, has been forced to leave Neil Armstrong
and Buzz Aldrin in lunar orbit, and now he must return in a new shuttle to pick them up! Collins
will need to carefully manage the fuel of the Apollo 11.5 to make sure he has enough to pick up
Armstrong and Aldrin and make it back to Earth safely.

Collins will have to navigate the Apollo past the earth and the moon. We’ll need to model the
gravitational pull of both of these celestial bodies. Suppose the Apollo is at position s and a celestial
body is at position sP with mass mP . Then the acceleration of the Apollo due to the body’s gravity
is given by

aP =
sP − s

∥sP − s∥
· GmP

∥sP − s∥2

where G is the gravitational constant and ∥·∥ is the 2-norm. The first term gives the direction of the
acceleration as a unit vector and the second gives the magnitude.

As we did earlier in this lab, we’ll define x′ = f(x,u), but this time we’ll pass this evolution
function directly to iLQG and let it handle the linearization and discretization. Letting x = (s,v)

be the concatenation of the position of the shuttle s = (sx, sy, sz) and its velocity v = (vx, vy, vz),
we’ll use

x′ = f(x,u) =

[
v

aE + aM + u

]
(24.17)

where aE and aM are the accelerations of the shuttle due to the earth’s gravity and the moon’s
gravity, respectively.
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Problem 6. Use the provided Simulator, Estimator, and iLQG Controller classes to plan
Collins’ rescue of Armstrong and Aldrin. You may find it very helpful to reference the
code outline below and the documentation of the provided classes. The Controller class is
analogous to the LQR class created in Problem 1 and the Estimator class is analogous to the
KalmanFilter class created in Problem 4.

The Controller class requires a physical time horizon T and a number of time steps N .
We’ll use T = 48 hours and N = 1000, so that the time step size ∆t is dt = T / N. Use the
cost matrices M = 10I, Q = 0, and R = I. For Simulator and Estimator, use the state
and observation covariance matrices W = (0.05∆t)2I and D = (0.05∆t)2I. Use the same
observation matrix H you defined in Problem 5. Also, use the constants defined in the code
block below to calculate accelerations. Assume that the expected initial position and velocity
are as given by mu0 in the code block below. Note that our target, the location of Armstrong
and Aldrin, is placed at the origin.

Using the file animate.py, animate your results using the provided animate2d function.
Make sure use simulator.true_states and the controls you compute, not controller.xs or
controller.us which are the sequences of states and controls in the absence of noise. See the
docstrings for documentation on how to use the provided code.

As a sanity check to debug your animation, you may wish to plot the true position and
velocity and the sequence of controls, as in Problem 5, and compare with Figure 24.3. Note
that this is NOT the solution to problem, only a check to help you create your animation.

Important: Since the provided classes use jax, when defining the state evolution (24.17),
use jax.numpy instead of numpy or scipy functions. For example, use jnp.linalg.norm and
jnp.concatenate. However, you can still define individual arrays (such as the earth’s position)
using numpy.

Hint: Remember you can use either your code editor or Python’s help() function to view
the docstrings of the provided classes and methods.

import numpy as np
from jax import numpy as jnp
from utils import Simulator, Estimator, Controller

from animate import animate2d

# The following quantities are in metric tons, kilometers, and hours.
# We've placed the Armstrong and Aldrin at the origin.
mass_earth = 5.9722e21
mass_moon = 7.3e19
position_earth = np.array([-96100, -480500, 0], dtype=float)
position_moon = np.array([-96100, -96100, 0], dtype=float)
mu0 = np.array([-48050, -576600, 100, 0, 0, 0], dtype=float)
G = 8.6499e-10

def f(x, u):
# Remember to use `jnp` functions instead of `np`.
...
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# Other guesses are possible for `Controller`, but not all converge
# to good solutions.
us_guess = np.full((N, 3), np.array([-100, 100, -1]), dtype=float)
controller = Controller(...)
controller.fit(mu0, ...)

simulator = Simulator(...)
sim.set_initial_state(mu0)

estimator = Estimator(...)
# Fit the Estimator using the linearized dynamics found by `Controller`.
estimator.fit(controller.As)

# Now repeat the process you used in Problem 5.

If you like, you may use the function animate3d in the animate.py file to animate Collins’
rescue mission in 3D.

Achtung!

