
Labs for
Foundations of Applied

Mathematics
Volume 3

Modeling with Uncertainty and Data

Jeffrey Humpherys & Tyler J. Jarvis, managing editors

List of Contributors

B. Barker
Brigham Young University
E. Evans
Brigham Young University
R. Evans
Brigham Young University
J. Grout
Drake University
J. Humpherys
Brigham Young University
T. Jarvis
Brigham Young University
J. Whitehead
Brigham Young University
J. Adams
Brigham Young University
K. Baldwin
Brigham Young University
J. Bejarano
Brigham Young University
J. Bennett
Brigham Young University
A. Berry
Brigham Young University
Z. Boyd
Brigham Young University
M. Brown
Brigham Young University
A. Carr
Brigham Young University
C. Carter
Brigham Young University
S. Carter
Brigham Young University

T. Christensen
Brigham Young University
M. Cook
Brigham Young University
M. Cutler
Brigham Young University
R. Dorff
Brigham Young University
B. Ehlert
Brigham Young University
O. Escobar Rodriguez
Brigham Young University
M. Fabiano
Brigham Young University
K. Finlinson
Brigham Young University
J. Fisher
Brigham Young University
R. Flores
Brigham Young University
R. Fowers
Brigham Young University
A. Frandsen
Brigham Young University
R. Fuhriman
Brigham Young University
T. Gledhill
Brigham Young University
S. Giddens
Brigham Young University
C. Gigena
Brigham Young University
M. Graham
Brigham Young University

i

ii List of Contributors

F. Glines
Brigham Young University

C. Glover
Brigham Young University

M. Goodwin
Brigham Young University

R. Grout
Brigham Young University

D. Grundvig
Brigham Young University

S. Halverson
Brigham Young University

E. Hannesson
Brigham Young University

S. Harding
Brigham Young University

K. Harmer
Brigham Young University

J. Henderson
Brigham Young University

J. Hendricks
Brigham Young University

A. Henriksen
Brigham Young University

I. Henriksen
Brigham Young University

B. Hepner
Brigham Young University

C. Hettinger
Brigham Young University

S. Horst
Brigham Young University

R. Howell
Brigham Young University

E. Ibarra-Campos
Brigham Young University

K. Jacobson
Brigham Young University

R. Jenkins
Brigham Young University

J. Larsen
Brigham Young University

J. Larsen
Brigham Young University

J. Leete
Brigham Young University

Q. Leishman
Brigham Young University

J. Lytle
Brigham Young University

E. Manner
Brigham Young University

M. Matsushita
Brigham Young University

R. McMurray
Brigham Young University

S. McQuarrie
Brigham Young University

E. Mercer
Brigham Young University

D. Miller
Brigham Young University

J. Morrise
Brigham Young University

M. Morrise
Brigham Young University

A. Morrow
Brigham Young University

J. Murphey
Brigham Young University

R. Murray
Brigham Young University

J. Nelson
Brigham Young University

C. Noorda
Brigham Young University

A. Oldroyd
Brigham Young University

J. Oliphant
Brigham Young University

A. Oveson
Brigham Young University

E. Parkinson
Brigham Young University

M. Probst
Brigham Young University

M. Proudfoot
Brigham Young University

List of Contributors iii

D. Reber
Brigham Young University

H. Ringer
Brigham Young University

C. Robertson
Brigham Young University

M. Russell
Brigham Young University

K. Sandall
Brigham Young University

R. Sandberg
Brigham Young University

C. Sawyer
Brigham Young University

N. Schill
Brigham Young University

N. Sill
Brigham Young University

D. Smith
Brigham Young University

J. Smith
Brigham Young University

P. Smith
Brigham Young University

M. Stauffer
Brigham Young University

E. Steadman
Brigham Young University

J. Stewart
Brigham Young University

S. Suggs
Brigham Young University

A. Tate
Brigham Young University

T. Thompson
Brigham Young University

B. Trendler
Brigham Young University

M. Victors
Brigham Young University

E. Walker
Brigham Young University

J. Webb
Brigham Young University

R. Webb
Brigham Young University

J. West
Brigham Young University

R. Wonnacott
Brigham Young University

A. Zaitzeff
Brigham Young University

iv List of Contributors

Preface

This lab manual is designed to accompany the textbook Foundations of Applied Mathematics
Volume 3: Modeling with Uncertainty and Data by Humpherys and Jarvis. The labs present various
aspects of important machine learning algorithms. The reader should be familiar with Python [VD10]
and its NumPy [Oli06, ADH+01, Oli07] and Matplotlib [Hun07] packages before attempting these
labs. See the Python Essentials manual for introductions to these topics.

©This work is licensed under the Creative Commons Attribution 3.0 United States License.
You may copy, distribute, and display this copyrighted work only if you give credit to Dr. J. Humpherys.
All derivative works must include an attribution to Dr. J. Humpherys as the owner of this work as
well as the web address to

https://github.com/Foundations-of-Applied-Mathematics/Labs
as the original source of this work.
To view a copy of the Creative Commons Attribution 3.0 License, visit

http://creativecommons.org/licenses/by/3.0/us/
or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105,
USA.

v

https://github.com/Foundations-of-Applied-Mathematics/Labs
http://creativecommons.org/licenses/by/3.0/us/

vi Preface

Contents

Preface v

I Labs 1

1 Information Theory 3

2 LSI and SkLearn 11

3 K-Means Clustering 25

4 Random Forests 35

5 Linear Regression 45

6 Logistic Regression 53

7 Naive Bayes 61

8 Metropolis Algorithm 69

9 Gibbs Sampling and LDA 79

10 Gaussian Mixture Models 93

11 Discrete Hidden Markov Models 103

12 Speech Recognition using CDHMMs 111

13 Kalman Filter 117

14 ARMA Models 127

15 Non-negative Matrix Factorization Recommender 145

16 Intro to Deep Learning and PyTorch 151

17 Recurrent Neural Networks 171

vii

viii Contents

II Appendices 183

A NumPy Visual Guide 185

B Matplotlib Customization 189

Bibliography 205

Part I

Labs

1

1 Information Theory
and Wordle

Lab Objective: Use the information theory concept of entropy to create an algorithm for playing
the popular word game Wordle.

Wordle
Wordle is a word game1 where you have 6 guesses to guess a five-letter word. Every time a guess
is made, you receive some information about how close your guess is to the correct answer. Letters
in the guess that are in the correct location are colored green; letters that are present in the secret
word but not in the correct location are colored yellow; and letters that aren’t present in the secret
word are colored gray. An example game is given in Figure 1.1.

Figure 1.1: An example game of Wordle. Here, the secret word is “train.” Green tiles mean the
letter is in the correct location; yellow tiles mean the letter is in the secret word but not at that
location; and grey tiles mean the letter is not in the secret word.

In the official version, the secret word is chosen at random from a fixed list of 2309 words.
Additionally, there is a list of 12953 words that are allowed to be used as guesses; the guess we make
cannot be any arbitrary string of 5 characters, but must always must be one of these words. While
it is possible to only select guesses that might be the secret word, we can often get more information
by making other guesses.

1It was particularly popular on the internet in 2022.

3

4 Lab 1. Information Theory

Problem 1. Write a function get_guess_result() that accepts a guess and the secret word,
and returns the colors of the guess as a list. Label correct letters with the number 2, letters in
the wrong location with 1, and incorrect letters with 0.

There are some technicalities with how the guess is colored when multiple of the same
letter are present. In order to get these cases correct, have your function follow the following
rules:

1. All letters in the guess that are correct in the correct location are marked green.

2. Any other letters in the guess that are in the secret word but not in the right location are
marked yellow.

3. However, there will not be more copies of a letter marked yellow or green than there are
copies of that letter in the secret word. For instance, if the secret word has one letter e
and the guess has three, only one of them will be marked yellow or green. The letters are
marked yellow from left to right.

4. All other letters are marked gray.

Here are some examples you can use to test your code:

>>> get_guess_result("excel", "boxed")
[0, 1, 0, 2, 0]
>>> get_guess_result("stare", "train")
[0, 1, 2, 1, 0]
>>> get_guess_result("green", "pages")
[1, 0, 0, 2, 0]
>>> get_guess_result("abate", "vials")
[0, 0, 2, 0, 0]
>>> get_guess_result("robot", "older")
[1, 1, 0, 0, 0]

Hint: Find some way to keep track of which letters in the secret word have been matched
to. Since strings are immutable, it may also be helpful to turn the guess and secret word into
lists if you need to modify them.

Computing Guess Results

We will be creating an algorithm to play Wordle. The lists of possible secret words and allowed guesses
are in the files possible_secret_words.txt and allowed_guesses.txt, respectively. These can be
loaded using the provided function load_words().

As part of this algorithm, we will need to use the guess results for every pair of possible secret
word and allowed guess. Rather than computing these each time, we will compute these once and save
the results in an array. For convenience, we have provided this array for you in all_guess_results.
npy. You can unzip this file using tar -xf all_guess_results.npy.tar.gz in the terminal. Once
the file has been unzipped, it can be loaded using the function np.load().

5

Each row of this array corresponds to one of the allowed guess, and each column corresponds to
a secret word, in the same order as the wordlists. To make certain computations later work better,
each guess has been condensed to a single ternary (base 3) number. This is done by letting each
element of the result represent a digit in base 3. For instance, the list [1,0,2,2,1] becomes the
number 1 · 30 + 0 · 31 + 2 · 32 + 2 · 33 + 1 · 34 = 154. For an example of using the array, let i=1388 be
the index of a given guess (“boxes”) and j=1914 be the index of a given secret word (“steel”). Then
we have the following:

The results of guessing "boxes" for every secret word
>>> all_guess_results[i]
array([1, 109, 28, ..., 28, 108, 6])
The results of every guess for the secret word "steel"
>>> all_guess_results[:,j]
array([54, 9, 0, ..., 0, 135, 0])
The result of guessing "boxes" for the secret word "steel"
>>> all_guess_results[i, j]
135
135 is equivalent to [0, 0, 0, 2, 1]

Our objective is to create some strategy to play Wordle as effectively as possible. Simply
choosing the word that is most likely to be the secret word is ineffective, as there is no reason to
prefer any word over another as long as both are consistent with the information we have. A much
better strategy is to maximize the amount of information each of our guesses gives us, which we will
quantify by using entropy2.

Information and Entropy
Entropy is the expected amount of information we would gain by knowing the result of a random
variable. A natural way to define the information of an event A is as − log2 P (A).3 The entropy of
a random variable X, which we denote H(X), is then defined as

H(X) = E [− log2 P (X = x)] = −
∑
x

P (X = x) log2 P (X = x).

A loose interpretation is that if a random variable has lower entropy, then we know more about
what its value will be even if we haven’t observed it yet, and observing it usually will give little
information. At one extreme, if a discrete random variable has zero entropy, then it is necessarily
constant.On the other hand, if a random variable has higher entropy, then we know less about its
result and observing it typically will give more information. If we know a random variable lives in a
certain set, the highest possible entropy it can have is if it is uniformly distributed.

2This method was explained by Grant Sanderson on his YouTube channel 3Blue1Brown. The video can be found
here.

3This choice of definition has a number of desirable properties for information: information is non-negative, the
information of two independent events is the sum of their individual informations, and information is a continuous
function of the probability of an event. In fact, this is the only function with this property, up to choice of logarithm
base; refer to the Volume 3 textbook for more details. The base-2 logarithm is often used because it represents the
number of bits needed to encode the information.

https://youtu.be/v68zYyaEmEA?si=4ac5QErmPipLOAUw

6 Lab 1. Information Theory

For Wordle, since we don’t know the secret word, it is reasonable to consider it as a random
variable. This gives the secret word a value of entropy, which we can use to choose a guess that is
likely to give more information. Denote the secret word as W and the result of making a guess g as
R(g). For any guess, the result R(g) of the guess is entirely determined by W ; since we don’t know
the secret word, this makes R(g) also a random variable.

There are two approaches we can take to make a strategy out of this. First, we can try to
minimize the entropy of the variable W |R(g). This essentially is trying to find the guess that will
on average minimize how much we don’t know about the secret word after we know the result of the
guess. Second, we can try to maximize the entropy of the variable R(g). This amounts to finding
which guess is expected to give the most information.

These two approaches are in fact equivalent, as

H(W |R(g)) = H((W,R(g)))−H(R(g)) = H(W)−H(R(g)),

where H((W,R(g))) denotes the entropy of the joint random variable (W,R(g)) (not the cross en-
tropy). To see this equality, note that for random variables X,Y we have

− log2 P (X|Y) = − log2
P (X,Y)

P (Y)
= − log2 P (X,Y) + log2 P (Y).

Taking the expectation of both sides implies that

H(X|Y) = H((X,Y))−H(Y).

Additionally, the value of R(g) is completely determined by W , so H((W,R(g))) = H(W). The
entropy of R(g) ends up being more straightforward to calculate, so this is the approach we take for
the remainder of the lab.

We now seek to calculate the entropy of R(g), the result of the guess, for each guess g we can
make. This is given by

H(R(g)) = −
∑
r

P (R(g) = r) log2 P (R(g) = r)

= −
∑
r

P (R(g,W) = r) log2 P (R(g,W) = r).

Since we assumed a uniform distribution over the set of possible secret words, the probability
P (R(g,W) = r) is the proportion of secret words that yield the same result r given the same
guess g.

To find the entropy of a guess, we thus need only to compute the probability of each unique guess
result, and then apply the equation above. This sum will need to be evaluated for each individual
guess that we can make.

As an example, suppose that we know the secret word is one of the words “boney”, “disco”,
“marsh", “stock”, or “visor”, and we are evaluating the guess “boxes”. The result of this guess for each
of these words is as follows:

Secret word Guess result
boney (2,2,0,2,0)
disco (0,1,0,0,1)

marsh (0,0,0,0,1)
stock (0,1,0,0,1)
visor (0,1,0,0,1)

7

There are three distinct possible results: (2,2,0,2,0), with probability 1
5 ; (0,1,0,0,1), with probability

3
5 ; and (0,0,0,0,1), with probability 1

5 . Using the above formula gives the entropy of this guess as

−1

5
log2

1

5
− 3

5
log2

3

5
− 1

5
log2

1

5
≈ 1.3710

Problem 2. Write a function that accepts the array of all guess results (as in all_guess_results
.npy) and calculates the entropy of each guess. Return the guess with the highest entropy.

Hint: np.unique with the argument return_counts=True will return an array with the
number of occurrences of each of the different values in a one-dimensional array. By looping
over each allowed guesses, you can use this function to compute the entropy quickly. Beware
that applying this function directly to multidimensional arrays results in different behavior,
however.

After we make a guess, we want to find the posterior distribution for the secret word given the
guesses we’ve made. Bayes’ Rule gives

P (W = w|R(g) = r) =
P (R(g) = r|W = w)P (W = w)

P (R(g) = r)
.

First, we look at the term P (R(g) = r|W = w). If we know the secret word W , then for any guess g,
the result R(g) is uniquely determined. Thus, this probability is either 0 or 1, depending on whether
the guess result we observed is the result that would be seen if w is the secret word. For instance,
with the secret word w = “steel” and the guess g = “boxes”, we have

P (R(g) = r|W = w) =

{
1 r = [0, 0, 0, 2, 1]

0 otherwise
;

that is, the only value of r for which the probability is not zero is r = [0, 0, 0, 2, 1], which is the result
of making that guess.

Now, P (W = w) is a constant, and P (R(g) = r) is constant for all secret words that have
P (R(g) = r|W = w) ̸= 0, since these all have the same value of R(g). So, the posterior distribution
is just a uniform distribution over the set of possible secret words that give R(gmade) = robserved,
i.e. the same result for our guess as we observed. Finding the optimal next guess to make is then
equivalent to repeating the same process as before with a smaller initial list of possible secret words.

Problem 3. Create a function that filters the list of possible secret words after making a guess.
Accept the array of all guess results (as in all_guess_results.npy), the list of allowed

guesses, the list of possible secret words, the guess that was made, and the guess’s result (as
a list of integers). Return a filtered list of possible words that are still possible after knowing
the result of a guess. Also return a filtered version of the array of all guess results that only
contains the results for the secret words still possible after making the guess. This smaller array
will be used in later steps of the game.

If our guess is “boxes” and the guess result is [0,0,0,2,1], then the list of remaining
words should have length 47 and the array of guess results should have shape (12953, 47).

Hint: to find the index of a word in either of the wordlists, use the .index() function.

8 Lab 1. Information Theory

Hint part 2: The most efficient way to do this problem is with boolean masking. If A is any
numpy array and mask is a 1-D array of True/False values, then A[mask] will return the portion
of A where mask is true. This can be used even if A is multidimensional, and on dimensions
other than the first; for instance, A[:,mask] will use the mask for the second dimension of the
array.

Note

Note that although we filter down the list of possible secret words, we do not do anything
similar for the list of allowed guesses. As the game goes on and we make more guesses, the list
of words that could still be the secret word shrinks, while the list of words we are allowed to
guess stays the same. Sometimes words that we know cannot possibly be the secret word might
give us more information than words which might be the secret word, so it can be beneficial to
guess them anyways.

Before we assemble our algorithm for playing Wordle, we would like a benchmark. A simple
strategy to compare to is to select an allowed guess at random until we know the secret word.

Problem 4. The file wordle.py contains a class called WordleGame that can be used to sim-
ulate games of Wordle.a Instantiate one of these, use the start_game() function to start a
game, and use the make_guess() function to make a guess.

Write a function that accepts a WordleGame and starts and plays a game using the strategy
of randomly selecting words. At each step of the game:

• If we know the secret word (our list of possible guesses has length 1), guess that word.