Make sure to push your animation with your solutions! Remember that you can embed your
animation in your notebook using the code:

<video src="filename.mp4" controls>
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Figure 24.3: Sanity check for Problem 6. This is NOT the solution.
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A NumPy Visual Guide

Lab Objective: NumPy operations can be difficult to visualize, but the concepts are straightforward.
This appendix provides visual demonstrations of how NumPy arrays are used with slicing syntax,
stacking, broadcasting, and axis-specific operations. Though these visualizations are for 1- or 2-
dimensional arrays, the concepts can be extended to n-dimensional arrays.

Data Access
The entries of a 2-D array are the rows of the matrix (as 1-D arrays). To access a single entry, enter
the row index, a comma, and the column index. Remember that indexing begins with 0.

A[0] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×

 A[2,1] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×



Slicing
A lone colon extracts an entire row or column from a 2-D array. The syntax [a:b] can be read as
“the ath entry up to (but not including) the bth entry.” Similarly, [a:] means “the ath entry to the
end” and [:b] means “everything up to (but not including) the bth entry.”

A[1] = A[1,:] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×

 A[:,2] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×



A[1:,:2] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×

 A[1:-1,1:-1] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×
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Stacking
np.hstack() stacks sequence of arrays horizontally and np.vstack() stacks a sequence of arrays
vertically.

A =

 × × ×
× × ×
× × ×

 B =

 ∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗



np.hstack((A,B,A)) =

 × × × ∗ ∗ ∗ × × ×
× × × ∗ ∗ ∗ × × ×
× × × ∗ ∗ ∗ × × ×



np.vstack((A,B,A)) =



× × ×
× × ×
× × ×
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
× × ×
× × ×
× × ×


Because 1-D arrays are flat, np.hstack() concatenates 1-D arrays and np.vstack() stacks them
vertically. To make several 1-D arrays into the columns of a 2-D array, use np.column_stack().

x =
[
× × × ×

]
y =

[
∗ ∗ ∗ ∗

]

np.hstack((x,y,x)) =
[
× × × × ∗ ∗ ∗ ∗ × × × ×

]

np.vstack((x,y,x)) =

 × × × ×
∗ ∗ ∗ ∗
× × × ×

 np.column_stack((x,y,x)) =


× ∗ ×
× ∗ ×
× ∗ ×
× ∗ ×


The functions np.concatenate() and np.stack() are more general versions of np.hstack() and
np.vstack(), and np.row_stack() is an alias for np.vstack().

Broadcasting
NumPy automatically aligns arrays for component-wise operations whenever possible. See http:
//docs.scipy.org/doc/numpy/user/basics.broadcasting.html for more in-depth examples and
broadcasting rules.

http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
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A =

 1 2 3

1 2 3

1 2 3

 x =
[
10 20 30

]

A + x =

 1 2 3

1 2 3

1 2 3

+[ ]
10 20 30

=

 11 22 33

11 22 33

11 22 33



A + x.reshape((1,-1)) =

 1 2 3

1 2 3

1 2 3

+

 10

20

30

 =

 11 12 13

21 22 23

31 32 33



Operations along an Axis
Most array methods have an axis argument that allows an operation to be done along a given axis.
To compute the sum of each column, use axis=0; to compute the sum of each row, use axis=1.

A =


1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4



A.sum(axis=0) =


1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

 =
[
4 8 12 16

]

A.sum(axis=1) =


1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

 =
[
10 10 10 10

]
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B Matplotlib Syntax and
Customization Guide

Lab Objective: The documentation for Matplotlib can be a little difficult to maneuver and basic
information is sometimes difficult to find. This appendix condenses and demonstrates some of the
more applicable and useful information on plot customizations. It is not intended to be read all at
once, but rather to be used as a reference when needed. For an interative introduction to Matplotlib,
see the Introduction to Matplotlib lab in Python Essentials. For more details on any specific function,
refer to the Matplotlib documentation at https: // matplotlib. org/ .

Matplotlib Interface
Matplotlib plots are made in a Figure object that contains one or more Axes, which themselves
contain the graphical plotting data. Matplotlib provides two ways to create plots:

1. Call plotting functions directly from the module, such as plt.plot(). This will create the plot
on whichever Axes is currently active.

2. Call plotting functions from an Axes object, such as ax.plot(). This is particularly useful for
complicated plots and for animations.