• Otherwise, choose a guess at random from the list of allowed guesses.

• Filter the list of possible words using your function from Problem 3 to only those that
are still possible knowing the result of the guess.

• Repeat until the secret word has been guessed.

Use game.is_finished() to check if the game has been finished. Return the number of guesses
needed to guess the secret word (including guessing the word, not just determining it).

To visualize this algorithm, pass the argument display=True, and the WordleGame will
print out each word as it is guessed.

aThis class uses the colorama package to format terminal output. If needed, it can easily be installed with
pip install colorama.

Problem 5. Write a function that accepts a WordleGame object and starts and plays a game
using the strategy of maximizing the entropy of each guess. At each step:

9

• If we know the secret word (our list of possible secret words has length 1), guess that
word

• Otherwise, compute the entropies using your function from Problem 2, and make the
guess that has the highest entropy

• Filter the possible secret words using your function from Problem 3 to only those that we
still know are possible

• Repeat until the secret word has been guessed

Use game.is_finished() to check at each step if the game has been finished. Return the
number of guesses needed to guess the secret word.

Problem 6. Write a function that accepts an integer n and simulates that many games of
Wordle using each of the above algorithms. Return the average number of guesses each required
to find the secret word. Compare their performance; the approach using the entropy should
require about half as many guesses on average.

The WordleGame object also has a version you can play in the terminal, which can be started us-
ing the play_game_interactive() method. You can use this to also compare your own performance
to that of your algorithm.

10 Lab 1. Information Theory

2 PCA, LSI, and
Scikit-Learn

Lab Objective: Understand the basics of principal component analysis and latent semantic index-
ing. Learn more about scikit-learn and implement a machine learning pipeline.

Principal Component Analysis
Principal Component Analysis (PCA) is a multivariate statistical tool used to change the basis
of a set of samples from the basis of original features (which may be correlated) into a basis of
uncorrelated variables called the principal components. It is a direct application of the singular value
decomposition (SVD). The first principal component will account for the greatest variance in the
samples, the second principal component will be orthogonal to the first and account for the second
greatest variance, etc. By projecting the samples onto the space spanned by the first few principal
components, we can reduce the dimensionality of the data while preserving most of the variance.

Take a matrix X with samples as rows and features as columns. The first step in PCA is to pre-
process the data, which usually includes translating the columns of X to have mean 0. Some datasets
require additional scaling based on variance and units of measurement. Call the new pre-processed
matrix Y .

We next compute the truncated SVD of our centered data, Y = UΣV T, where the columns of
V are the principal components and form an orthonormal basis for the space spanned by the samples.
The variance captured by each principal component can be calculated by the equation below, where
σi is the i-th nonzero singular value and there are k total singular values.

σ2
i∑k

j=1 σ
2
j

(2.1)

In general, we are only interested in the first several principal components. But just how many
principal components should we keep? One method is to keep the first two principal components so
that we can project the data into 2-dimensional space. Another is to only keep the set of principal
components accounting for a certain percentage of the variance, using the equation above.

Once we have decided how many principal components to keep (say the first l), we can project
the samples from the original feature space onto the principal component space by computing

Ŷ = U:,:lΣ:l,:l = Y V:,:l

11

12 Lab 2. LSI and SkLearn

Problem 1. The breast cancer dataset from scikit-learn has 569 samples with 30 features each.
Each sample is labeled as 0 (malignant) or 1 (benign). With 30 features, this data can’t be
directly visualized, so we will use PCA to graph the first two principal components, which
account for nearly all of the variance in the data.

Write a function that performs PCA on the breast cancer dataset using the SVD as
described above. Graph the first two principal components, with the first along the x-axis.
Your graph should resemble Figure 2.1 below. Include the proportion of the total variance that
the first two principal components capture in the graph title, calculated with Equation 2.1.

You can load this dataset using the following code:

>>> cancer = sklearn.datasets.load_breast_cancer()
>>> X = cancer.data
>>> y = cancer.target # Class labels (0 or 1)

4000 3000 2000 1000 0 1000
First Principal Component

600

400

200

0

200

400

600

800

Se
co

nd
 P

rin
cip

al
 C

om
po

ne
nt

Breast Cancer Principal Component Analysis
Benign
Malignant

Figure 2.1: First two principal components of the transformed breast cancer data

Latent Semantic Indexing
Latent Semantic Indexing (LSI) is an application of PCA to the realm of natural language processing.
In particular, LSI employs the SVD to reduce the dimensionality of a large corpus of text documents
in order to enable us to evaluate the similarity between two documents. Many information-retrieval
systems used in government and in industry are based on LSI.

To motivate the problem, suppose we have a large collection of documents about various topics.
How can we find an article about BYU? We might consider simply choosing the article that contains
the acronym the greatest number of times, but this is a crude method. A better way is to use a form
of PCA on the collection of documents.

13

In order to do so, we need to represent the documents as numerical vectors. A standard
way of doing this is to define an ordered set of words occurring in the collection of documents
(called the vocabulary) and then to represent each document as a vector of word counts from the
vocabulary. More formally, let our vocabulary be V = {w1, w2, . . . , wm}. Then a document is a vector
x = (x1, x2, . . . , xm) ∈ Rm such that xi is the number of occurrences of word wi in the document.
In this setup, we represent the entire collection of m documents as an n×m matrix X, where m is
the number of vocabulary words and n is the number of documents in our collection, so each row
is a document vector. As expected, we let Xi,j be the number of times term j occurs in document
i. Note that X is often a sparse matrix, as any single document likely does not contain most of the
vocabulary words. This mode of representation is called the bag of words model for documents.

We calculate the SVD of X without centering or scaling the data so that we may retain the
sparsity. This is unique to this particular problem. We now have X = UΣV T. If we are keeping l

principal components, we can represent the corpus of documents by the matrix

X̂ = U:,:lΣ:l,:l = XV:,:l

Note that X̂ will no longer be a sparse matrix, but will have dimension n× l.
Now that we have our documents represented in terms of the first l principal components, we

can find the similarity between two documents. Our measure for similarity is simply the cosine of
the angle between the vectors; a small angle (large cosine) indicates greater similarity, while a large
angle (small cosine) indicates greater dissimilarity. Recall that we can use the inner product to find
the cosine of the angle between two vectors. Under this metric, the similarity between document i

and document j (represented by the i-th and j-th row of X̂, notated X̂i and X̂j , respectively) is just

⟨X̂i, X̂j⟩
∥X̂i∥∥X̂j∥

.

To find the document most similar to document i, we simply compute

argmaxj ̸=i

⟨X̂i, X̂j⟩
∥X̂i∥∥X̂j∥

.

Problem 2. Create a function similar that takes in a numpy array Xhat and an index i and
returns the indices of the most similar and the least similar documents.

Hint: np.argsort may be useful for finding which are the most and least similar. Note
that every document will have a similarity score of 1 with itself, so be careful not to return a
document as its own closest document.

To test your code, use the following matrix:

X = np.array([
[0.78, 0.14, 0.12, 0.],
[0.64, 0.97, 0. , 0.],
[0. , 0. , 0.63, 0.46],
[0. , 0.84, 0.6 , 0.],
[0.29, 0.89, 0.51, 0.],
[0.77, 0. , 0.27, 0.2],
[0.86, 0.47, 0. , 0.06],
[0.89, 0. , 0. , 0.]

14 Lab 2. LSI and SkLearn

])

With i=4 your function should output the following:

>>> print(similar(4, X))
(3, 7)

Application: State of the Union
We now discuss some practical issues involved in creating the bag of words representation X from
the raw text. Our dataset will consist of the US State of the Union addresses from 1945 through
2013, each contained in a separate text file in the folder Addresses. We would like to avoid loading
in all of the text into memory at once, and so we will stream the documents one at a time.

The first thing we need to establish is the vocabulary set, i.e. the set of unique words that occur
throughout the collection of documents. A Python set object automatically preserves the uniqueness
of the elements, so we will create a set and then iteratively read through the documents, adding the
unique words of each document to the set. As we read in each document, we will remove punctuation
and numerical characters and convert everything to lower case. The following code, found in the
function document_converter(), will accomplish this task.

Get list of filepaths to each text file in the folder.
folder = "./Addresses/"
paths = sorted([folder+p for p in os.listdir(folder) if p.endswith(".txt")])

Helper function to get list of words in a string.
def extractWords(text):

ignore = string.punctuation + string.digits
cleaned = "".join([t for t in text.strip() if t not in ignore])
return cleaned.lower().split()

Initialize vocab set, then read each file and add to the vocab set.
vocab = set()
for p in paths:

with open(p, 'r', encoding="utf8") as infile:
for line in infile:

vocab.update(extractWords(line)) # Union sets together

We now have a set containing all of the unique words in the corpus. However, many of the
most common words do not provide important information. We call these stop words. Examples in
English include the, a, an, and, I, we, you, it, there, etc; a list of common English stop words is given
in stopwords.txt. We remove the stop words from our vocabulary set as follows and then fix an
ordering to the vocabulary by creating a dictionary with key-value pairs of the form (word, index).

Load stopwords
with open("stopwords.txt", 'r', encoding="utf8") as f:

stops = set([w.strip().lower() for w in f.readlines()])

15

Remove stopwords from vocabulary, create ordering
vocab = {w:i for i, w in enumerate(vocab.difference(stops))}

We are now ready to create the word count vectors for each document, and we store these in a
sparse matrix X. It is convenient to use the Counter object from the collections module, as this
object automatically counts the occurrences of each distinct element in a list.

from collections import Counter

counts = [] # holds the entries of X
doc_index = [] # holds the row index of X
word_index = [] # holds the column index of X

Iterate through the documents
for doc, p in enumerate(paths):

with open(p, 'r', encoding="utf8") as f:
Create the word counter.
ctr = Counter()
for line in f:

ctr.update(extractWords(line))
Iterate through the word counter, storing counts.
for word, count in ctr.items():

if word in vocab:
word_index.append(vocab[word])
counts.append(count)
doc_index.append(doc)

Create sparse matrix holding these word counts.
X = sparse.csr_array((counts, [doc_index, word_index]),

shape=(len(paths), len(vocab)), dtype=float)

Problem 3. Applying the techniques of LSI discussed above to the word count matrix X,
created with the document_converter() function, and keeping the first 7 principal components,
write a function that takes in the path to a single State of the Union address speech and returns
a tuple of the addresses that are most and least similar to speech.

For Ronald Reagan’s 1984 speech, the input would be "./Addresses/1984-Reagan.txt",
and your output should be ("1988-Reagan", "1946-Truman"). Be sure to format the strings
properly. Also run your algorithm on Clinton’s 1993 speech, and display your output.

Since X is a sparse matrix, you will need to use the SVD method found in scipy.sparse
.linalg. This method operates slightly differently than the SVD method found in scipy.
linalg, so be sure to read the documentation. Also pass the argument random_state=28 into
this function for consistency.

16 Lab 2. LSI and SkLearn

The simple bag of words representation is a bit crude, as it fails to consider how some words
may be more important than others in determining the similarity of documents. Words appearing
in few documents tend to provide more information than words occurring in every document. For
example, while the word war might not be considered a stop word, it is likely to appear in many
more addresses than the word Afghanistan. Two speeches sharing the word Afghanistan are probably
more closely related than two speeches sharing the word war. So while Xi,j is a good measure of
the importance of term j in document i, we also need to consider some kind of global weight for
each term j, indicating how important the term is over the entire collection. There are a number of
different weights we could choose; we will employ the following approach. Define

pi,j =
Xi,j∑
ȷ̄ Xi,ȷ̄

.

We then let

gj = 1 +

m∑
i=1

pi,j log(pi,j + 1)

logm
,

where m is the number of documents in the collection. We call gj the global weight of term j. We
replace each term frequency in the matrix X by weighting it globally. Specifically, we define a matrix
A with entries

Ai,j = gj log(Xi,j + 1).

We can now perform LSI on the matrix A, whose entries are both locally and globally weighted.

Problem 4. Use the equation above to create the function weighted_document_converter()
to calculate the sparse matrix A. Similar to the function document_converter(), this function
should return A and a list of file paths.

Hint: the function np.log1p, which calculates log(1+x), can be applied to a sparse matrix
without losing sparsity.

Scikit-Learn
Scikit-learn is one of the fundamental tools Python offers for machine learning. It includes classi-
fiers, such as RandomForestClassifier and KNeighborsClassifier, as well as transformers, which
preprocess data before classification. In the remainder of this lab, we will discuss transformers,
validation tools, how to find optimal hyperparameters, and how to build a machine learning pipeline.

Transformers

A scikit-learn transformer processes data to make it better suited for classification. This may involve
shifting or scaling data, dropping columns, replacing missing values, and so on. The function from
Problem 4 is an example of a transformer, as is PCA.

Note

17

A hyperparameter is not dependent on data. Hyperparameters are declared in the constructor
__init__(), before data is even passed in. Parameters set during the fit() method are often
called model parameters and do depend on specific data. For example, a StandardScaler
transformer shifts and scales data to have a mean of 0 and a standard deviation of 1.

Scikit-learn’s transformers have three main methods: fit_transform(), which fits model
parameters and also transforms given data; fit(), which sets model parameters but does not
perform a transformation; and transform(), which transforms data according to pre-fitted
model parameters. Model parameters are fitted according to training data, and they are not
refitted to testing data, so a StandardScaler will shift and scale testing data according to the
mean and variance of the training data; the transformed test data likely will not have mean 0
and variance 1.

Scikit-learn has a built-in PCA package. Its hyperparameters include the desired number of
principal components and the type of SVD solver to use. Its fit_transform() method takes in an
array of data and returns the decomposition with n_components.

>>> from sklearn.decomposition import PCA
>>> pca = PCA(n_components=5) # Create the PCA transformer with hyperparameters
>>> Xhat = pca.fit_transform(X) # Fit the transformer and transform the data

For our particular application, however, ince our matrix is sparse and Scikit-learn’s PCA class
does not accept sparse matrices, we need to use their TruncatedSVD class instead. The syntax for
this class is identical to the above.

Note

An interesting observation can be made by repeating Problem 1 using scikit-learn’s PCA pack-
age. The resulting graph will have the x-axis flipped, because a matrix’s singular value decom-
position is unique up to multiplication by -1.

Problem 5. Repeat Problem 3 using your weighted document converter function and scikit-
learn’s sklearn.decomposition.TruncatedSVD class. For consistency, also pass the argument
random_state=74 in the constructor to this class.

For Bill Clinton’s 1993 speech, your code should return ("1992-Bush", "1946-Truman").
Also run the algorithm on Reagan’s 1984 speech, and display the results.

18 Lab 2. LSI and SkLearn

Validation Tools

We now turn our attention from transformers to classifiers. A classifier is trained to predict how a
new sample should be classified or labeled. Knowing how to determine whether or not a classifier
performs well is an essential part of machine learning. This often turns out to be a surprisingly
sophisticated issue that largely depends on the type of problem being solved and the kind of data
that is available for training. Scikit-learn has validation tools for many situations; for brevity, we
restrict our attention to the simple (but important) case of binary classification, where the possible
labels are only 0 or 1.

The score() method of a scikit-learn classifier returns the accuracy of the model, or the percent
of labels predicted correctly. However, accuracy isn’t always the best measure of success. Consider
the confusion matrix for a classifier, the matrix where the (i, j)th entry is the number of samples
with actual label i but that are classified with label j. Call the class with label 0 the negatives and
the class with label 1 the positives. Then the confusion matrix is as follows.

Predicted: 0 Predicted: 1[]
Actual: 0 True Negatives (TN) False Positives (FP)

Actual: 1 False Negatives (FN) True Positives (TP)

With this terminology, we define the following metrics.

• Accuracy :
TN + TP

TN + FN + FP + TP
, the percent of labels predicted correctly.

• Precision:
TP

TP + FP
, the percent of predicted positives that are actually correct.

• Recall :
TP

TP + FN
, the percent of actual positives that are predicted correctly.

Precision is useful in situations where false positives are dangerous or costly, while recall is
important when avoiding false negatives takes priority. For example, an email spam filter should
avoid filtering out an email that isn’t actually spam; here a false positive is more dangerous, so
precision is a valuable metric for the filter. On the other hand, recall is more important in disease
detection: it is better to test positive and not have the disease than to test negative when the disease
is actually present. Focusing on a single metric often leads to skewed results, so the following metric
is also common.

Fβ Score : (1 + β2)
precision · recall

(β2 · precision) + recall
=

(1 + β2)TP

(1 + β2)TP + FP + β2FN
.

Choosing β < 1 weighs precision more than recall, while β > 1 prioritizes recall over precision.
The choice of β = 1 yields the common F1 score, which weighs precision and recall equally. This is
an important alternative to accuracy when, for example, the training set is heavily unbalanced with
respect to the class labels.

Scikit-learn implements all of these metrics in sklearn.metrics. The general syntax for
such functions is some_score(actual_labels, predicted_labels). We will be using the func-
tion classification_report(), which returns precision, recall, and F1 scores for each label. Each
row in the report corresponds to a specific label and gives the scores with its label as the "positive"
classification. For example, in binary classification, the row corresponding to 1 gives the scores as
they would normally be calculated, with 1 as "positive."

19

>>> from sklearn.neighbors import KNeighborsClassifier
>>> from sklearn.metrics import confusion_matrix, classification_report
>>> from sklearn.model_selection import train_test_split

Split the data into training and testing sets
>>> X_train, X_test, y_train, y_test = train_test_split(X, y)

Fit the esimator to training data and predict the test labels.
>>> knn = KNeighborsClassifier(n_neighbors=2)
>>> knn.fit(X_train, y_train)
>>> knn_predicted = knn.predict(X_test)

Compute the confusion matrix by comparing actual labels to predicted labels.
>>> CM = confusion_matrix(y_test, knn_predicted)
>>> CM
array([[44, 5],

[10, 84]])

Get precision, recall, and F1 scores all at once.
The row labeled 1 gives these scores as we normally calculate them.
>>> print(classification_report(y_test, knn_predicted))

precision recall f1-score support

0 0.81 0.90 0.85 49
1 0.94 0.89 0.92 94

accuracy 0.90 143
macro avg 0.88 0.90 0.89 143

weighted avg 0.90 0.90 0.90 143

Problem 6. For this problem, use the cancer dataset from Problem 1 to compare a
RandomForestClassifier and a KNeighborsClassifier, using the default parameters for each
with random_state=43 for the RandomForestClassifier.

Use train_test_split() with random_state=2 to split up the data. Fit the classifiers
with the training set and predict the labels for the testing set. Print out a classification report
for each classifier, making sure to clearly label which report corresponds to which classifier.

Write a few sentences explaining which of these classifiers would be better to use in this
situation and why, using the information from the report as evidence. Remember that in this
dataset, the label 1 means benign and 0 means malignant.

20 Lab 2. LSI and SkLearn

Grid Search

Finding the optimal hyperparameters for a given model is a challenging and active area of research.1

However, brute-force searching over a small hyperparameter space is simple in scikit-learn: a sklearn
.model_selection.GridSearchCV object is initialized with a classifier, a dictionary of hyperparam-
eters, and some validation parameters. When its fit() method is called, it tests the given classifier
with every possible hyperparameter combination.

For example, a KNeighborsClassifier has a few important hyperparameters that can have a
significant impact on the speed and accuracy of the model. These include n_neighbors, the number
of nearest neighbors allowed to vote, and weights, which specifies a strategy for weighting the
distances between points. The code box below tests various combinations of these hyperparameters.

The cost of a grid search rapidly increases as the hyperparameter space grows. However, the
outcomes of each trial are completely independent of each other, so the problem of training each
classifier is embarassingly parallel, meaning the trials can easily be computed simultaneously. To
parallelize the grid search over n CPU cores, set the n_jobs parameter to n, or set it to −1 to divide
the labor between as many cores as are available.

>>> from sklearn.model_selection import GridSearchCV

>>> knn = KNeighborsClassifier()
Specify values for certain hyperparameters
>>> param_grid = {"n_neighbors": [2, 3, 4, 5, 6],
... "weights": ["uniform", "distance"]}
>>> knn_gs = GridSearchCV(knn, param_grid, scoring="f1", n_jobs=-1)

Run the actual search. This may take some time.
>>> knn_gs.fit(X_train, y_train)

After fitting, you can access data about the results.
>>> print(knn_gs.best_params_, knn_gs.best_score_, sep='\n')
{'n_neighbors': 5, 'weights': 'uniform'}
0.9532526583188765

Access the model
>>> knn_gs.best_estimator_
KNeighborsClassifier(weights='distance')

In some circumstances, the parameter grid can be organized in a way that eliminates redun-
dancy. For example, with a RandomForestClassifier, you could test each max_depth argument
with entirely different sets of values for min_samples_leaf. To specify certain combinations of
parameters, enter the parameter grid as a list of dictionaries.

Problem 7. Do a grid search on the breast cancer dataset using a RandomForestClassifier.
Modify at least three parameters in your grid. Use scoring="f1" for the GridSearchCV object.
Fit your model with the same train-test split as in Problem 6. Print out the best parameters
and the best score.

1Intelligent hyperparameter selection is sometimes called metalearning.

21

Next, use the GridSearchCV object to predict labels for your test set. Print out a confusion
matrix using these values.

Achtung!

Because grid searches can be computationally expensive to perform, it is recommended to
debug your code using a small subset of data to ensure everything is functioning correctly
before performing a grid search on the full data.

Pipelines
Most machine learning problems require at least a little data preprocessing before estimation in
order to get good results. A scikit-learn pipeline chains together one or more transformers and one
estimator (such as a classifier) into a single object, complete with fit() and predict() methods.
This simplifies and automates the machine learning process so that when you get new data or make
changes to various functions and features, you can easily rerun the new version from beginning to
end.

The following example demonstrates how to use a pipeline with a StandardScaler transformer
and a KNeighborsClassifier. Like classifiers, pipelines have fit(), predict(), and score() meth-
ods. Each member of the pipeline is declared as a tuple where the first element is a string naming
the step and the second is the actual transformer or classifier.

>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.pipeline import Pipeline

Chain together a StandardScaler transformer and a KNN classifier.
>>> pipe = Pipeline([("scaler", StandardScaler()), # "scaler" is the step name
... ("knn", KNeighborsClassifier())]) # "knn" is the step name
>>> pipe.fit(X_train, y_train)
>>> pipe.score(X_test, y_test)
0.972027972027972

Since Pipeline objects follow fit() and predict() conventions, they can be used with tools
like GridSearchCV. To specify which hyperparameters belong to which steps of the pipeline, precede
each hyperparameter name with <stepname>__. For example, knn__n_neighbors corresponds to
the n_neighbors hyperparameter of the pipeline step labeled knn.

Create the Pipeline, labeling each step.
>>> pipe = Pipeline([("scaler", StandardScaler()),

("knn", KNeighborsClassifier())])

Specify the hyperparameters to test for each step.
>>> pipe_param_grid = {"scaler__with_mean": [True, False],
... "scaler__with_std": [True, False],
... "knn__n_neighbors": [2, 3, 4, 5, 6],
... "knn__weights": ["uniform", "distance"]}

22 Lab 2. LSI and SkLearn

Pass the Pipeline object to the GridSearchCV and fit it to the data.
>>> pipe_gs = GridSearchCV(pipe, pipe_param_grid,
... n_jobs=-1).fit(X_train, y_train)

>>> print(pipe_gs.best_params_, pipe_gs.best_score_, sep='\n')
{'knn__n_neighbors': 6, 'knn__weights': 'distance',
'scaler__with_mean': True, 'scaler__with_std': True}

0.971830985915493

Pipelines can also be used to compare different transformations or estimators. For example, a
pipeline can end in either a KNeighborsClassifier() or a classifier called SVC(), even though they
have different hyperparameters. Like before, you can use a list of dictionaries to specify the specific
combinations of the hyperparameter space.

Create the pipeline, using any classifier as a placeholder
>>> pipe = Pipeline([("scaler", StandardScaler()),

("classifier", KNeighborsClassifier())])

Create the grid
>>> pipe_param_grid = [
... {"classifier": [KNeighborsClassifier()], # Try a KNN classifier...
... "classifier__n_neighbors": [2, 3, 4, 5],
... "classifier__weights": ["uniform", "distance"]},
... {"classifier": [SVC(kernel="rbf")], # ...and an SVM classifier.
... "classifier__C": [.001, .01, .1, 1, 10, 100],
... "classifier__gamma": [.001, .01, .1, 1, 10, 100]}]

Fit using training data
>>> pipe_gs = GridSearchCV(pipe, pipe_param_grid,
... scoring="f1", n_jobs=-1).fit(X_train, y_train)

Get the best hyperparameters
>>> params = pipe_gs.best_params_
>>> print("Best classifier:", params["classifier"])
Best classifier: SVC(C=10, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape='ovr', degree=3, gamma=0.01, kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

Check the best classifier against the test data
>>> confusion_matrix(y_test, pipe_gs.predict(X_test))
array([[48, 1], # Near perfect!

[1, 93]])

23

Problem 8. The breast cancer dataset has 30 features. By using PCA, we can drastically
reduce the dimensionality while still retaining predictive power.

Create a pipeline with a StandardScaler, PCA, and a KNeighborsClassifier. Use the
same train-test split as before. Do a grid search on this pipeline, modifying at least six hy-
perparameters and using scoring="f1". Use no more than 5 principal components. Print out
your best parameters and best score. Attain a score of at least .96.

Hint: The documentation for StandardScaler, PCA, and KNeighborsClassifier can be
found at these links.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

24 Lab 2. LSI and SkLearn

3 K-Means Clustering

Lab Objective: Clustering is the one of the main tools in unsupervised learning—machine learning
problems where the data comes without labels. In this lab we implement the k-means algorithm, a
simple and popular clustering method, and apply it to geographic clustering and color quantization.

Clustering
In this lab, we will analyze a few different datasets from Scikit-Learn’s library and use the k-means
algorithm. Figure 3.1 is a graph of the iris dataset. As a human, it is easy to identify the two distinct
groups of data. Can we create an algorithm to identify these groups without human supervision?
This task is called clustering, an instance of unsupervised learning. The k-means algorithm is a simple
way of helping computers see the group distinctions.

The objective of clustering is to find a partitions of the data such that points in the same subset
will be “close” according to some metric. The metric used will likely depend on the data, but some
obvious choices include Euclidean distance and angular distance. Throughout this lab, we will use
the metric d(x, y) = ∥x− y∥2, the Euclidean distance between x and y, unless we specify a different
metric to be used.

More formally, suppose we have a collection of RK-valued observations X = {x1, x2, . . . , xn}.
Let N ∈ N and let S be the set of all N -partitions of X, where an N -partition is a partition with
exactly N nonempty elements. We can represent a typical partition in S as S = {S1, S2, . . . , SN},
where

X =

N⋃
i=1

Si

and
|Si| > 0, i = 1, 2, . . . , N.

We seek the N -partition S∗ that minimizes the within-cluster sum of squares, i.e.

S∗ = argmin
S∈S

N∑
i=1

∑
xj∈Si

∥xj − µi∥22,

where µi is the mean of the elements in Si, i.e.

µi =
1

|Si|
∑

xj∈Si

xj .

25

26 Lab 3. K-Means Clustering

4 3 2 1 0 1 2 3 4
First Principal Component

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Se
co

nd
 P

rin
cip

al
 C

om
po

ne
nt

Figure 3.1: The first two principal components of the iris dataset.

The K-Means Algorithm

Finding the global minimizing partition S∗ is generally intractable since the set of partitions can be
very large indeed, but the k-means algorithm is a heuristic approach that can often provide reasonably
accurate results.

We begin by specifying an initial cluster mean µ
(1)
i for each i = 1, · · · , N . This can be done

by random initialization, or according to some heuristic. For each iteration, we adopt the following
procedure. Given a current set of cluster means µ(t), we find a partition S(t) of the observations such
that

S
(t)
i = {xj : ∥xj − µ

(t)
i ∥

2
2 ≤ ∥xj − µ

(t)
l ∥

2
2, l = 1, · · · , N}.

We then update our cluster means by computing for each i = 1, · · · , N . We continue to iterate in
this manner until the partition ceases to change.

Figure 3.2 shows two different clusterings of the iris data produced by the k-means algorithm.
Note that the quality of the clustering can depend heavily on the initial cluster means. We can use
the within-cluster sum of squares as a measure of the quality of a clustering (a lower sum of squares
is better). Where possible, it is advisable to run the clustering algorithm several times, each with
a different initialization of the means, and keep the best clustering. Note also that it is possible to
have very slow convergence. Thus, when implementing the algorithm, it is a good idea to terminate
after some specified maximum number of iterations.

The algorithm can be summarized as follows.

1. From the data points, choose k initial cluster centers.

2. For i = 0, . . . , max_iter:

(a) Assign each data point to the cluster center that is closest, forming k clusters.

(b) Recompute the cluster centers as the means of the new clusters.

(c) If the old cluster centers and the new cluster centers are sufficiently close, terminate early.

27

4 3 2 1 0 1 2 3 4
First Principal Component

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Se

co
nd

 P
rin

cip
al

 C
om

po
ne

nt

Setosa
Versicolor
Virginica
Cluster Means

4 3 2 1 0 1 2 3 4
First Principal Component

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Se
co

nd
 P

rin
cip

al
 C

om
po

ne
nt

Setosa
Versicolor
Virginica
Cluster Means

Figure 3.2: Two different k-means clusterings for the iris dataset. Notice that the clustering on the
left predicts the flower species to a high degree of accuracy, while the clustering on the right is less
effective.

Problem 1. Write a KMeans class for doing basic k-means clustering. Implement the following
methods.

1. __init__(): Accept a number of clusters k, a maximum number of iterations, and a
convergence tolerance. Store these as attributes.

2. fit(): Accept an m × n matrix X of m data points with n features. Choose k random
rows of X as the initial cluster centers. Run the k-means iteration until consecutive centers
are within the convergence tolerance, or until iterating the maximum number of times.
Save the cluster centers as attributes.

If a cluster is empty, reassign the cluster center as a random row of X.

3. predict(): Accept an l×n matrix X of data. Return an array of l integers where the ith
entry indicates which cluster center the ith row of X is closest to.

4. plot(): Accept an l×n matrix X of l data points and an array y of l integers representing
the labels. Plot each data point from the matrix, colored by cluster, as well as the cluster
centers. Note that in this case, n = 2.

Test your class on the iris data set (with k = 3) after reducing the data to two principal
components Plot the data and cluster centers, coloring the data by cluster.

Hint: There are various ways to color data points given their cluster labels. A simple way
is to create a list of color names, and then set each cluster color by indexing the list using the
cluster labels as indices. Another way (more adaptable to a varying number of clusters) is to
use plt.scatter and set the colors c equal to the cluster labels y (i.e. c=y), and then provide
a colormap (i.e. cmap="jet").

28 Lab 3. K-Means Clustering

Fire Station Placement

When urban planners are making plans for a city, there are many city elements to consider. One of
which is the locations of the fire stations that will service the city. When choosing a suitable location
for the city, urban planners look at the current building locations, the roads nearby each location,
prior traffic history and the areas of potential growth. We will simplify this complex problem by
only taking into account the distances from each building to the nearest fire station (see Additional
Material for a harder version of this problem).

Using another data set from SKLearn, we can get the data from the 1990 US Census for
California housing based on the blocks of the residents. This has been saved in sacramento.npy
and can be accessed by using the np.load() function. This file contains demographic data for each
block in Sacramento and nearby cities. The eight columns in the file are: median block income,
median house age in the block, average number of rooms, average number of bedrooms, average
house occupancy, latitude and longitude.

There are couple ways for a fire station to be optimally placed. The stations could be placed
to minimize the average distance to each house. Another option is to minimize the distance to the
farthest house in each group. For this problem, minimize the distance to the farthest house in each
group.

Problem 2. Using the Methods you wrote in Problem 1, add a parameter p to your class that
denotes the norm and defaults to 2. Save p as an attribute to be used in your fit() and
predict() functions.

Using the latitude and longitude data in sacramento.npy, find the optimal placement
for 12 fire stations. Plot the longitude and latitude data points colored by cluster as well as
the cluster centers. Make plots for 3 different values of p to find the optimal locations for the
fire stations. In a Markdown cell, report which norm you found to be the best at keeping the
maximum distance small.

29

121.8 121.7 121.6 121.5 121.4 121.3 121.2
Longitude

38.40

38.45

38.50

38.55

38.60

38.65

38.70

La
tit

ud
e

Sacramento

Figure 3.3: Sacramento Housing Data (1990 US Census).

Detecting Active Earthquake Regions

Suppose we are interested in learning about which regions are prone to experience frequent earthquake
activity. We could make a map of all earthquakes over a given period of time and examine it ourselves,
but this, as an unsupervised learning problem, can be solved using our k-means clustering tool.

150 100 50 0 50 100 150
Longitude

80

60

40

20

0

20

40

60

80

La
tit

ud
e

Figure 3.4: Earthquake epicenters over a 6 month period.

30 Lab 3. K-Means Clustering

The file earthquake_coordinates.npy contains earthquake data throughout the world from
January 2010 through June 2010. Each row represents a different earthquake; the columns are scaled
longitude and latitude measurements. We want to cluster this data into active earthquake regions.
For this task, we might think that we can regard any epicenter as a point in R2 with coordinates
being their latitude and longitude. This, however, would be incorrect, because the earth is not flat.
Instead, latitude and longitude should be viewed in spherical coordinates in R3, which could then be
clustered.

A simple way to accomplish this transformation is to first transform the latitude and longitude
values to spherical coordinates, and then to Euclidean coordinates. Recall that a spherical coordinate
in R3 is a triple (r, θ, φ), where r is the distance from the origin, θ is the radial angle in the xy-plane
from the x-axis, and φ is the angle from the z-axis. In our earthquake data, once the longitude is
converted to radians it is an appropriate θ value; the latitude needs to be offset by 90◦ degrees, then
converted to radians to obtain φ. For simplicity, we can take r = 1, since the earth is roughly a
sphere. We can then transform to Euclidean coordinates using the following relationships.

θ =
π

180
(longitude) φ =

π

180
(90− latitude)

r =
√
x2 + y2 + z2 x = r sinφ cos θ

φ = arccos
z

r
y = r sinφ sin θ

θ = arctan
y

x
z = r cosφ

There is one last issue to solve before clustering. Each earthquake data point has norm 1 in
Euclidean coordinates, since it lies on the surface of a sphere of radius 1. Therefore, the cluster
centers should also have norm 1. Otherwise, the means can’t be interpreted as locations on the
surface of the earth, and the k-means algorithm will struggle to find good clusters. A solution to this
problem is to normalize the mean vectors at each iteration, so that they are always unit vectors.

Problem 3. Add a keyword argument normalize=False to your KMeans constructor. Modify
fit() so that if normalize is True, the cluster centers are normalized at each iteration.

Cluster the earthquake data in three dimensions by converting the data from raw data to
spherical coordinates to euclidean coordinates on the sphere.