Table B.1 contains a summary of functions that are used for managing Figure and Axes objects.

Function Description
add_subplot() Add a single subplot to the current figure

axes() Add an axes to the current figure
clf() Clear the current figure

figure() Create a new figure or grab an existing figure
gca() Get the current axes
gcf() Get the current figure

subplot() Add a single subplot to the current figure
subplots() Create a figure and add several subplots to it

Table B.1: Basic functions for managing plots.
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Axes objects are usually managed through the functions plt.subplot() and plt.subplots().
The function subplot() is used as plt.subplot(nrows, ncols, plot_number). Note that if the
inputs for plt.subplot() are all integers, the commas between the entries can be omitted. For
example, plt.subplot(3,2,2) can be shortened to plt.subplot(322).

The function subplots() is used as plt.subplots(nrows, ncols), and returns a Figure
object and an array of Axes. This array has the shape (nrows, ncols), and can be accessed as any
other array. Figure B.1 demonstrates the layout and indexing of subplots.

1 2 3

4 5 6
Figure B.1: The layout of subplots with plt.subplot(2,3,i) (2 rows, 3 columns), where i is the
index pictured above. The outer border is the figure that the axes belong to.

The following example demonstrates three equivalent ways of producing a figure with two
subplots, arranged next to each other in one row:

>>> x = np.linspace(-5, 5, 100)

# 1. Use plt.subplot() to switch the current axes.
>>> plt.subplot(121)
>>> plt.plot(x, 2*x)
>>> plt.subplot(122)
>>> plt.plot(x, x**2)

# 2. Use plt.subplot() to explicitly grab the two subplot axes.
>>> ax1 = plt.subplot(121)
>>> ax1.plot(x, 2*x)
>>> ax2 = plt.subplot(122)
>>> ax2.plot(x, x**2)

# 3. Use plt.subplots() to get the figure and all subplots simultaneously.
>>> fig, axes = plt.subplots(1, 2)
>>> axes[0].plot(x, 2*x)
>>> axes[1].plot(x, x**2)
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Achtung!

Be careful not to mix up the following similarly-named functions:

1. plt.axes() creates a new place to draw on the figure, while plt.axis() or ax.axis()
sets properties of the x- and y-axis in the current axes, such as the x and y limits.

2. plt.subplot() (singular) returns a single subplot belonging to the current figure, while
plt.subplots() (plural) creates a new figure and adds a collection of subplots to it.

Plot Customization
Styles

Matplotlib has a number of built-in styles that can be used to set the default appearance of plots.
These can be used via the function plt.style.use(); for instance, plt.style.use("seaborn")
will have Matplotlib use the "seaborn" style for all plots created afterwards. A list of built-in

styles can be found at https://matplotlib.org/stable/gallery/style_sheets/style_sheets_
reference.html.

The style can also be changed only temporarily using plt.style.context() along with a with
block:

with plt.style.context('dark_background'):
# Any plots created here use the new style
plt.subplot(1,2,1)
plt.plot(x, y)
# ...

# Plots created here are unaffected
plt.subplot(1,2,2)
plt.plot(x, y)

Plot layout

Axis properties

Table B.2 gives an overview of some of the functions that may be used to configure the axes of a
plot.

The functions xlim(), ylim(), and axis() are used to set one or both of the x and y ranges
of the plot. xlim() and ylim() each accept two arguments, the lower and upper bounds, or a single
list of those two numbers. axis() accepts a single list consisting, in order, of xmin, xmax, ymin,
ymax. Passing None instead of one of the numbers to any of these functions will make it not change
the corresponding value from what it was. Each of these functions can also be called without any
arguments, in which case it will return the current bounds. Note that axis() can also be called
directly on an Axes object, while xlim() and ylim() cannot.

axis() also can be called with a string as its argument, which has several options. The most
common is axis('equal'), which makes the scale of the x- and y-scales equal (i.e. makes circles
circular).

https://matplotlib.org/stable/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/stable/gallery/style_sheets/style_sheets_reference.html
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Function Description
axis() set the x- and y-limits of the plot
grid() add gridlines
xlim() set the limits of the x-axis
ylim() set the limits of the y-axis

xticks() set the location of the tick marks on the x-axis
yticks() set the location of the tick marks on the y-axis
xscale() set the scale type to use on the x-axis
yscale() set the scale type to use on the y-axis

ax.spines[side].set_position() set the location of the given spine
ax.spines[side].set_color() set the color of the given spine

ax.spines[side].set_visible() set whether a spine is visible

Table B.2: Some functions for changing axis properties. ax is an Axes object.