1. Convert longitude and latitude to radians, then to spherical coordinates.
(Hint: np.deg2rad() may be helpful.)

2. Convert the spherical coordinates to euclidean coordinates in R3.

3. Use your KMeans class with normalization to cluster the euclidean coordinates with k =
15.

4. Translate the cluster center coordinates back to spherical coordinates, then to degrees.
Transform the cluster means back to latitude and longitude coordinates.
(Hint: use np.arctan2() for arctangent so that that correct quadrant is chosen).

5. Plot the data, coloring by cluster. Also mark the cluster centers.

31

With 15 clusters, your plot should resemble Figure 3.5.

150 100 50 0 50 100 150
Longitude

80

60

40

20

0

20

40

60

80
La

tit
ud

e

Figure 3.5: Earthquake epicenter clusters with k = 15.

Color Quantization
The k-means algorithm uses the euclidean metric, so it is natural to cluster geographic data. However,
clustering can be done in any abstract vector space. The following application is one example.

Images are usually represented on computers as 3-dimensional arrays. Each 2-dimensional layer
represents the red, green, and blue color values, so each pixel on the image is really a vector in R3.
Clustering the pixels in RGB space leads a one kind of image segmentation that facilitate memory
reduction.

Reading: https://en.wikipedia.org/wiki/Color_quantization

Problem 4. Write a function that accepts an image array (of shape (m,n, 3)), an integer
number of clusters k, and an integer number of samples S. Reshape the image so that each row
represents a single pixel. Choose S pixels to train a k-means model on with k clusters. Make a
copy of the original picture where each pixel has the same color as its cluster center. Return the
new image. For this problem, you may use sklearn.cluster.KMeans instead of your KMeans
class from Problem 1.

Test your function on the six provided NASA images.

https://en.wikipedia.org/wiki/Color_quantization

32 Lab 3. K-Means Clustering

Additional Material
Spectral Clustering

We now turn to another method for solving a clustering problem, namely that of Spectral Clustering.
It can cluster data not just by its location on a graph, but can even separate shapes that overlap
others into distinct clusters. It does so by utilizing the spectral properties of a Laplacian matrix.
Different types of Laplacian matrices can be used. In order to construct a Laplacian matrix, we first
need to create a graph of vertices and edges from our data points. This graph can be represented
as a symmetric matrix W where wij represents the edge from xi to xj . In the simplest approach,
we can set wij = 1 if there exists an edge and wij = 0 otherwise. However, we are interested in the
similarity of points, so we will weight the edges by using a similarity measure. Points that are similar
to one another are assigned a high similarity measure value, and dissimilar points a low value. One
possible measure is the Gaussian similarity function, which defines the similarity between distinct
points xi and xj as

s(xi, xj) = e−
∥xi−xj∥

2

2σ2

for some set value σ.
Note that some similarity functions can yield extremely small values for dissimilar points. We

have several options for dealing with this possibility. One is simply to set all values which are less
than some ε to be zero, entirely erasing the edge between these two points. Another option is to
keep only the T largest-valued edges for each vertex. Whichever method we choose to use, we will
end up with a weighted similarity matrix W . Using this we can find the diagonal degree matrix D,
which gives the number of edges found at each vertex. If we have the original fully-connected graph,
then Dii = n− 1 for each i. If we keep the T highest-valued edges, Dii = T for each i.

As mentioned before, we may use different types of Laplacian matrices. Three such possibilities
are:

1. The unnormalized Laplacian, L = D −W

2. The symmetric normalized Laplacian, Lsym = I −D−1/2WD−1/2

3. The random walk normalized Laplacian, Lrw = I −D−1W .

Given a similarity measure, which type of Laplacian to use, and the desired number of clusters
k, we can now proceed with the Spectral Clustering algorithm as follows:

• Compute W , D, and the appropriate Laplacian matrix.

• Compute the first k eigenvectors u1, · · · , uk of the Laplacian matrix.

• Set U = [u1, · · · , uk], and if using Lsym or Lrw normalize U so that each row is a unit vector
in the Euclidean norm.

• Perform k-means clustering on the n rows of U .

• The n labels returned from your kmeans function correspond to the label assignments for
x1, · · · , xn.

As before, we need to run through our k-means function multiple times to find the best measure
when we use random initialization. Also, if you normalize the rows of U , then you will need to set
the argument normalize = True.

You can use the following function declaration to implement the Spectral Clustering Algorithm
by calling your kmeans function.

33

def specClus(measure, Laplacian, args, arg1=None, kiters=10):
"""
Cluster a dataset using the k-means algorithm.

Parameters

measure : function

The function used to calculate the similarity measure.
Laplacian : int in {1, 2, 3}

Which Laplacian matrix to use. 1 corresponds to the unnormalized,
2 to the symmetric normalized, 3 to the random walk normalized.

args : tuple
The arguments as they were passed into your k-means function,
consisting of (data, n_clusters, init, max_iter, normalize). Note
that you will not pass "data" into your k-means function.

arg1 : None, float, or int
If Laplacian==1, it should remain as None
If Laplacian==2, the cut-off value, epsilon.
If Laplacian==3, the number of edges to retain, T.

kiters : int
How many times to call your kmeans function to get the best
measure.

Returns

labels : ndarray of shape (n,)

The i-th entry is an integer in [0, n_clusters-1] indicating
which cluster the i-th row of data belongs to.

"""
pass

We now need a way to test our code. The website http://cs.joensuu.fi/sipu/datasets/ contains
many free data sets that will be of use to us. Scroll down to the “Shape sets" heading, and download
some of the datasets found there to use for trial datasets.

You can use the following function declaration to create a function that will return the accuracy
of your spectral clustering implementation.

def test_specClus(location, measure, Laplacian, args, arg1=None, kiters=10):
"""
Cluster a dataset using the k-means algorithm.

Parameters

location : string

The location of the dataset to be tested.
measure : function

The function used to calculate the similarity measure.
Laplacian : int in {1, 2, 3}

34 Lab 3. K-Means Clustering

Which Laplacian matrix to use. 1 corresponds to the unnormalized,
2 to the symmetric normalized, 3 to the random walk normalized.

args : tuple
The arguments as they were passed into your k-means function,
consisting of (data, n_clusters, init, max_iter, normalize). Note
that you will not pass "data" into your k-means function.

arg1 : None, float, or int
If Laplacian==1, it should remain as None
If Laplacian==2, the cut-off value, epsilon.
If Laplacian==3, the number of edges to retain, T.

kiters : int
How many times to call your kmeans function to get the best
measure.

Returns

accuracy : float

The percent of labels correctly predicted by your spectral
clustering function with the given arguments (the number
correctly predicted divided by the total number of points.

"""
pass

Fire Station Placement II

In Problem 2 we looked at choosing the best location for a fire station. However, because we looked
at the city of Sacramento where the geography doesn’t role in choosing a location, we didn’t need to
double check that there is a place for the station. The sanfrancisco.npy data is organized the same
way as sacramento.py, as this also comes from the SKLearn California Housing Module. Doing
the same method as before will give us groups of houses, however, the group centers may be in the
middle of the bay. When implementing this problem, perform a check on the centers to make sure
they are not in water. The file bayboundary.npy gives a rough outline of where the bay is. The
bayboundary.npy has only 2 columns, longitude and latitude. Using the boundaries set, make sure
that the chosen centers are on land and not on water.

As an additional exercise, import and parse the data from the bayboundary.npy and the
sanfrancisco.npy files. Using either the algorithm that you wrote in Problem 1 or the k-means
algorithm in the SK Learn library, find the optimal locations for the 12 fire stations.

After the algorithm has finished running, check to see if the new coordinates are on land. Return
the graph of the clusters, the centers (the fire station locations) as different colors.

4 Random Forests

Lab Objective: Understand how to build and use a classification tree and a random forest.

Classification Trees

Decision Classification trees are a class of decision trees used in a wide variety of settings where
labeled training data is available. The desired outcome is a model that can accurately assign labels
to unlabeled data. Decision trees are widely used because they have a fast run time, low computation
cost, and can handle irrelevant, missing, and noisy data easily.

We begin with a dataset of samples, such as information about customers from a certain store.
Each sample contains a variety of features, such as if the individual is married or has children. The
sample also has a classification label, such as whether or not the person made a specific purchase.

A classification tree is composed of many nodes, which ask a question (i.e. “Is income ≥ 85?”)
and then split the data based on the answers. If the response is True, then the sample is “pushed”
down the tree to the left child node. If the response is False, then the sample is “pushed” down the
tree to the right child node. A leaf node is a node that has no child node. Upon arrival at a leaf, an
unlabeled sample is labeled with the classification that matches the majority of labeled samples at
that leaf.

Table 4.1 includes information about 10 individuals and an indicator of whether or not they
made a certain purchase. To simplify construction of the tree, all data is numeric, so 1=Yes and
0=No for yes/no questions.

Suppose we wanted to guess whether a single college student making under $30,000 would
purchase this item. Starting at the top of the tree, we compare our sample to the question and first
choose the right branch, and then we compare with the second question and choose the right branch
again. Now we reach a leaf with the dictionary {0:1}. The key 0 corresponds to the label, and the
value 1 means one of our original samples is at this leaf with that label. Since 100% of samples at
this leaf are labeled with 0, our new sample college student will be predicted to share the label 0.

If we arrived instead at a leaf with the dictionary {0:1, 1:4}, then one of our original samples
at this leaf would be labeled 0 and four would be labeled 1, so the majority vote would assign the
label 1 to our new sample.

35

36 Lab 4. Random Forests

Married (Y/N) Children Income ($1000) Purchased (Y/N)
0 5 125 0
1 0 100 0
0 0 70 0
1 3 120 0
0 0 95 1
1 0 60 0
0 2 220 1
0 0 85 1
1 0 75 0
0 0 90 1

Table 4.1: Customer data with 3 features (Married, Children, Income) and a label (Purchase) indi-
cating whether or not the customer bought the item.

Is Marriage >= 1?

{0: 4}

T

Is Income >= 85?

F

Is Children >= 5?

T

{0: 1}

F

{0: 1}

T

{1: 4}

F

Figure 4.1: A classification tree built using Table 4.1. Each leaf includes a dictionary of the label (0
or 1) and how many individuals from the data match the classification. In this example, each leaf
contains individuals with only one label.

37

Problem 1. At each node in a classification tree, a question determines which branch a sample
belongs to. The Question class has attributes column and value. Write a match method for
the Question class that accepts a sample and returns either True or False. A sample will
be in the form of an array, so in the example above, a single college student with no children
making $20,000 would be represented by the array [0, 0, 20]. The method should determine if
the sample’s feature located at index column is greater than or equal to value. Notice that
this method will only handle one feature of one sample at a time.

Next, write a partition() function that partitions the samples (rows) of a dataset for
a given Question into two numpy arrays, left and right, returned in that order. The array
left will contain the samples that the match method returned as True, and the array right
will contain the samples that the match method returned as False. If left or right is empty,
still return them as (2-D size zero) arrays.

Hint: if n is the length of each sample, left.reshape(-1,n) (and similar for right) will
make the final arrays the correct size even if they’re empty.

The file animals.csv contains information about 7 features for 100 animals. The last
column, the class labels, indicates whether or not an animal lives in the ocean. You may use
this file to test your functions.

>>> import numpy as np
Load in the data
>>> animals = np.loadtxt("animals.csv", delimiter=',')
Load in feature names
>>> features = np.loadtxt("animal_features.csv", delimiter=',', dtype=str,
... comments=None)
Load in sample names
>>> names = np.loadtxt('animal_names.csv", delimiter=',', dtype=str)

initialize question and test partition function
>>> question = Question(column=1, value=3, feature_names=features)
>>> left, right = partition(animals, question)
>>> print(len(left), len(right))
62 38

>>> question = Question(column=1, value=75, feature_names=features)
>>> left, right = partition(animals, question)
>>> print(len(left), len(right))
0 100

Optimal Split

To use the partition() function from Problem 1, we need to know which question to ask at each
node. Usually, the question is determined by the split that maximizes either the Gini impurity or
the information gain (which itself uses the Gini impurity). For this lab, we will use the information
gain.

38 Lab 4. Random Forests

Gini impurity measures how often a sample would be mislabeled based on the distribution of
labels. It is a measure of homogeneity of labels, so it is 0 when all samples at a node have the same
label.

Definition 4.1. Let D be a dataset with K different class labels and N different samples. Let Nk

be the number of samples labeled class k for each 1 ≤ k ≤ K. We define the Gini impurity to be

G(D) = 1−
K∑

k=1

(
Nk

N

)2

.

Information gain is based on the concept of information theory entropy. It measures the differ-
ence between two probability distributions. If the distributions are equal, then the information gain
is 0. We will use a modified version of information gain for simplicity:

Definition 4.2. Let sD(p, x) = D1, D2 be a partition of data D. We define the information gain of
this partition to be

I(sD(p, x)) = G(D)−
2∑

i=1

|Di|
|D|
·G(Di)

where |D| represents the number of samples (or rows) in D.

The provided function info_gain() can be used to compute the information gain of a partiton
of a dataset. The optimal split of data at a node can be chosen by finding the question whose
partition maximizes the information gain.

Sometimes the partition to split on may separate the data into very small subsets with only a
few samples each. This can make the classification tree vulnerable to overfitting and noisy data. For
this reason, we will include an argument to specify the smallest allowable leaf size, or the minimum
number of samples at any node. A reasonable minimum number depends on the size of the whole
dataset, so a dataset with 10,000 samples would have a larger minimum leaf size than our first
example with only 10 samples.

To find the optimal split, begin by instantiating best_gain to 0 and best_question to None
. For each unique value in each feature (column) of the dataset, instantiate a Question object
with the column and value, then use partition() to split the dataset into left and right parti-
tions. If either the left or right partition has fewer samples than the smallest allowable leaf size
(called min_samples_leaf), then discard this split and iterate to the next one. If the left and right
partitions are ok, then calculate the info_gain() of these two partitions. If this info_gain() is
greater than best_gain, then set best_gain and best_question equal to info_gain() and the
corresponding Question, respectively. After checking all possible partitions (every column and row),
return best_gain and best_question.

Problem 2. Write a function find_best_split() that computes the optimal split of a dataset
by following the directions given above. Recall that the final column of the dataset contains
the class labels, which has no questions associated with it, so do not iterate through the final
column. Include a minimum leaf size argument min_samples_leaf defaulting to 5.

39

Return the information gain and corresponding question for the best split, in that order.
If two splits have the same information gain, choose the first split. Iterate through each feature
(column) of the dataset, then through each unique value (row) that the feature takes on; that
is, iterate through columns in the outer loop and rows in the inner loop. If no partitions are
possible due to 2*min_samples_leaf, return None for the question.
You should get the following output for the animals dataset.

Test your function
>>> find_best_split(animals, features)
(0.12259833679833687, Is # legs/tentacles >= 2.0?)

Building the Tree

Once the optimal split for a node is determined, the node needs to be defined as either a Leaf node or
a Decision node. As described earlier, leaf nodes have no children, and the classification of samples
are determined in leaf nodes. If the optimal split returns a left and right tree, then the node is a
decision node and has a question associated with it to determine which path a sample should follow.
The next two problems will walk through building a classification tree using the functions and classes
from the previous problems.

Problem 3. The class Leaf is instantiated with data containing samples in that leaf. In the
constructor, save an attribute prediction as a dictionary of how many samples in the leaf
belong to each unique class label.
Hint: remember the provided function class_counts().

Write the class Decision_Node. This class should have three attributes: an associated
Question, a left branch, and a right branch. The branches will be Leaf or Decision_Node
objects. Name these three attributes question, left, and right.

In addition to having a minimum leaf size, it’s also important to have a maximum depth for
trees. Without restricting the depth, the tree can become very large; if there is no minimum leaf
size, it can be one less than the number of training samples. Limiting the depth can stop the tree
from having too many splits, preventing it from becoming too complex and overfitting the training
data. On the other hand, it’s also important to not have too shallow of a tree because then the tree
will underfit the data.

Problem 4. Write a function build_tree() that uses your previous functions to build a classi-
fication tree. Include a minimum leaf argument defaulting to 5 and a maximum depth argument
defaulting to 4. Start counting depth at 0. For comparison, the tree in Figure 4.1 has depth 3.
We will build this tree recursively as follows:

• If the number of samples (rows) in the given data is less than twice min_samples_leaf
(i.e., it can’t be split again), then return the data as a Leaf and that’s it.

40 Lab 4. Random Forests

• Otherwise, the data can be split, so find the optimal gain and corresponding question
using the function find_best_split().

• If the optimal gain is 0 (i.e., if the partition is already optimal), or if current_depth is
greater than or equal to max_depth (i.e., the tree is already too deep), return the data as
a Leaf and that’s it.

• If the node isn’t a Leaf, then it must be a Decision_Node.

– Use partition() to split the data into left and right partitions.

– Next, recursively define the right branch and left branch of the tree by calling
build_tree() on each of the left and right partitions with current_depth incre-
mented by 1.

– Finally, return a Decision_Node object using the optimal question found earlier and
the left and right branches of the tree.

The function draw_tree() is provided to allow you to save a pdf image to view a specified
trained tree. In order to use this function, you must successfully install the graphiz package.

graphviz has two parts: an external program, and a Python package that interfaces with
that program. To install both of these parts, refer to the section in Additional Materials. (Both
of these are installed by install_dependencies.sh.)

With graphviz installed, you can test your build_tree function as follows:

>>> my_tree = build_tree(animals, features)
>>> draw_tree(my_tree)

The resulting tree should have 8 question nodes, 9 leaf nodes, and a total of 5 rows of nodes
(including the lowermost leaves). If draw_tree returns an error about pdf being an unrecognized
file type, try running the command dot -c in your terminal.

Predicting

It’s important to test your tree to ensure that it predicts class labels fairly accurately and so that
you can adjust the minimum leaf and maximum depth parameters as needed. It is customary to
randomly assign some of your labeled data to a training set that you use to fit your tree and then
use the rest of your data as a testing set to check accuracy.

Problem 5. Write a function predict_tree() that returns the predicted class label for a
single new sample given a trained tree called my_tree. This function will be implemented
recursively in order to traverse the branches and reach a Leaf node. Use the isinstance()
function to determine if the current node (my_tree) is of type Leaf; if it is, return the label
that corresponds with the most samples in the Leaf.

If the given tree is not a Leaf, then it is a Decision_Node with left and right children
nodes. If the my_tree.question.match method is True with the given sample, then recursively
call predict_tree() with my_tree.left. Otherwise, recursively call predict_tree() with
my_tree.right.

41

Hint: an easy way to get the most common value at a Leaf node is to call max() on my_tree.
prediction using the keyword argument key=my_tree.prediction.get. Remember to return
something from both branches of your function.

Next, write a function analyze_tree() that accepts a labeled dataset (with the labels
in the last column, as in animals.csv) and a trained classification tree. The function should
compare the actual label of each sample (row) with its predicted label using predict_tree(),
and it should return the proportion of samples that the tree labels correctly.

Test your function with the animals.csv file. Shuffle the dataset with np.random.
shuffle() and use 80 samples to train your classification tree. Use the other 20 samples
as the test set to see how accurately your tree classifies them. Your tree should be able to
classify this set with roughly 80% accuracy on average, given the default parameters.

Random Forest

As noted, one of the main issues with Decision Trees is their tendency to overfit. Random forests
are a way of mitigating overfitting that cannot be fixed by restricting the tree depth and leaf size. A
random forest is just what it sounds like–a collection of trees. Each tree is trained randomly, meaning
that at each node, only a small, randomly-chosen subset of the features is available to determine the
next split. The size of this subset should be small relative to the total number of features present.
Let n be the total number of features in the dataset. A common method which we will use here is
to split on

√
n features (rounding down where applicable).

When predicting the label of a new sample, each trained tree in the forest casts a vote, deter-
mined as above, and the sample is labeled according to the majority vote of the trees.

Problem 6. Add an argument random_subset to find_best_split() and build_tree(),
defaulting to False, that indicates whether or not the tree should be trained randomly. When
True, each node should be restricted to a random combination of

√
n (rounded down) features

to use in its split, where n is the total number of features (note that class labels are not features).
This will require the function find_best_split() to be altered so that it only iterates through
a random combination of

√
n features (columns).

Next, write a function predict_forest() that accepts a new sample and a trained forest
(as a list of trees). It should iterate through each tree, finding the label assigned to the sample
by calling predict_tree(). Then, it should return the label predicted by the majority of the
trees.

Finally, write a function analyze_forest() that accepts a labeled dataset (with the labels
in the last column, as in animals.csv) and a trained forest. The function should compare the
actual label of each sample (row) with its predicted label using predict_forest(), and it
should return the accuracy of the forest’s predictions.

Test your functions on the animals.csv dataset. Visualize your trees using draw_tree
(), verifying that they are different every time. Compare the results to the non-randomized
version.

42 Lab 4. Random Forests

Scikit-Learn

Finally, we’ll compare our implementation to scikit-learn’s RandomForestClassifier. Rather than
accepting all the data as a single array, as in our implementation, this package accepts the feature
data as the first argument and all of the labels as the second argument.

>>> from sklearn.ensemble import RandomForestClassifier

Create the forest with the appropriate arguments and 200 trees
>>> forest = RandomForestClassifier(n_estimators=200, max_depth=4,
... min_samples_leaf=5)

Shuffle the data
>>> shuffled = np.random.permutation(animals)
>>> train = shuffled[:80]
>>> test = shuffled[80:]

Fit the model to your data, passing the labels in as the second argument
>>> forest.fit(train[:, :-1], train[:, -1])

Test the accuracy with the testing set
>>> forest.score(test[:, :-1], test[:, -1])
0.85

Problem 7. The file parkinsons.csv contains annotated speech data from people with and
without Parkinson’s Disease. The first column is the subject ID, columns 2-27 are various
features, and the last column is the label indicating whether or not the subject has Parkinson’s.
You will need to remove the first column so your forest doesn’t use participant ID to predict
class labels. Feature names are contained in the file parkinsons_features.csv.

Write a function to compare your forest implementation to the package from scikit-learn.
Because of the size of this dataset, we will only use a small portion of the samples and build
a very simple forest. Randomly select 130 samples. Use 100 in training your forest and 30
more in testing it. Build 5 trees for your forest (as a list) using min_samples_leaf=15 and
max_depth=4 for each tree. Time how long it takes to train and analyze your forest.

Repeat this with scikit-learn’s package, using the same 100 training samples and 30 test
samples. Set n_estimators=5, min_samples_leaf=15, and max_depth=4.

Then, using scikit-learn’s package, run the whole parkinsons.csv dataset, using the
default parameters. Use 80% of the data to train the forest and the other 20% to test it.

Return three tuples: the accuracy and time of your implementation, the accuracy and
time of scikit-learn’s package, and then the accuracy and time of scikit-learn’s package using
the entire dataset.

43

Additional Materials
Installing Graphviz

The Python package can be installed using pip install graphviz. To install the external program,
on Windows in the WSL terminal and on Linux use the following:

sudo apt-get install graphviz

On Mac:

brew install graphviz

For additional options for the external program, refer to the instructions at https://graphviz.org/
download/.

https://graphviz.org/download/
https://graphviz.org/download/

44 Lab 4. Random Forests

5 Linear Regression

Lab Objective: This section will introduce the basics of Linear Regression, feature selection
methods, and regularization.

Introduction to Linear Regression
One of the first skills taught in basic algebra is to effectively plot the line y = mx+ b which can be
done with two points. But what if we want to find the line that best fits a set of points?

In this case, we can use the simplest form of linear regression: Ordinary Least Squares (OLS).
Given data as a set of points D = {(x1, y1), . . . , (xn, yn)} we wish to find the line that best fits the
data. The line is given by y = mx + b where m and b are unknown constants and x and y are the
independent and dependent variables respectively. Using OLS, let

yi = mxi + b+ εi

describe the ith point in D for each i ∈ {1, . . . , n}. Note that εi is the vertical distance from the ith

point to the line given by y = mx+ b and is often called the residual or the error.
The n equations for each point in D can be written in vector notation. Let the x and y

coordinates of D be represented by column vectors x and y respectively. In statistical science, the
intercept (b) and slope (m) are denoted as β0 and β1 respectively and[

b

m

]
=

[
β0

β1

]
= β.

Additionally, the residuals are represented by a column vector ε and 1 is a column vector of ones.
So we have

y = mx+ 1b+ ε = [1,x] ·
[
b

m

]
+ ε.

Denoting X = [1,x], we have our final equation given as

y = Xβ + ε.

This notation may seem excessive, but suppose we wanted to fit a model of the form y = ax3+ bx2+

cx + d A little work can show that X = [1,x,x2,x3] and β = [β0, β1, β2, β3]
T, which is very easy

to work with. Thus, this notation is actually the ideal way to generalize linear regression, especially
when working with higher degree polynomials.

45

46 Lab 5. Linear Regression

The solution to OLS is straight forward with some important assumptions. Sparing you the
algebraic details and assuming that y ∼ N (Xβ, σ2I) and ε ∼ N (0, σ2I) and I is the identity matrix,
the least squares estimator for β is given as

β̂ = (XTX)−1XTy. (5.1)

Problem 1. Write a function that takes as input X and y. In your function, add a column
of ones to X to account for β0. Call this function ols. This function should return the least
squares estimator for β as a numpy array.

Hint: Try rearranging equation (5.1) and use np.linalg.solve() to avoid inverting
(XTX).

Problem 2. Use the following code to generate random data.

n = 100 # Number of points to generate
X = np.arange(100) # The input X for the function ols
eps = np.random.uniform(-10, 10, size=(100,)) # Noise to generate random y←↩

coordinates
y = .3*X + 3 + eps # The input y for the function ols

Find the least squares estimator for β using this random data. Produce a plot showing the
random data and the line of best fit determined by the least squares estimator for β. Your plot
should include a title, axis labels, and a legend.

Rank-Deficient Models
Notice that in order to find the least squares estimator β̂, we need XTX to be invertible. However,
when X does not have full rank, the product XTX is singular and not invertible. We can no longer
use the previous solution for the least squares estimator, but we can use the SVD and still compute
a solution.

Recall that if X ∈Mn×d has rank r, then the compact form of the SVD of X is

X = UΣV H

where U ∈Mn×r and V ∈Mr×d have orthonormal columns and Σ ∈Mr×r is diagonal. In addition,
if X is real, then the factors U , Σ, and V H are also real. In this lab we assume X is real. As described
in Volume 1, there is a unique solution for the least squares estimator given by

β̂ = V Σ−1UTy. (5.2)

Problem 3. Write a function that finds the least squares estimator for rank-deficient models
using the SVD. The function should still take X and y as inputs. In your function, add a column
of ones to X to account for β0. Call the function svd_ols and return the least squares estimator
for β as a numpy array.

47

Hint: Use np.linalg.svd to factor X and use the argument full_matrices=False. Con-
sider solving for Σ−1 using the command, np.diag(1/s), where s is the second thing being
returned in np.linalg.svd.

Problem 4. Use the following code to generate random data:

x = np.linspace(-4, 2, 100)
y = x**3 + 3*x**2 - x - 3.5
eps = np.random.normal(0, 3, len(y)) # Create noise
y += eps # Add noise to randomize data

Now use your function svd_ols to find the least squares estimator for a cubic polynomial. This
can be done by passing in X = [x,x2,x3] into svd_ols. Create a plot that shows a scatter
plot of the data and a curve using the least squares estimator. Your plot should include a title,
axis labels, a legend, and should look similar to Figure 5.1.

4 3 2 1 0 1 2
x

15

10

5

0

5

10

15

y

SVD OLS

Data
SVD Estimator

Figure 5.1: This is the SVD estimator for a cubic polynomial.

Model Accuracy
Residual Sum of Squares

The Residual Sum of Squares (RSS) is a common choice of measure for the quality of a model. The
formula for RSS is given by

RSS = ||y −Xβ̂||22.

Notice that the RSS measures the variance in the error of the model. So relative to other models, a
smaller RSS value indicates a more accurate model.

48 Lab 5. Linear Regression

Coefficient of Determination

Another method of model accuracy is the Coefficient of Determination, denoted R2. In the case of
linear regression,

R2 = 1− RSS∑n
i=1(yi − ȳ)2

and ȳ = 1
n

∑n
i=1 yi is the sample mean of y. The intuition of R2 is that the ratio of the average

residual and biased sample variance of y is approximately the total variance explained by the model.
A larger R2 corresponds to a model that fits better. However, R2 comes with flaws such as being
able to take negative values, rewarding overfitting, and punishng under-fit models. Because of this,
we typically want to use other methods for model accuracy.

Python Example

There are various python packages that can be used to calculate R2, but we will use statsmodels
in this lab. Below is an example of how to build a model and extract R2 using statsmodels.

import statsmodels.api as sm
data = pd.read_csv("/filepath") # Read in data as pandas dataframe
y = data["dependent_variable"] # Extract dependent variable
temp_X = data[["var_1", ..., "var_n"]] # Extract independent variables
X = sm.add_constant(temp_X) # Add column of 1's
model = sm.OLS(y, X).fit() # Fit the linear regression model
print(model.rsquared) # Print the R squared value

Problem 5. The file realestate.csv contains transaction data from 2012-2013. It has columns
for transaction data, house age, distance to nearest MRT station, number of convenience stores,
latitude, longitude, and house price of unit area. a Each row in the array is a separate measure-
ment. As independent variables, use house age, distance to the nearest MRT station,
number of convenience stores, latitude, and longitude.

Find the combination of independent variables that builds the model with the best R2

value when predicting house price of unit area, the dependent variable. Use statsmodels
to build each model and calculate R2. Using the same combination of variables, time the

methods ols, svd_ols, and statsmodels. Return a list with the first element being a tuple of
times for each method and the second element being the best R2 value from the first part of
the problem.

Note that R2 cannot get worse by adding more columns and also rewards overfitting, so
solving for the R2 value isn’t the greatest in practice. The purpose of this problem is to explore
the issues of using R2.

Hint: The combinations method from the itertools package will be very helpful for
finding all feature combinations.

aSee https://www.kaggle.com/datasets/quantbruce/real-estate-price-prediction?resource=download.

https://www.kaggle.com/datasets/quantbruce/real-estate-price-prediction?resource=download

49

Feature Selection
Every regression model consists of features or variables used to predict a dependent variable or
result. An important question to ask when building regression models is, which features are the
most important in predicting the dependent variable? In addition to being used for model accuracy,
R2 can also be used in feature selection, as it was in Problem 5. It still has the same pitfalls of
rewarding overfitting and punishing under-fit models, but it can be a useful tool used in conjunction
with the following tools for feature selection. While there are other methods for implementing feature
selection, most incorporate the p-value and are not included in this lab.

Akaike’s Information Criterion (AIC)

A simple motivation for AIC is based on balancing goodness of fit and prescribing a penalty for model
complexity. A more rigorous motivation for AIC is given in Volume 3 using the Kullback-Leibler (KL)
divergence. Given two models, f and g, the KL divergence is given by

KL(f, g) =

∫
f(z) log

(
f(z)

g(z)

)
dz

and it measures the amount of information lost when g is used to model f . Thus, a lower AIC
value indicates a better model. Additionally, AIC penalizes the size of the parameter space with a
coefficient of 2 which allows for slightly more complex models.

Bayesian Information Criterion (BIC)

Instead of estimating the KL-divergence between the model in question and the true model, BIC has
the property of being minimized precisely when the posterior probability of a model, given the data,
is maximized. The equations for AIC and BIC only differ with one term: the coefficient weighting
the size of the parameter space. The coefficient for BIC is log(n) which is generally much larger than
2. As a result, BIC penalizes complex models more than AIC. The difference in AIC and BIC values
will grow from having more data points.

When using AIC or BIC for feature selection, you need to consider how you want to penalize
features in your model. If you want to exclude irrelevant features, then use BIC. If you want to keep
all features that are relevant, then use AIC. In other words, BIC is more likely to choose too small
a model, and AIC is more likely to choose too large a model.

Python Example

There are multiple ways to calculate AIC and BIC with various python packages. We will use the
package statsmodels for the following problem. When constructing X for statsmodels, do not add
the column of 1’s manually because statsmodels has a method that will do this for us.

import statsmodels.api as sm
data = pd.read_csv("/filepath") # Read in data as pandas dataframe
y = data["dependent_variable"] # Extract dependent variable
temp_X = data[["var_1", ..., "var_n"]] # Extract independent variables
X = sm.add_constant(temp_X) # Add column of 1's
model = sm.OLS(y, X).fit() # Fit the linear regression model
print(model.aic) # or print(model.bic)

50 Lab 5. Linear Regression

Problem 6. Use the file realestate.csv and the Python Example above as a template for
constructing y and X and calculating model AIC and BIC. For the dependent variable, use
house price of unit area. For the independent variables, use house age, distance to the
nearest MRT station, number of convenience stores, latitude, and longitude. Loop

through all of the combinations of these variables and create OLS models for each of these
combinations. Solve for the AIC and BIC for each of these models.

Find the model that has the lowest AIC and the model that has the lowest BIC. Print the
features of the model with the lowest AIC and then the features of the model with the lowest
BIC as separate lists.

Hint: The combinations method from the itertools package will be very helpful for
finding all feature combinations.

Regularization
Up to this point, we have been solving the problem

min
β
||Xβ − y||22.

However, we have also assumed independence among the features used to predict the dependent
variable. The pitfall of multicollinearity arises when the features of X have dependence and X

becomes nearly singular. As a result, the least squares estimator is susceptible to random noise or
error. Multicollinearity typically occurs when data is collected with poor experimental design. It is
important to have good experimental design, but regularization can be used to mitigate poor design.
Another issue OLS faces is feature selection. While there are feature selection methods available,
regularization can be used to minimize non-zero coefficients.

Ridge Regularization Regression

The problem posed by Ridge Regularization is

min
β
||Xβ − y||22 + α||β||22

where α ≥ 0. This essentially penalizes the size of the coefficients. The larger α is, the more the
model resists multicollinearity.

Lasso Regularization Regression

The problem posed by Lasso Regularization is

min
β

1

n
||Xβ − y||22 + α||β||1.

Note that α provides the same functionality here as it does in Ridge Regularization. However, the
use of the 1-norm often results in sparse solutions. As a result, Lasso Regularization can be used for
feature selection since it only includes the most important features.

51

Python Example

Since α is not a fixed value in Ridge and Lasso Regularization, it is best practice to perform a Grid-
Search to find the best parameter value. The example below goes over the syntax for implementing
Ridge Regularization. Note that the syntax for Lasso Regularization is similar.