To use a logarithmic scale on an axis, the functions xscale("log") and yscale("log") can
be used.

The functions xticks() and yticks() accept a list of tick positions, which the ticks on the
corresponding axis are set to. Generally, this works the best when used with np.linspace(). This
function also optionally accepts a second argument of a list of labels for the ticks. If called with no
arguments, the function returns a list of the current tick positions and labels instead.

The spines of a Matplotlib plot are the black border lines around the plot, with the left and
bottom ones also being used as the axis lines. To access the spines of a plot, call ax.spines[side],
where ax is an Axes object and side is 'top', 'bottom', 'left', or 'right'. Then, functions can
be called on the Spine object to configure it.

The function spine.set_position() has several ways to specify the position. The two simplest
are with the arguments 'center' and 'zero', which place the spine in the center of the subplot or
at an x- or y-coordinate of zero, respectively. The others are a passed as a tuple (position_type,
amount):

• 'data': place the spine at an x- or y-coordinate equal to amount.

• 'axes': place the spine at the specified Axes coordinate, where 0 corresponds to the bottom
or left of the subplot, and 1 corresponds to the top or right edge of the subplot.

• 'outward': places the spine amount pixels outward from the edge of the plot area. A negative
value can be used to move it inwards instead.

spine.set_color() accepts any of the color formats Matplotlib supports. Alternately, using
set_color('none') will make the spine not be visible. spine.set_visible() can also be used for
this purpose.

The following example adjusts the ticks and spine positions to improve the readability of a plot
of sin(x). The result is shown in Figure B.2.

>>> x = np.linspace(0,2*np.pi,150)
>>> plt.plot(x, np.sin(x))
>>> plt.title(r"$y=\sin(x)$")

#Set the ticks to multiples of pi/2, make nice labels
>>> ticks = np.pi / 2 * np.array([0,1,2,3,4])
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>>> tick_labels = ["$0$", r"$\frac{\pi}{2}$", r"$\pi$", r"$\frac{3\pi}{2}$",
... r"$2\pi$"]
>>> plt.xticks(ticks, tick_labels)

#Move the bottom spine to zero, remove the top and right ones
>>> ax = plt.gca()
>>> ax.spines['bottom'].set_position('zero')
>>> ax.spines['right'].set_color('none')
>>> ax.spines['top'].set_color('none')

>>> plt.show()
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y = sin(x)

Figure B.2: Plot of y = sin(x) with axes modified for clarity

Plot Layout

The position and spacing of all subplots within a figure can be modified using the function plt
.subplots_adjust(). This function accepts up to six keyword arguments that change different
aspects of the spacing. left, right, top, and bottom are used to adjust the rectangle around all of
the subplots. In the coordinates used, 0 corresponds to the bottom or left edge of the figure, and 1
corresponds to the top or right edge of the figure. hspace and wspace set the vertical and horizontal
spacing, respectively, between subplots. The units for these are in fractions of the average height
and width of all subplots in the figure. If more fine control is desired, the position of individual Axes
objects can also be changed using ax.get_position() and ax.set_position().

The size of the figure can be configured using the figsize argument when creating a figure:

>>> plt.figure(figsize=(12,8))

Note that many environments will scale the figure to fill the available space. Even so, changing the
figure size can still be used to change the aspect ratio as well as the relative size of plot elements.

The following example uses subplots_adjust() to create space for a legend outside of the
plotting space. The result is shown in Figure B.3.
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#Generate data
>>> x1 = np.random.normal(-1, 1.0, size=60)
>>> y1 = np.random.normal(-1, 1.5, size=60)
>>> x2 = np.random.normal(2.0, 1.0, size=60)
>>> y2 = np.random.normal(-1.5, 1.5, size=60)
>>> x3 = np.random.normal(0.5, 1.5, size=60)
>>> y3 = np.random.normal(2.5, 1.5, size=60)

#Make the figure wider
>>> fig = plt.figure(figsize=(5,3))

#Plot the data
>>> plt.plot(x1, y1, 'r.', label="Dataset 1")
>>> plt.plot(x2, y2, 'g.', label="Dataset 2")
>>> plt.plot(x3, y3, 'b.', label="Dataset 3")