>>> from sklearn import linear_model
>>> y = # dependent variable data
>>> X = # independent variable data with no column of ones
>>> reg = linear_model.RidgeCV(alphas=np.logspace(-6, 6, 13)) # Range for grid ←↩

search
>>> reg.fit(X, y) # Fit the model
>>> reg.alpha_ # Best parameter value

Problem 7. Use Ridge and Lasso Regression to model house price of unit area from the
file realestate.csv. Use the same columns for your independent variables as you did in
Problem 6. First, do a grid search for the model parameter for both the Ridge and the Lasso
models, separately. Note that the objects RidgeCV and LassoCV have built in cross-validation.
Be sure to pass in alphas=np.logspace(-6, 6, 13) as grid parameters for each of the models.
Then use the grid search result to fit each model. Once you have fit the model, you can use the
score method to get R2. Print R2 for each model as a tuple.

52 Lab 5. Linear Regression

6 Logistic Regression

Lab Objective: Understand the basic principles of Logistic Regression and binary classifiers.
Apply this to a dataset.

Linear regression is unsuitable for predicting probabilities, because the resulting model may
take values in any fixed interval in R, but a probability-predicting model can only take values in the
interval [0, 1]. Logistic regression is a form of regression that always takes its values in the interval
[0, 1] and as such, is a popular method for predicting probabilities and for constructing classifiers.
As in linear regression, in a classification problem we have a random variable Y , conditioned on an
input X ∈ Rd. However, in binary classification problems the random variable Y is binary, that is,
Y ∈ {0, 1}. A binary classifier is any function f taking values in {0, 1}. For example, x ∈ Rd could
be the pixel intensities of an image, and the classifier f gives 1 if the image is a picuture of a duck
and 0 otherwise. The goal of a classification problem is to choose a classifier f̂ so that (X, f̂(X)) is
a good approximation for (X,Y).

Logistic Regression
Logistic regression relies heavily on the logistic function, also known as the sigmoid function, sigm :

R→ (0, 1) given by

sigm(x) =
1

1 + e−x
. (6.1)

8 6 4 2 0 2 4 6 8
0.00

0.25

0.50

0.75

1.00

Figure 6.1: Sigmoid Function

53

54 Lab 6. Logistic Regression

This function works well for classifying objects based on probabilities, because it has some key
properties that translate well into probability theory. Of particular note, the graph can translated
by adding a constant, giving the form sigm(β1t+ β0). A larger value of β1 makes the ramp up from
0 to 1 steeper, while a smaller value of β1 makes it less steep. The trick behind logistic regression is
to find the values of βi such that the resulting sigmoid function best classifies the data.

In logistic regression models we have a random variable Y with support {0, 1}, where Y is
conditioned on another random variable X, with support in Rd. The distribution of Y , given X, is
assumed to be Bernoulli

Y | X ∼ Bernoulli(sigm(XTβ)),

so that

P (Y | X) = sigm(XTβ) =
1

1 + exp(−XTβ)
.

As in the case of linear regression, we usually add a constant feature X0 = 1 to X and a
corresponding coefficient β0 to β, so that XTβ = β0 + β1X1 + · · ·+ βdXd. Given a draw of length n

of the form D = {(x1, y1), . . . , (xn, yn)} we wish to estimate β. The maximum likelihood estimator
is a good choice. To find this estimator, first observe that the likelihood of β, given the data, is

L(β | D) =

n∏
i=1

P (Y = yi, X = xi | β)

=

n∏
i=1

P (Y = yi | X = xi,β)P (Xi).

which is equivalent to maximizing

n∏
i=1

P (Y = yi | X = xi,β) =

n∏
i=1

pyi

i (1− pi)
1−yi .

where

pi = P (Y = 1 | xi,β) = sigm(xT
i β) =

1

1 + exp(−xT
i β)

.

Taking the negative logarithm turns this into a convex minimization problem, and a little math shows
that

ℓ(β | D) =

n∑
i=1

(
yi log(1 + exp(−xT

i β)) + (1− yi) log(1 + exp(xT
i β))

)
. (6.2)

The convexity of this problem implies there is a unique minimizer β̂ of ℓ(β | D).

Problem 1. Write a fit() method in the Python LogiReg classifier that accepts an (n × 1)

array y of binary labels (0’s and 1’s) as well as an (n × d) array X of data points that uses
equation 6.2 to find and save the optimal β̂. Save X, y, and β̂ as attributes. Remember to add
a column of ones to X before implementing the fit algorithm.

55

Once the maximum likelihood estimate β̂ is found, we have an estimate for the probability

P (Y = 1 | x) ≈ sigm(xTβ̂).

From this, we can construct a classifier f̂ by setting f̂(x) = 1 if P (Y = 1 | x) ≥ 1
2 and f̂(x) = 0

otherwise.

Problem 2. Write a method called predict_prob() for your classifier that accepts an (n×d)

array x_test and returns P (Y = 1 | x_test). Also write a method called predict() that
calls predict_prob() and returns an array of predicted labels (0’s or 1’s) for the given array
x_test. Remember to add a column of ones to x_test in your predict function like you did
in the previous problem with X.

Problem 3. To test your classifier, create training arrays X and y as well as a testing array
X_test. The code to generate X, y and X_test is provided below. Both X and X_test have 100

random draws from a 2-dimensional multivariate normal distribution centered at (1, 2), and
another 100 draws from one centered at (4, 3).

Train your classifier on X and y. Then generate a list of predicted labels using your trained
classifier and X_test, and use it to plot X_test with a different color for each predicted label.
Your plot should look similar to Figure 6.2. If you didn’t add a constant column in Problem
1, go back and do that. This will allow the decision boundary between the two classes to not
intersect the origin.

>>> import numpy as np

>>> data = np.column_stack((
draw from 2 2-dim. multivariate normal dists.
np.concatenate((
np.random.multivariate_normal(np.array([1, 2]), np.eye(2), 100),
np.random.multivariate_normal(np.array([4, 3]), np.eye(2), 100)
)),
labels corresonding to each distribution
np.concatenate((np.zeros(100), np.ones(100)))))

>>> np.random.shuffle(data)
>>> # extract X and y from the shuffled data
>>> X = data[:, :2]
>>> y = data[:, 2].astype(int)

>>> X_test = np.concatenate((
draw from 2 identical 2-dim. multivariate normal dists.
np.random.multivariate_normal(np.array([1, 2]), np.eye(2), 100),
np.random.multivariate_normal(np.array([4, 3]), np.eye(2), 100)
))

>>> np.random.shuffle(X_test)

56 Lab 6. Logistic Regression

0 2 4 6

0

1

2

3

4

5

Original Data

0 2 4 6

0

1

2

3

4

5

Data labeled using LogiReg

Figure 6.2: In reality, these two distributions overlap a little, but the logistic regression model makes
a clean divide between the two.

Statsmodels and Sklearn
The module statsmodels contains a package that includes a logistic regression class called Logit.
A simple example of this class being implemented is as follows.

>>> import statsmodels.api as sm

>>> model = sm.Logit(y, X).fit(disp=0) # setting disp=0 turns off printed info
>>> probs = model.predict(X_test) # list of probabilities, not labels

Logit does not add a constant feature (column of 1’s) to X by default, so in order to do so, you must
apply the function sm.add_constant() to both X and X_test. In addition, the .fit() method does
not regularize the problem by default, which may lead to some errors involving singular matrices. To
fix this, you can use the .fit_regularized() method instead of .fit().

The module sklearn also has a package for logistic regression called LogisticRegression,
which can be implemented as follows.

>>> from sklearn.linear_model import LogisticRegression

>>> model = LogisticRegression(fit_intercept=True).fit(X, y) # X before y
>>> labels = model.predict(X_test) # predicted labels of X_test

LogisticRegression already regularizes the problem by default. The parameter fit_intercept
(which defaults to False) indicates whether you want to add a constant feature (column of 1’s) to X
and X_test.

57

You can also use sklearn to score a logistic regression model. After fitting an sklearn model,
you can call <model>.score(X_test, y_test) to find the percentage of accuracy of the model’s
prediction for X_test, given the true labels in y_test. Alternatively, you can use sklearn.metrics
.accuracy_score to find the percentage of accuracy between a list of predicted labels and the list
of true labels.

>>> from sklearn.metrics import accuracy_score

>>> true_labels = [0, 1, 2, 3, 4]
>>> pred_labels = [0, 2, 2, 2, 4] # predicted labels from logistic regression
>>> accuracy_score(true_labels, predicted_labels)
0.6

Support Vector Machines
Support Vector Machines (SVM) are another type of classifier. It uses what is called the ’kernel
trick’ to handle nonlinear input spaces. It classifies data by finding an optimal hyperplane to split
the data.

>>> from sklearn import svm

>>> svm = svm.SVC(kernel = 'linear').fit(X, y)
>>> labels = svm.predict(X_test) # predicted labels of X_test

Problem 4. The code to generate arrays X, y, X_test, and y_test is provided below. X
and X_test are each composed of 200 draws from two 20-dimensional multivariate normal

distributions, one centered at 0, and the other centered at 2.
Using each of LogiReg, statsmodels, sklearn.LogisticRegression, and sklearn.svm,

train a logistic regression classifier on X and y to generate a list of predicted labels for X_test.
Then, using y_test, print the accuracy scores for each trained model. Compare the accuracies
and training/testing time for all four classifiers. Be sure to add a constant feature with each
model.

>>> # predefine the true beta
>>> beta = np.random.normal(0, 7, 20)

>>> # X is generated from 2 20-dim. multivariate normal dists.
>>> X = np.concatenate((

np.random.multivariate_normal(np.zeros(20), np.eye(20), 100),
np.random.multivariate_normal(np.ones(20)*2, np.eye(20), 100)
))

>>> np.random.shuffle(X)
>>> # create y based on the true beta
>>> pred = 1. / (1. + np.exp(-X @ beta))
>>> y = np.array([1 if pred[i] >= 1/2 else 0

58 Lab 6. Logistic Regression

for i in range(pred.shape[0])])

>>> # X_test and y_test are generated similar to X and y
>>> X_test = np.concatenate((

np.random.multivariate_normal(np.zeros(20), np.eye(20), 100),
np.random.multivariate_normal(np.ones(20), np.eye(20), 100)
))

>>> np.random.shuffle(X_test)
>>> pred = 1. / (1. + np.exp(-X_test @ beta))
>>> y_test = np.array([1 if pred[i] >= 1/2 else 0

for i in range(pred.shape[0])])

Hint: Consider using the command fit_regularized(disp = 0) for the statsmodels case.

Multiclass Logistic Regression
Sometimes we may want to classify data into more than two categories, but so far we’ve only used
logistic regression as a binary classifier. The good news is that we can extend logistic regression to
classify more than just two categories.

The more popular method for doing this is to generalize the logistic regression model to a mul-
ticlass setting. This method is called multinomial logistic regression or sometimes softmax regression.
While standard logistic regression was based on the sigmoid function, multinomial logistic regression
is based on the softmax function S : Rk → (0, 1)k, which is a multivariate version of the sigmoid
function, given by

S (t1, . . . , tk) =

(
et1∑k
j=1 e

tj
, . . . ,

etk∑k
j=1 e

tj

)
. (6.3)

We will assume that Y | X is categorically distributed as

Cat(p1(X), . . . , pk(X)) = Cat(S (XTβ1, . . . , X
Tβk))

for some choice of vectors β1, . . . ,βk, which we will estimate from the data. Here

pi(X) = P (Y = i | X) =
eX

Tβi∑k
j=1 e

XTβj

=
sigm(XTβi)∑k
j=1 sigm(XTβj)

.

Given a draw of length n of the form D = {(x1, y1), . . . , (xn, yn)}, we wish to compute θ =

(β1, . . . ,βk) where, without loss of generality, we may assume βk = 0. The maximum likelihood
estimate of θ is computed in a manner similar to the way it was for standard logistic regression. A
bit of math shows that

ℓ(θ | D) = −
n∑

i=1

k∑
j=1

δcj (yi) log(pj(xi))

= −
n∑

i=1

k∑
j=1

δcj (yi) log

(
ex

T
iβj∑k

m=1 e
xT
iβm

)

59

where

δcj (yi) =

{
1 if yi = cj , the jth class
0 otherwise.

This is a convex minimization problem with unique minimizer θ̂. Once θ̂ = (β̂1, . . . , β̂k) is found,
we have an estimate for the probability

P (Y = y | x) ≈ ex
Tβ̂y∑k

j=1 e
xTβ̂j

.

From this, we can construct a classifier f̂ by setting f̂(x) = argmaxjP (Y = cj | x).

Conveniently, sklearn has a very simple implementation of multinomial logistic regression that
simply requires the argument multi_class='multinomial' when initiating a LogisticRegression
model.

>>> from sklearn.linear_model import LogisticRegression

>>> model = LogisticRegression(
multi_class='multinomial',
fit_intercept=True).fit(X, y) # add constant feature

Problem 5. The Iris Dataset contains information taken from 150 samples of 3 different types
of iris flowers (Setosa, Versicolor, and Virginica). The columns contain measurements for sepal
length, sepal width, pedal length, and pedal width. Import the Iris Dataset and perform a train-
test split on only the first two columns of the data with test_size=0.4. Train a multinomial
logistic regression model using the training data with an added constant feature, and generate
prediction labels for the test data. Plot the test data by color using your prediction labels.
Also, print the model score. Reference code below for accessing the Iris Dataset and for using
train_test_split.

>>> import numpy as np
>>> from sklearn.model_selection import train_test_split

>>> iris = datasets.load_iris()

>>> X = iris.data[:, :2] # we only take the first two features.
>>> y = iris.target

>>> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size←↩
=0.4)

Your plot should reflect Figure 6.3

60 Lab 6. Logistic Regression

5 6 7
Sepal Length

2.5

3.0

3.5

4.0

4.5
Se

pa
l W

id
th

Acutal X_test Data

5 6 7
Sepal Length

2.5

3.0

3.5

4.0

4.5

Se
pa

l W
id

th

Predicted X_test Data

Figure 6.3: Multinomial logistic regression attempt to categorize the Iris Dataset.

7 Naive Bayes

Lab Objective: In this lab, we will create a Naïve Bayes Classifier and use it to make an SMS
spam filter.

Naïve Bayes Classifiers
Naïve Bayes classifiers are a family of machine learning classification methods that use Bayes’ theorem
to probabilistically categorize data. They are called naïve because they assume independence between
the features. The main idea is to use Bayes’ theorem to determine the probability that a certain
data point belongs in a certain class, given the features of that data. Despite what the name may
suggest, the naïve Bayes classifier is not a Bayesian method, as it is based on likelihood rather than
Bayesian inference.

While naïve Bayes classifiers are most easily seen as applicable in cases where the features have,
ostensibly, well defined probability distributions (such as classifying sex given physical characteris-
tics), they are applicable in many other cases. In this lab, we will apply them to the problem of
spam filtering. While it is generally a bad idea to assume independence, naïve Bayes classifiers can
still be very effective, even when we can be confident that features are not independent.

Given the feature vector of a piece of data we want to classify, we want to know which of all
the classes is most likely. Essentially, we want to answer the following question

argmaxk∈KP (C = k | x), (7.1)

where C is the random variable representing the class of the data. Using Bayes’ Theorem, we can
reformulate this problem into something that is actually computable. For any k ∈ K,

P (C = k | x) = P (C = k)P (x | C = k)

P (x)
.

Now we will examine each feature individually and use the chain rule to expand the new conditional
probability:

P (x | C = k) = P (x1, . . . , xn | C = k)

= P (x1 | x2, . . . , xn, C = k)P (x2, . . . , xn | C = k)

= . . .

= P (x1 | x2, . . . , xn, C = k)P (x2 | x3, . . . , xn, C = k) · · ·P (xn | C = k).

61

62 Lab 7. Naive Bayes

By applying the assumption that each feature is independent we can drastically simplify this expres-
sion to the following:

P (x1 | x2, . . . , xn, C = k) · · ·P (xn | C = k) =

n∏
i=1

P (xi | C = k).

Therefore we have that

P (C = k | x) = P (C = k)

P (x)

n∏
i=1

P (xi | C = k),

which reforms Equation 7.1 as

argmaxk∈KP (C = k | x) = argmaxk∈KP (C = k)

n∏
i=1

P (xi | C = k). (7.2)

We can drop the P (x) in the denominator since it does not depend on k. In this form, the problem
is computationally tractable, since we can use the training data to find approximations of P (C = k)

and P (xi | C = k) for each i and k. Something to note here is that we are actually maximizing
P (C = k | x) by computing and maximizing P (C = k,x). This means that naïve Bayes is a
generative classifier, and not a discriminative classifier.

Spam Filters
A spam filter is just a special case of a classifier with two classes: spam and not spam (often called
ham). Spam filtering is a situation where naive Bayes classifiers perform relatively well. Throughout
the lab, we will use the SMS spam dataset contained in sms_spam_collection.csv. The messages
in this dataset have already been cleaned by converting to lowercase and removing all punctuation.
To load the dataset, use the following code:

import pandas as pd
df = pd.read_csv("sms_spam_collection.csv")

separate the data into the messages and labels
X = df.Message
y = df.Label

Before we can construct a naive Bayes classifier, we need to choose a probability distribution
for the xi. Two common choices are categorical distributions and Poisson distributions. We will first
create a classifier using a categorical distribution. In this case, each feature xi represents the i-th
word of a message. The probability P (xi | C = k) then represents the probability that a specific
word in the message is the word that we observed, given that the category is k. For simplicity, we
assume that these values do not change with respect to i, so the probability of observing a specific
word is the same for every position in a message.

Suppose we have a labeled training dataset. To train the model, we need to just find values
for P (C = k) and P (xi | C = k). In this case, a reasonably good choice is the maximum likelihood
estimator, which in this case is just

P (C = k) =
Nsamples in k

Nsamples

P (xi | C = k) =
Noccurrences of xi in class k

Nwords in class k

63

However, this choice leads to some issues. For example, if a certain word xj occurs only in spam
messages and never in ham messages in our training dataset, then our classifier will predict P (xi |
C = ham) = 0 for any message that contains xj . This is not desirable, but to make matters worse,
the same situation could happen for both classes within a single message, leading our model to
predict P (xi | C = k) = 0 for all classes. This makes our classifier unable to classify such samples.
To circumvent this issue, we will use Laplace add-one smoothing, which consists of adding 1 to the
numerator of P (xi | C = k) and 2 to its denominator. So, the probabilities we will use are the
following:

P (C = spam) =
Nmessages in spam

Nsamples
, (7.3)

P (C = ham) =
Nmessages ham

Nsamples
, (7.4)

P (xi | C = k) =
Noccurrences of xi in class k + 1

Ntotal words in class k + 2
. (7.5)

The result of Laplace add-one smoothing is equivalent to the maximum likelihood estimators if a
certain Bayesian prior is used for the probabilities. We don’t use this for the P (C = k), since it is
not really needed for those probabilities and does not lead to any particular benefit. Lastly, note
that the denominator in Equation 7.5 is not the number of unique words in class k, but the total
number of occurrences of any word in class k.

Problem 1. Create a class NaiveBayesFilter. Implement a method fit() that accepts the
training data X and the training labels y. In this method, compute the probabilities P (C =

spam) and P (C = ham) as in Equations (7.3) and (7.4). Also compute the probabilities
P (xi | C = k) for each word in both the spam and ham classes, thereby training the model. Store
these computed probabilities in dictionaries called self.spam_probs and self.ham_probs,
where the key is the word and the value is the associated probability. Make sure to include
an entry in each dictionary for every word that shows up in either class, even if there are no
occurrences.

For example, self.ham_probs["out"] will give the computed value for P (xi = “out” |
C = ham) value:

Example model trained on the first 300 data points
>>> nb = NaiveBayesFilter()
>>> nb.fit(X[:300], y[:300])

Check spam and ham probabilities of "out"
>>> nb.ham_probs["out"]
0.003147128245476003
>>> nb.spam_probs["out"]
0.004166666666666667

64 Lab 7. Naive Bayes

Hint: be sure you count the number of occurrences of a word, and not simply of a string.
For example, when searching the string "find it in there" for the word "in", make sure
you get 1 and not 2 (because of the "in" in "find"). The methods pd.Series.str.split()
and count() may be helpful. When using split(), call it without any arguments, as otherwise
you may accidentally add empty strings to your data.

Predictions

Now that we have trained our model, we can predict the class of a message by calculating

P (C = k)

n∏
i=1

P (xi | C = k)

for each class k, then choosing the class that maximizes this probability. As discussed above, this is
equivalent to maximizing the probability P (C = k | x); however, be aware that we are not actually
computing those. The probabilities we compute here will not sum to 1, since they are actually the
values P (C = k,x).

However, directly computing this probability as a product can lead to an issue: underflow. If x
is a particularly long message, then, since we are multiplying lots of numbers between 0 and 1, it is
possible for the computed probability to underflow, or become too small to be machine representable
with ordinary floating-point numbers. In this case the computed probability becomes 0. This is
particularly problematic because if underflow happens for a sample for one class, it will likely also
happen for all of the other classes, making such samples impossible to classify. To avoid this issue,
we will work with the logarithm of the probability:

lnP (x, C = k) = ln (P (C = k)) +

n∑
i=1

ln (P (xi | C = k)) . (7.6)

This has the same maximizer as before, so our predictions are unaffected, while also avoiding any
issues with underflow.

Problem 2. Implement the predict_proba() method in your naïve Bayes classifier. It should
take as an argument X, the data that needs to be classified, and it will compute the log proba-
bilities as given in Equation 7.6 for each message in X. In the case we have some word xu that
is not found in the training set, use the value P (xu | C = k) = 1

2 for both classes.
The method should return an (N, 2) array, where N is the length of X, whose entries

are the log probabilities of each message x in X belonging to each category. The first column
corresponds to lnP (x, C = ham), and the second to lnP (x, C = spam).

Your code should produce the following output with the example from Problem 1:

>>> nb.predict_proba(X[800:805])
array([[-30.8951931 , -35.42406687],

[-108.85464069, -91.70332157],
[-74.65014875, -88.71184709],
[-164.94297917, -133.8497405],
[-127.17743715, -101.32098062]])

65

Hint: The dataframe X’s index might not be in order or consecutive integers, so accessing
its rows as X[i] may lead to errors later. Using for row in X or similar to iterate will work
better.

Problem 3. Implement the method predict(). Accept as an argument X, the data to be
classified, and return an array with the same shape holding the predicted class for each sam-
ple in X. The entries of this array should be strings "spam" and "ham". Use your method
predict_proba() to compute the log probabilites of each class. In case of a tie, predict "ham".

Your code should produce the following output with the example from Problem 1:

>>> nb.predict(X[800:805])
array(['ham', 'spam', 'ham', 'spam', 'spam'], dtype=object)

Problem 4. We now test our spam filter. Use the sklearn’s train_test_split function with
the default parameters to split the data into training and test sets. Train a NaiveBayesFilter
on the train set, and have it predict the labels of each message in the test set. Compute the
answer to the following questions:

• What proportion of the spam messages in the test set were correctly identified by the
classifier?

• What proportion of the ham messages were incorrectly identified?

Return the answers to these questions as a tuple.

The Poisson Model

Now that we’ve examine one way to constructing a naïve Bayes classifier, let us look at one more
method. In the Poisson model we assume that each word in the vocabulary is Poisson random
variable, occurring with potentially different frequencies among spam and ham messages. Because
each of the messages is a different length, we can reparameterize the Poisson PMF to the following

P (ni = x) =
(rn)xe−rn

x!
(7.7)

where ni is the number of times word i occurs in a message, n is the length of the message, and λ = rn

is the classical Poisson rate. In this case r represents the number of events per unit time/space/etc.
We will again use maximum likelihood estimation to find the values of r for each word and class.

66 Lab 7. Naive Bayes

Training the Model

Similar to the other classifier that we made, training the model amounts to using the training data
to determine how P (xi | C = k) is computed, as well as compting P (C = k). For the Poisson model
we must find a value for r for each word that appears in the training set. To do this we will use
maximum likelihood estimation. We will label the chosen value of r for the i-th word and class k

as ri,k. In this case, since we are using a Poisson distribution (7.7) for each word, we will solve the
following problem for both the spam class and the ham classes

ri,k = argmaxr∈[0,1]

(rNk)
Ni,ke−rNk

Ni,k!
, (7.8)

where Nk = Ntotal words in class k is the total number of words in class k and Ni,k = Noccurences of word i in class k

is the number of times the i-th word occurs in class k. We have r ∈ [0, 1] because a word cannot
occur more than once per word in the message. It can then be shown that the maximizing value is

ri,k = Noccurences of word i in class k/Ntotal words in class k.

However, observe that in Equation (7.7), if we have r = 0 then P (ni = x) = 0 whenever x > 0.
This leads to the exact same issue we saw with the categorical approach, and will lead to predicted
probabilities being 0. To resolve this issue, we will again use Laplace add-one smoothing and instead
use the values

ri,k =
Noccurences of word i in class k + 1

Ntotal words in class k + 2
. (7.9)

As before, this can be interpreted as the maximum likelihood estimator if we start with a certain
Bayesian prior for r.1

Making predictions with this model is exactly the same as we did earlier, albeit with slightly
different equations. Specifically, if we write Equation 7.6 with the Poisson probability, our prediction
is given by

argmaxk∈K ln (P (C = k)) +
∑

i∈Vocab

ln

(
(ri,kn)

nie−ri,kn

ni!

)
, (7.10)

with ni the number of times the ith word occurs in the message, n the total number of words in the
message, and ri,k the Poisson rate of the ith word in class k.

Problem 5. Create a new class called PoissonBayesFilter, with three methods called fit(),
predict_proba(), and predict(), analogous to those in the NaiveBayesFilter class.

Implement fit() by finding the MLE found in Equation 7.9 to predict r for each word
in both the spam and ham classes, thereby training the model. Store these computed rates in
dictionaries called self.spam_rates and self.ham_rates, where the key is the word and the
value is the associated r.

For example, self.ham_rates["in"] will give the computed r value for the word "in"
found in ham messages.

Example model trained on the first 300 data points
>>> pb = PoissonBayesFilter()
>>> pb.fit(X[:300], y[:300])

Check spam and ham rate of 'in'

1Note that these rates are exactly the same as the probabilities we computed for the categorical model.

67

>>> pb.ham_rates["in"]
0.012588512981904013
>>> pb.spam_rates["in"]
0.004166666666666667

Implement the predict_proba() and predict() methods using equation 7.10. These
methods will take the same arguments and return the same object types as the methods of the
same name in the NaiveBayesFilter class. If a word u not in the training set is in one of the
messages, use the value ru,k = 1/(Nk + 2). In case of a tie in the probabilities of two classes,
predict "ham". Your code should produce the following output with the example above:

>>> pb.predict_proba(X[800:805])
array([[-37.14113097, -38.2193235],

[-112.61977379, -83.54702923],
[-55.70966168, -63.83602125],
[-130.02471282, -90.15687624],
[-102.36539804, -69.55261684]])

>>> pb.predict(X[800:805])
array(['ham', 'spam', 'ham', 'spam', 'spam'], dtype=object)

Hint: Most of your code will be very similar to your NaiveBayesFilter class. The
function np.unique with the argument return_counts=True and the function scipy.stats.
poisson.logpmf will be useful for predict_proba().

Problem 6. In the function prob6(), use the sklearn.model_selection.train_test_split
function to split the data into training and test sets. Train a PoissonBayesClassifier on the
train set, and have it predict the labels of each message in the test set. Compute the answer
to the following questions:

• What proportion of the spam messages in the test set were correctly identified by the
classifier?

• What proportion of the ham messages were incorrectly identified?

Return the answers to these two questions as a tuple.
How do the performances of the categorical and Poisson models compare?

Naive Bayes with Sklearn

Now that we’ve explored a few ways to implement our own naïve Bayes classifier, we can examine
some robust tools from the sklearn library that will accomplish all the things we’ve coded up in a
very simple manner.

68 Lab 7. Naive Bayes

The first thing we need to do is create a dictionary and transform the training data, which
is what our first fit() method did. We instantiate a CountVectorizer model from sklearn.
feature_extraction.text, and then use the fit_transform() method to create the dictionary
and transform the training data.

from sklearn.feature_extraction.text import CountVectorizer

vectorizer = CountVectorizer()
train_counts = vectorizer.fit_transform(X_train)

Now we can use the transformed training data to fit a MultinomialNB model from sklearn.naive_bayes
.

from sklearn.naive_bayes import MultinomialNB

clf = MultinomialNB()
clf = clf.fit(train_counts, y_train)

Testing data we want to classify must first be transformed by our vectorizer with the transform()
method (not the fit_transform() method). We can then classify the data using the predict()
method of the MultinomialNB model.

test_counts = vectorizer.transform(X_test)
labels = clf.predict(test_counts)

This naïve Bayes model uses the multinomial distribution where we have used the categorical and
poisson distributions. Multinomial is very similar to the categorical implementation, as the multi-
nomial distribution models the outcome of n categorical trials (in the same way that the binomial
distribution models n Bernoulli trials).

Problem 7. Write a function that will classify messages using the SkLearn naive Bayes imple-
mentation. It will take as arguments training data X_train and y_train, and test data X_test.
In this function use the CountVectorizer and MultinomialNB from SkLearn and return the
predicted classification of the model.

8 Metropolis Algorithm

Lab Objective: Understand the basic principles of the Metropolis algorithm and apply these ideas
to the Ising Model.

The Metropolis Algorithm
Sampling from a given probability distribution is an important part of many tasks throughout the
sciences. When modeling real-world problems, these distributions are often very complicated, and
direct sampling methods require computing high-dimensional integrals and are thus impractical.
The Metropolis algorithm is an effective method to sample from many of these distributions. This
algorithm only requires evaluating the probability density function up to a constant of proportionality.
In particular, the Metropolis algorithm does not require us to compute any difficult high-dimensional
integrals, such as those that are found in the denominator of Bayesian posterior distributions.

Suppose that h : Rn → R is the probability density function of a distribution that is difficult to
evaluate (for example, a Bayesian posterior distribution), while some function f(θ) = c · h(θ) is easy
to evaluate. The Metropolis algorithm is an MCMC sampling method which constructs a Markov
chain Y whose invariant distribution is exactly the distribution associated with h. We can then use
these samples as a sample from this distribution.

For the Metropolis algorithm, we need two ingredients: a proposal function, and an acceptance
function. The proposal function is used to choose a potential next state. We denote this function as
Q(x,y) : Rn×Rn → R. For each y ∈ Rn, Q(·,y) is the probability density function for the proposed
state. This distribution needs to be easy to sample from; typical choices are uniform or normal
distributions. For simplicity we also require this function to be symmetric, so Q(x,y) = Q(y,x). In
words, the probability density of moving from x to y is the same as moving from y to x for all x
and y.

The acceptance function A : Rn × Rn → R gives the probability that we actually transition
from the current state y to the proposed state x.1 This function is defined by

A(x,y) = min

(
1,

f(x)

f(y)

)
.

1In the Volume 3 textbook, the proposal function for continuous distributions and the acceptance function are
denoted fXt+1|Xt=y(x) and ax,y respectively. In this lab we instead write them as Q(x,y) and A(x,y) to make it
clearer that they are functions of x and y.

69

70 Lab 8. Metropolis Algorithm

Following the proposals from Q causes us to wander around the space of allowed states. The accep-
tance function from A modifies this wandering so that we spend more time in more likely regions.

Algorithm 1 Metropolis Algorithm
1: procedure Metropolis Algorithm
2: Choose initial point y0.
3: for t = 1, 2, . . . do
4: Draw x ∼ Q(·,yt−1)

5: Draw a ∼ unif(0, 1)
6: if a ≤ A(x,yt−1) then
7: yt = x

8: else
9: yt = yt−1

10: Return y1,y2,y3, . . .

These functions form the basis for the Metropolis algorithm. At each step, given our current
state yt, we propose a new state according to the distribution x ∼ Q(·,yt). We then accept the
proposed state with probability A(x,yt). If we accept the proposal, we set yt+1 = x; otherwise, we
set yt+1 = yt. Refer to Algorithm 1 for a write-up of this algorithm. Under certain conditions on Q,
the Markov chain the samples y1,y2,y3 . . . are from will have a unique invariant distribution with
density h, and any initial state will converge to this distribution.

We can consider each of the samples yi as draws from the distribution of h. Most of the time
we don’t just want samples from the distribution, but independent samples. However, the samples
yt and yt+1 are clearly not independent. We can get around this issue by only keeping some of the
samples, for example every 10th or 100th sample. While yt and yt+1 aren’t independent, yt and
yt+100 will be closer to being independent.

Finally, for numerical reasons, it is often wise to make calculations of the acceptance functions
in log space:

logA(x,y) = min(0, log f(x)− log f(y)).

Let’s apply the Metropolis algorithm to an example of Bayesian analysis. Consider the exam
scores in examscores.csv, and suppose that these scores are distributed normally with (unknown)
mean µ and variance σ2. We wish to compute the posterior distribution for µ and σ2. Denote the
data as d1, . . . , dN and assume the prior distributions

µ ∼ N (m = 80, s2 = 16)

σ2 ∼ IG(α = 3, β = 50).

Note that IG is the inverse gamma distribution. In this situation, we wish to sample from the
posterior distribution

p(µ, σ2 | d1, . . . , dN) =
p(µ)p(σ2)

∏N
i=1N (di |µ, σ2)∫∞

−∞
∫∞
0

p(µ′)p(σ2′)
∏N

i=1N (di |µ′, σ2′) dσ2′dµ′
.

However, we can conveniently calculate only the numerator of this expression. Since the denominator
is simply a constant with respect to µ and σ2, the numerator can serve as the function f in the
Metropolis algorithm, and the denominator can serve as the constant c.

We choose our proposal function to be based on a bivariate Normal distribution:

Q(x,y) = N (x |y, uI),

i.e. normally distributed with mean y and variance uI where I is the 2×2 identity matrix and u > 0.

71

def proposal(y, u):
"""Returns the proposal, i.e. a draw from Q(x,y) = N(x|y,uI)."""
return stats.multivariate_normal.rvs(mean=y, cov=u*np.eye(len(x)))

def propLogDensity(x, muprior, sig2prior, scores):
"""Calculate the log of the proportional density funciton f."""
if x[1] <= 0:

return -np.inf
logprob = muprior.logpdf(x[0]) + sig2prior.logpdf(x[1])
logprob += stats.norm.logpdf(scores, loc=x[0], scale=np.sqrt(x[1])).sum()
return logprob

def acceptance(x, y, muprior, sig2prior, scores):
"""
Returns the acceptance probability of moving from y to x.
"""
return np.exp(min(0,

propLogDensity(x, muprior, sig2prior, scores)
- propLogDensity(y, muprior, sig2prior, scores)

))

We are now ready to code up the Metropolis algorithm using these functions. We will keep track
of the samples generated by the algorithm, along with the proportional log probabilities log f(yt)

and the proportion of proposed samples that were accepted.

We will evaluate the quality of our results by plotting the log probabilities, the µ samples, the
σ2 samples, and kernel density estimators for the marginal posterior distributions of µ and σ2. The
kernel density estimators approximate the continuous distribution of the marginal distributions. The
kernel density estimator for µ should be approximately normal, and the kernel density estimator for
σ2 should be approximately an inverse gamma.