#Create a legend to the left of the plot
>>> lspace = 0.35
>>> plt.subplots_adjust(left=lspace)
#Put the legend at the left edge of the figure
>>> plt.legend(loc=(-lspace/(1-lspace),0.6))
>>> plt.show()
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Figure B.3: Example of repositioning axes.
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Colors

The color that a plotting function uses is specified by either the c or color keyword arguments; for
most functions, these can be used interchangeably. There are many ways to specific colors. The most
simple is to use one of the basic colors, listed in Table B.3. Colors can also be specified using an
RGB tuple such as (0.0, 0.4, 1.0), a hex string such as "0000FF", or a CSS color name like "
DarkOliveGreen" or "FireBrick". A full list of named colors that Matplotlib supports can be found
at https://matplotlib.org/stable/gallery/color/named_colors.html. If no color is specified
for a plot, Matplotlib automatically assigns it one from the default color cycle.

Code Color
'b' blue
'g' green
'r' red
'c' cyan
'm' magenta

Code Color
'y' yellow
'k' black
'w' white

'C0' - 'C9' Default colors

Table B.3: Basic colors available in Matplotlib

Plotting functions also accept an alpha keyword argument, which can be used to set the
transparency. A value of 1.0 corresponds to fully opaque, and 0.0 corresponds to fully transparent.

The following example demonstrates different ways of specifying colors:

#Using a basic color
>>> plt.plot(x, y, 'r')
#Using a hexadecimal string
>>> plt.plot(x, y, color='FF0080')
#Using an RGB tuple
>>> plt.plot(x, y, color=(1, 0.5, 0))
#Using a named color
>>> plt.plot(x, y, color='navy')

Colormaps

Certain plotting functions, such as heatmaps and contour plots, accept a colormap rather than a
single color. A full list of colormaps available in Matplotlib can be found at https://matplotlib.
org/stable/gallery/color/colormap_reference.html. Some of the more commonly used ones
are "viridis", "magma", and "coolwarm". A colorbar can be added by calling plt.colorbar()
after creating the plot.

Sometimes, using a logarithmic scale for the coloring is more informative. To do this, pass a
matplotlib.colors.LogNorm object as the norm keyword argument:

# Create a heatmap with logarithmic color scaling
>>> from matplotlib.colors import LogNorm
>>> plt.pcolormesh(X, Y, Z, cmap='viridis', norm=LogNorm())

https://matplotlib.org/stable/gallery/color/named_colors.html
https://matplotlib.org/stable/gallery/color/colormap_reference.html
https://matplotlib.org/stable/gallery/color/colormap_reference.html
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Function Description Usage
annotate() adds a commentary at a given point on the plot annotate(’text’,(x,y))

arrow() draws an arrow from a given point on the plot arrow(x,y,dx,dy)
colorbar() Create a colorbar colorbar()

legend() Place a legend in the plot legend(loc=’best’)
text() Add text at a given position on the plot text(x,y,’text’)

title() Add a title to the plot title(’text’)
suptitle() Add a title to the figure suptitle(’text’)

xlabel() Add a label to the x-axis xlabel(’text’)
ylabel() Add a label to the y-axis ylabel(’text’)

Table B.4: Text and annotation functions in Matplotlib

Text and Annotations

Matplotlib has several ways to add text and other annotations to a plot, some of which are listed in
Table B.4. The color and size of the text in most of these functions can be adjusted with the color
and fontsize keyword arguments.

Matplotlib also supports formatting text with LATEX, a system for creating technical docu-
ments.1 To do so, use an r before the string quotation mark and surround the text with dollar
signs. This is particularly useful when the text contains a mathematical expression. For example,
the following line of code will make the title of the plot be 1

2 sin(x
2):

>>> plt.title(r"$\frac{1}{2}\sin(x^2)$")

The function legend() can be used to add a legend to a plot. Its optional loc keyword
argument specifies where to place the legend within the subplot. It defaults to 'best', which will
cause Matplotlib to place it in whichever location overlaps with the fewest drawn objects. The other
locations this function accepts are 'upper right', 'upper left', 'lower left', 'lower right',
'center left', 'center right', 'lower center', 'upper center', and 'center'. Alternately,
a tuple of (x,y) can be passed as this argument, and the bottom-left corner of the legend will be
placed at that location. The point (0,0) corresponds to the bottom-left of the current subplot, and
(1,1) corresponds to the top-right. This can be used to place the legend outside of the subplot,
although care should be taken that it does not go outside the figure, which may require manually
repositioning the subplots.

The labels the legend uses for each curve or scatterplot are specified with the label keyword
argument when plotting the object. Note that legend() can also be called with non-keyword argu-
ments to set the labels, although it is less confusing to set them when plotting.

The following example demonstrates creating a legend:

>>> x = np.linspace(0,2*np.pi,250)

# Plot sin(x), cos(x), and -sin(x)
# The label argument will be used as its label in the legend.
>>> plt.plot(x, np.sin(x), 'r', label=r'$\sin(x)$')
>>> plt.plot(x, np.cos(x), 'g', label=r'$\cos(x)$')
>>> plt.plot(x, -np.sin(x), 'b', label=r'$-\sin(x)$')

1See http://www.latex-project.org/ for more information.

http://www.latex-project.org/
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# Create the legend
>>> plt.legend()

Line and marker styles

Matplotlib supports a large number of line and marker styles for line and scatter plots, which are
listed in Table B.5.

character description
- solid line style
-- dashed line style
-. dash-dot line style
: dotted line style
. point marker
, pixel marker
o circle marker
v triangle_down marker
ˆ triangle_up marker
< triangle_left marker
> triangle_right marker
1 tri_down marker
2 tri_up marker

character description
3 tri_left marker
4 tri_right marker
s square marker
p pentagon marker
* star marker
h hexagon1 marker
H hexagon2 marker
+ plus marker
x x marker
D diamond marker
d thin_diamond marker
| vline marker
_ hline marker

Table B.5: Available line and marker styles in Maplotlib.

The function plot() has several ways to specify this argument; the simplest is to pass it as the
third positional argument. The marker and linestyle keyword arguments can also be used. The
size of these can be modified using markersize and linewidth. Note that by specifying a marker
style but no line style, plot() can be used to make a scatter plot. It is also possible to use both a
marker style and a line style. To set the marker using scatter(), use the marker keyword argument,
with s being used to change the size.

The following code demonstrates specifying marker and line styles. The results are shown in
Figure B.4.

#Use dashed lines:
>>> plt.plot(x, y, '--')
#Use only dots:
>>> plt.plot(x, y, '.')
#Use dots with a normal line:
>>> plt.plot(x, y, '.-')
#scatter() uses the marker keyword:
>>> plt.scatter(x, y, marker='+')

#With plot(), the color to use can also be specified in the same string.
#Order usually doesn't matter.
#Use red dots:
>>> plt.plot(x, y, '.r')
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#Equivalent:
>>> plt.plot(x, y, 'r.')

#To change the size:
>>> plt.plot(x, y, 'v-', linewidth=1, markersize=15)
>>> plt.scatter(x, y, marker='+', s=12)

plt.plot(x, y, '--') plt.plot(x, y, '.') plt.plot(x, y, '.-') plt.scatter(x, y, marker='+')

plt.plot(x, y, '.r') plt.plot(x, y, 'r.') plt.plot(x, y, 'v-',
linewidth=1, markersize=15)

plt.scatter(x, y,
marker='+', s=12)

Figure B.4: Examples of setting line and marker styles.

Plot Types

Matplotlib has functions for creaing many different types of plots, many of which are listed in Table
B.6. This section gives details on using certain groups of these functions.
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Function Description Usage
bar makes a bar graph bar(x,height)
barh makes a horizontal bar graph barh(y,width)
boxplots makes one or more boxplots boxplots(data)
contour makes a contour plot contour(X,Y,Z)
contourf makes a filled contour plot contourf(X,Y,Z)
imshow shows an image imshow(image)
fill plots lines with shading under the curve fill(x,y)
fill_between plots lines with shading between two given y values fill_between(x,y1, y2=0)
hexbin creates a hexbin plot hexbin(x,y)
hist plots a histogram from data hist(data)
pcolormesh makes a heatmap pcolormesh(X,Y,Z)
pie makes a pie chart pie(x)
plot plots lines and data on standard axes plot(x,y)
plot_surface plot a surface in 3-D space plot_surface(X,Y,Z)
polar plots lines and data on polar axes polar(theta,r)
loglog plots lines and data on logarithmic x and y axes loglog(x,y)
scatter plots data in a scatterplot scatter(x,y)
semilogx plots lines and data with a log scaled x axis semilogx(x,y)
semilogy plots lines and data with a log scaled y axis semilogy(x,y)
specgram makes a spectogram from data specgram(x)
spy plots the sparsity pattern of a 2D array spy(Z)
triplot plots triangulation between given points triplot(x,y)

Table B.6: Some basic plotting functions in Matplotlib.

Line plots

Line plots, the most basic type of plot, are created with the plot() function. It accepts two lists of
x- and y-values to plot, and optionally a third argument of a string of any combination of the color,
line style, and marker style. Note that this method only works with the single-character color codes;
to use other colors, use the color argument. By specifying only a marker style, this function can
also be used to create scatterplots.

There are a number of functions that do essentially the same thing as plot() but also change
the axis scaling, including loglog(), semilogx(), semilogy(), and polar. Each of these functions
is used in the same manner as plot(), and has identical syntax.

Bar Plots

Bar plots are a way to graph categorical data in an effective way. They are made using the bar()
function. The most important arguments are the first two that provide the data, x and height. The
first argument is a list of values for each bar, either categorical or numerical; the second argument is
a list of numerical values corresponding to the height of each bar. There are other parameters that
may be included as well. The width argument adjusts the bar widths; this can be done by choosing
a single value for all of the bars, or an array to give each bar a unique width. Further, the argument
bottom allows one to specify where each bar begins on the y-axis. Lastly, the align argument can
be set to ’center’ or ’edge’ to align as desired on the x-axis. As with all plots, you can use the color
keyword to specify any color of your choice. If you desire to make a horizontal bar graph, the syntax
follows similarly using the function barh(), but with argument names y, width, height and align.
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Box Plots

A box plot is a way to visualize some simple statistics of a dataset. It plots the minimum, maximum,
and median along with the first and third quartiles of the data. This is done by using boxplot()
with an array of data as the argument. Matplotlib allows you to enter either a one dimensional
array for a single box plot, or a 2-dimensional array where it will plot a box plot for each column of
the data in the array. Box plots default to having a vertical orientation but can be easily laid out
horizontally by setting vert=False.

Scatter and hexbin plots

Scatterplots can be created using either plot() or scatter(). Generally, it is simpler to use plot(),
although there are some cases where scatter() is better. In particular, scatter() allows changing
the color and size of individual points within a single call to the function. This is done by passing a
list of colors or sizes to the c or s arguments, respectively.

Hexbin plots are an alternative to scatterplots that show the concentration of data in regions
rather than the individual points. They can be created with the function hexbin(). Like plot()
and scatter(), this function accepts two lists of x- and y-coordinates.

Heatmaps and contour plots

Heatmaps and contour plots are used to visualize 3-D surfaces and complex-valued functions on a
flat space. Heatmaps are created using the pcolormesh() function. Contour plots are created using
contour() or contourf(), with the latter creating a filled contour plot.

Each of these functions accepts the x-, y-, and z-coordinates as a mesh grid, or 2-D array. To
create these, use the function np.meshgrid():

>>> x = np.linspace(0,1,100)
>>> y = np.linspace(0,1,80)
>>> X, Y = np.meshgrid(x, y)

The z-coordinate can then be computed using the x and y mesh grids.
Note that each of these functions can accept a colormap, using the cmap parameter. These

plots are sometimes more informative with a logarithmic color scale, which can be used by passing a
matplotlib.colors.LogNorm object in the norm parameter of these functions.

With pcolormesh(), it is also necessary to pass shading='auto' or shading='nearest' to
avoid a deprecation error.

The following example demonstrates creating heatmaps and contour plots, using a graph of
z = (x2 + y) sin(y). The results is shown in Figure B.5

>>> from matplotlib.colors import LogNorm

>>> x = np.linspace(-3,3,100)
>>> y = np.linspace(-3,3,100)
>>> X, Y = np.meshgrid(x, y)
>>> Z = (X**2+Y)*np.sin(Y)

#Heatmap
>>> plt.subplot(1,3,1)
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>>> plt.pcolormesh(X, Y, Z, cmap='viridis', shading='nearest')
>>> plt.title("Heatmap")

#Contour
>>> plt.subplot(1,3,2)
>>> plt.contour(X, Y, Z, cmap='magma')
>>> plt.title("Contour plot")

#Filled contour
>>> plt.subplot(1,3,3)
>>> plt.contourf(X, Y, Z, cmap='coolwarm')
>>> plt.title("Filled contour plot")
>>> plt.colorbar()

>>> plt.show()

Figure B.5: Example of heatmaps and contour plots.

Showing images

The function imshow() is used for showing an image in a plot, and can be used on either grayscale
or color images. This function accepts a 2-D n×m array for a grayscale image, or a 3-D n×m× 3

array for a color image. If using a grayscale image, you also need to specify cmap='gray', or it will
be colored incorrectly.

It is best to also use axis('equal') alongside imshow(), or the image will most likely be
stretched. This function also works best if the images values are in the range [0, 1]. Some ways to
load images will format their values as integers from 0 to 255, in which case the values in the image
array should be scaled before using imshow().

3-D Plotting

Matplotlib can be used to plot curves and surfaces in 3-D space. In order to use 3-D plotting, you
need to run the following line:
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>>> from mpl_toolkits.plot3d import Axes3D

The argument projection='3d' also must be specified when creating the subplot for the 3-D object:

>>> plt.subplot(1,1,1, projection='3d')

Curves can be plotted in 3-D space using plot(), by passing in three lists of x-, y-, and z-
coordinates. Surfaces can be plotted using ax.plot_surface(). This function can be used similar
to creating contour plots and heatmaps, by obtaining meshes of x- and y- coordinates from np.
meshgrid() and using those to produce the z-axis. More generally, any three 2-D arrays of meshes
corresponding to x-, y-, and z-coordinates can be used. Note that it is necessary to call this function
from an Axes object.

The following example demonstrates creating 3-D plots. The results are shown in Figure B.6.

#Create a plot of a parametric curve
ax = plt.subplot(1,3,1, projection='3d')
t = np.linspace(0, 4*np.pi, 160)
x = np.cos(t)
y = np.sin(t)
z = t / np.pi
plt.plot(x, y, z, color='b')
plt.title("Helix curve")

#Create a surface plot from np.meshgrid
ax = plt.subplot(1,3,2, projection='3d')
x = np.linspace(-1,1,80)
y = np.linspace(-1,1,80)
X, Y = np.meshgrid(x, y)
Z = X**2 - Y**2
ax.plot_surface(X, Y, Z, color='g')
plt.title(r"Hyperboloid")

#Create a surface plot less directly
ax = plt.subplot(1,3,3, projection='3d')
theta = np.linspace(-np.pi,np.pi,80)
rho = np.linspace(-np.pi/2,np.pi/2,40)
Theta, Rho = np.meshgrid(theta, rho)
X = np.cos(Theta) * np.cos(Rho)
Y = np.sin(Theta) * np.cos(Rho)
Z = np.sin(Rho)
ax.plot_surface(X, Y, Z, color='r')
plt.title(r"Sphere")

plt.show()
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Figure B.6: Examples of 3-D plotting.

Additional Resources
rcParams

The default plotting parameters of Matplotlib can be set individually and with more fine control than
styles by using rcParams. rcParams is a dictionary that can be accessed as either plt.rcParams or
matplotlib.rcParams.

For instance, the resolution of plots can be changed via the "figure.dpi" parameter:

>>> plt.rcParams["figure.dpi"] = 600

A list of parameters that can set via rcParams can be found at https://matplotlib.org/
stable/api/matplotlib_configuration_api.html#matplotlib.RcParams.

Animations

Matplotlib has capabilities for creating animated plots. The Animations lab in Volume 4 has detailed
instructions on how to do so.

Matplotlib gallery and tutorials

The Matplotlib documentation has a number of tutorials, found at https://matplotlib.org/
stable/tutorials/index.html. It also has a large gallery of examples, found at https://matplotlib.
org/stable/gallery/index.html. Both of these are excellent sources of additional information
about ways to use and customize Matplotlib.

https://matplotlib.org/stable/api/matplotlib_configuration_api.html#matplotlib.RcParams
https://matplotlib.org/stable/api/matplotlib_configuration_api.html#matplotlib.RcParams
https://matplotlib.org/stable/tutorials/index.html
https://matplotlib.org/stable/tutorials/index.html
https://matplotlib.org/stable/gallery/index.html
https://matplotlib.org/stable/gallery/index.html
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