0 100 200 300 400 500

1750

1500

1250

1000

750

500

250

Figure 8.1: Log densities of the first 500 Metropolis samples.

72 Lab 8. Metropolis Algorithm

0 2000 4000 6000 8000 10000
40

50

60

70

80

90

 samples

80 82 84 86 88 90 92
0.00

0.05

0.10

0.15

0.20

0.25

 posterior

0 2000 4000 6000 8000 10000

20

40

60

80

100

120

2 samples

25 50 75 100 125 150 175 200
0.000

0.005

0.010

0.015

0.020

0.025

2 posterior

Figure 8.2: Metropolis samples and KDEs for the marginal posterior distribution of µ (top row) and
σ2 (bottom row).

Problem 1. Write a function that uses the Metropolis Hastings algorithm to draw from the
posterior distribution over the mean µ and variance σ2. Use the given functions and Algorithm
1 to complete the problem.

Your function should return an array of draws, an array of the log probabilities, and an
acceptance rate. Create plots resembling Figures 8.1 and 8.2:

• Plot the log probabilities of the first 500 samples.

• Plot the samples for µ in the order they were drawn, and likewise for σ2.

• Using seaborn.kdeplot plot the distribution of all samples for µ, and likewise for σ2.

Use u = 20 for the parameter of the proposal function. Use the initial state y0 = (µ0, σ
2
0) =

(40, 10). Take 10,000 samples for both µ and σ2.
Use the following code to load the data and initialize the priors:

Load in the data and initialize priors
>>> scores = np.load("examscores.npy")

73

Prior sigma^2 ~ IG(alpha, beta)
>>> alpha = 3
>>> beta = 50
>>> muprior = stats.norm(loc=m, scale=sqrt(s**2))

#Prior mu ~ N(m, s)
>>> m = 80
>>> s = 4
>>> sig2prior = stats.invgamma(alpha, scale=beta)

The Ising Model

In statistical mechanics, the Ising model describes how atoms interact in ferromagnetic material.
Assume we have some lattice Λ of sites. We say i ∼ j if i and j are adjacent sites. Each site i in
our lattice is assigned an associated spin σi ∈ {±1}. A state in our Ising model is a particular spin
configuration σ = (σk)k∈Λ. If L = |Λ|, then there are 2L possible states in our model. If L is large,
the state space becomes huge, which is why MCMC sampling methods (in particular the Metropolis
algorithm) are so useful in calculating model estimations.

With any spin configuration σ, there is an associated energy

H(σ) = −J
∑
i∼j

σiσj

where J > 0 for ferromagnetic materials, and J < 0 for antiferromagnetic materials. Throughout
this lab, we will assume J = 1, leaving the energy equation to be H(σ) = −

∑
i∼j σiσj where the

interaction from each pair is added only once.

We will consider a lattice that is a 100 × 100 square grid. The adjacent sites for a given site
are those directly above, below, to the left, and to the right of the site, so to speak. For sites on the
edge of the grid, we assume it wraps around. In other words, a site at the farthest left side of the
grid is adjacent to the corresponding site on the farthest right side. Thus, a single spin configuration
can be represented as a 100× 100 array, with entries of ±1.

The following code will construct a random spin configuration of size n:

def random_lattice(n):
"""Constructs a random spin configuration for an nxn lattice."""
random_spin = np.zeros((n, n))
for k in range(n):

random_spin[k, :] = 2*np.random.binomial(1, .5, n) -1
return random_spin

74 Lab 8. Metropolis Algorithm

Figure 8.3: Spin configuration from random initialization.

Problem 2. Write a function that accepts a spin configuration σ for a lattice as a NumPy
array. Compute the energy H(σ) of the spin configuration. Be careful to not double count site
pair interactions!
(Hint: np.roll() may be helpful.)

Different spin configurations occur with different probabilities, depending on the energy of the
spin configuration and β > 0, a quantity inversely proportional to the temperature. More specifically,
for a given β, we have

Pβ(σ) =
e−βH(σ)

Zβ

where Zβ =
∑

σ e
−βH(σ). Because there are 2100·100 = 210000 possible spin configurations for our

particular lattice, computing this sum is infeasible. However, the numerator is quite simple, provided
we can efficiently compute the energy H(σ) of a spin configuration. Thus the ratio of the probability
densities of two spin configurations is simple:

Pβ(σ
∗)

Pβ(σ)
=

e−βH(σ∗)

e−βH(σ)
= eβ(H(σ)−H(σ∗))

The simplicity of this ratio should lead us to think that a Metropolis algorithm might be an
appropriate way by which to sample from the spin configuration probability distribution, in which
case the acceptance probability would be

A(σ∗, σ) =

{
1 if H(σ∗) < H(σ)

eβ(H(σ)−H(σ∗)) otherwise.
(8.1)

75

By choosing our transition matrix Q cleverly, we can also make it easy to compute the energy for
any proposed spin configuration. We restrict our possible proposals to only those spin configurations
in which we have flipped the spin at exactly one lattice site, i.e. we choose a lattice site i and flip its
spin. Thus, there are only L possible proposal spin configurations σ∗ given σ, each being proposed
with probability 1

L , and such that σ∗
j = σj for all j ̸= i, and σ∗

i = −σi. Note that we would never
actually write out this matrix (it would be 210000× 210000). Computing the proposed site’s energy is
simple: if the spin flip site is i, then we have

H(σ∗) = H(σ) + 2
∑
j:j∼i

σiσj . (8.2)

Problem 3. Write a function that accepts an integer n and chooses a pair of indices (i, j)

where 0 ≤ i, j ≤ n− 1. Each possible pair should have an equal probability 1
n2 of being chosen.

Problem 4. Write a function that accepts a spin configuration σ, its energy H(σ), and integer
indices i and j. Use (8.2) to compute the energy of the new spin configuration σ∗, which is σ

but with the spin flipped at the (i, j)th entry of the corresponding lattice. Do not explicitly
construct the new lattice for σ∗.

Problem 5. Write a function that accepts a float β and spin configuration energies H(σ)

and H(σ∗). Using (8.1), calculate whether or not the new spin configuration σ∗ should
be accepted (return True or False). Consider doing the calculations in log space. (Hint:
np.random.binomial() might be useful)

To track the convergence of the Markov chain, we would like to look at the probabilities of
each sample at each time. However, this would require us to compute the denominator Zβ , which
is generally the reason we have to use a Metropolis algorithm to begin with. We can get away with
examining only −βH(σ). We should see this value increase as the algorithm proceeds, and it should
converge once we are sampling from the correct distribution. Note that we don’t expect these values
to converge to a specific value, but rather to a restricted range of values.

Problem 6. Write a function that accepts a float β > 0 and integers n, n_samples, and
burn_in. Initialize an n × n lattice for a spin configuration σ using Problem 2. Use the
Metropolis algorithm to (potentially) update the lattice burn_in times.

1. Use Problem 3 to choose a site for possibly flipping the spin, thus defining a potential
new configuration σ∗.

2. Use Problem 4 to calculate the energy H(σ∗) of the proposed configuration.

3. Use Problem 5 to accept or reject the proposed configuration. If it is accepted, set σ = σ∗

by flipping the spin at the indicated site.

76 Lab 8. Metropolis Algorithm

4. Track −βH(σ) at each iteration (independent of acceptance).

After the burn-in period, continue the iteration n_samples times, also recording every 100th
sample (to prevent memory failure). The acceptance rate is counted after the burn-in period.
Return the samples, the sequence of weighted energies −βH(σ), and the acceptance rate.

Test your sampler on a 100 × 100 grid with 20,0000 total iterations, with n_samples
large enough so that you will keep 50 samples, for β = 0.2, 0.4, 1. Plot the proportional log
probabilities across all iterations (including the burn-in), as well as a late sample from each
test. How does the ferromagnetic material behave differently with differing temperatures?
Recall that β is an inverse function of temperature. You should see more structure with lower
temperature, as illustrated in Figure 8.4.

To show the spin configuration, use plt.imshow(L,cmap='gray').

77

0 25000 50000 75000 100000 125000 150000 175000 200000

0

200

400

600

800

(a) Proportional log probs when β = 0.2. (b) Spin configuration sample when β = 0.2.

0 25000 50000 75000 100000 125000 150000 175000 200000

0

1000

2000

3000

4000

(c) Proportional log probs when β = 0.4. (d) Spin configuration sample when β = 0.4.

0 25000 50000 75000 100000 125000 150000 175000 200000

0

2500

5000

7500

10000

12500

15000

17500

(e) Proportional log probs when β = 1. (f) Spin configuration sample when β = 1.

Figure 8.4

78 Lab 8. Metropolis Algorithm

9 Gibbs Sampling and
LDA

Lab Objective: Understand the basic principles of implementing a Gibbs sampler. Apply this to
Latent Dirichlet Allocation.

Gibbs Sampling
Gibbs sampling is an MCMC sampling method in which we construct a Markov chain which is used
to sample from a desired joint (conditional) distribution

P(x1, · · · , xn | y).

Often it is difficult to sample from this high-dimensional joint distribution, while it may be easy to
sample from the one-dimensional conditional distributions

P(xi | x−i,y)

where x−i = x1, · · · , xi−1, xi+1, · · · , xn.

Algorithm 1 Basic Gibbs Sampling Process.
1: procedure Gibbs Sampler
2: Randomly initialize x1, x2, . . . , xn.
3: for k = 1, 2, 3, . . . do
4: for i = 1, 2, . . . , n do
5: Draw x ∼ P(xi | x−i,y)

6: Fix xi = x

7: x(k) = (x1, x2, . . . , xn)

A Gibbs sampler proceeds according to Algorithm 1. Each iteration of the outer for loop is
a sweep of the Gibbs sampler, and the value of x(k) after a sweep is a sample. This creates an
irreducible, non-null recurrent, aperiodic Markov chain over the state space consisting of all possible
x. The unique invariant distribution for the chain is the desired joint distribution

P(x1, · · · , xn | y).

Thus, after a burn-in period, our samples x(k) are effectively samples from the desired distribution.

79

80 Lab 9. Gibbs Sampling and LDA

Consider the dataset of N scores from a calculus exam in the file examscores.npy. We believe
that the spread of these exam scores can be modeled with a normal distribution of mean µ and
variance σ2. Because we are unsure of the true value of µ and σ2, we take a Bayesian approach and
place priors on each parameter to quantify this uncertainty:

µ ∼ N(ν, τ2) (a normal distribution)
σ2 ∼ IG(α, β) (an inverse gamma distribution)

Letting y = (y1, . . . , yN) be the set of exam scores, we would like to update our beliefs of µ and σ2

by sampling from the posterior distribution

P(µ, σ2 | y, ν, τ2, α, β).

Sampling directly can be difficult. However, we can easily sample from the following conditional
distributions:

P(µ | σ2,y, ν, τ2, α, β) = P(µ | σ2,y, ν, τ2)

P(σ2 | µ,y, ν, τ2, α, β) = P(σ2 | µ,y, α, β)

The reason for this is that these conditional distributions are conjugate to the prior distributions,
and hence are part of the same distributional families as the priors. In particular, we have

P(µ | σ2,y, ν, τ2) ∼ N(ν∗, (τ∗)2)

P(σ2 | µ,y, α, β) ∼ IG(α∗, β∗),

where

(τ∗)2 =

(
1

τ2
+

N

σ2

)−1

ν∗ = (τ∗)2

(
ν

τ2
+

1

σ2

N∑
i=1

yi

)

α∗ = α+
N

2

β∗ = β +
1

2

N∑
i=1

(yi − µ)2

Note that ν∗ and (τ∗)
2 are not samples and are not used to replace µ and σ2 themselves; rather,

they’re parameters of the marginal distribution of µ (which happens to also be distributed normally)
as shown above.

We have thus set this up as a Gibbs sampling problem, where we have only to alternate between
sampling µ and sampling σ2 (so using a two dimensional version of Algorithm 1, we would have
x1 = µ and x2 = σ2). We can sample from a normal distribution and an inverse gamma distribution
as follows:

import numpy as np
from scipy.stats import norm
from scipy.stats import invgamma

mu = 0 # the mean

81

sigma2 = 9 # the variance
normal_sample = norm.rvs(mu, scale=np.sqrt(sigma))
alpha = 2
beta = 15
invgamma_sample = invgamma.rvs(alpha, scale=beta)

Note that when sampling from the normal distribution, we need to set the scale parameter to the
standard deviation, not the variance.

Problem 1. Write a function that accepts data y, prior parameters ν, τ2, α, and β, and an
integer n. Use Gibbs sampling to generate n samples of µ and σ2 for the exam scores problem.

Test your sampler with priors ν = 80, τ2 = 16, α = 3, and β = 50, collecting 1000

samples. Plot your samples of µ and your samples of σ2 versus the number of samples. They
should both converge quickly, so that both plots look like “fuzzy caterpillars”.

We’d like to look at the posterior marginal distributions for µ and σ2. To plot these from the
samples, use a kernel density estimator from scipy.stats. If our samples of µ are called mu_samples,
then we can do this with the following code.

import numpy as np
from matplotlib import pyplot as plt
from scipy.stats import gaussian_kde

mu_kernel = gaussian_kde(mu_samples)
x = np.linspace(min(mu_samples) - 1, max(mu_samples) + 1, 200)
plt.plot(x, mu_kernel(x))
plt.show()

80 82 84 86 88 90 92
0.00

0.05

0.10

0.15

0.20

0.25

(a) Posterior distribution of µ.

40 60 80 100 120 140 160 180
0.000

0.005

0.010

0.015

0.020

(b) Posterior distribution of σ2.

Figure 9.1: Posterior marginal probability densities for µ and σ2.

82 Lab 9. Gibbs Sampling and LDA

Keep in mind that the plots above are of the posterior distributions of the parameters, not of
the scores. If we would like to compute the posterior distribution of a new exam score ỹ given our
data y and prior parameters, we compute what is known as the posterior predictive distribution:

P(ỹ | y, λ) =
∫
Θ

P(ỹ | Θ)P(Θ | y, λ)dΘ

where Θ denotes our parameters (in our case µ and σ2) and λ denotes our prior parameters (in our
case ν, τ2, α, and β).

Rather than actually computing this integral for each possible ỹ, we can do this by sampling
scores from our parameter samples. In other words, sample

ỹ(t) ∼ N(µ(t), σ
2
(t))

for each sample pair µ(t), σ
2
(t). Now we have essentially drawn samples from our posterior predictive

distribution, and we can use a kernel density estimator to plot this distribution from the samples.

60 70 80 90 100 110
0.00

0.01

0.02

0.03

0.04

Figure 9.2: Predictive posterior distribution of exam scores.

Problem 2. Plot the kernel density estimators for the posterior distributions of µ and σ2. You
should get plots similar to those in Figure 9.1.

Next, use your samples of µ and σ2 to draw samples from the posterior predictive distri-
bution. Plot the kernel density estimator of your sampled scores. Compare your plot to Figure
9.2.

Latent Dirichlet Allocation
Gibbs sampling can be applied to an interesting problem in natural language processing (NLP):
determining which topics are prevalent in a document. Latent Dirichlet Allocation (LDA) is a gen-
erative model for a collection of text documents. It supposes that there is some fixed vocabulary
(composed of V distinct terms) and K different topics, each represented as a probability distribution
ϕk over the vocabulary, each with a Dirichlet prior β. This means ϕk,v is the probability that topic
k is represented by vocabulary term v.

83

With the vocabulary and topics chosen, the LDA model assumes that we have a set of M

documents (each “document” may be a paragraph or other section of the text, rather than a “full”
document). The m-th document consists of Nm words, and a probability distribution θm over the
topics is drawn from a Dirichlet distribution with parameter α. Thus θm,k is the probability that
document m is assigned label k. If ϕk,v and θm,k are viewed as matrices, their rows sum to one.

We will now iterate through each document in the same manner. Assume we are working on
document m, which you will recall contains Nm words. For word n, we first draw a topic assignment
zm,n from the categorical distribution θm, and then we draw a word v from the categorical distribution
ϕzm,n

. Throughout this implementation, we assume α and β are scalars1. In summary, we have

1. Draw ϕk ∼ Dir(β) for 1 ≤ k ≤ K.

2. For 1 ≤ m ≤M :

(a) Draw θm ∼ Dir(α).

(b) Draw zm,n ∼ Cat(θm) for 1 ≤ n ≤ Nm.

(c) Draw v ∼ Cat(ϕzm,n
) for 1 ≤ n ≤ Nm.

We end up with n words which represent document m. Note that these words are not necessarily
distinct from one another; indeed, we are most interested in the words that have been repeated the
most.

84 Lab 9. Gibbs Sampling and LDA

This is typically depicted with graphical plate notation as in Figure 9.3.

1 ≤ n ≤ Nm

1 ≤ m ≤M

1 ≤ k ≤ K

v

zm,n

θ⃗m

α⃗

ϕ⃗k

β⃗

Figure 9.3: Graphical plate notation for LDA text generation.

In the plate model, only the variables v are shaded, signifying that these are the only obser-
vations visible to us; the rest are latent variables. Our goal is to estimate each ϕk and each θm.
This will allow us to understand what each topic is, as well as understand how each document is
distributed over the K topics. In other words, we want to predict the topic of each document, and
also which words best represent this topic. We can estimate these well if we know zm,n for each m,n,
collectively referred to as z. Thus, we need to sample z from the posterior distribution P(z | v, α, β),
where v is the collection of words in the text corpus. Unsurprisingly, it is intractable to sample di-
rectly from the joint posterior distribution. However, letting z−(m,n) = z \{zm,n} (so as to condition
on everything except the (m,n)-th entry), the conditional posterior distributions

P(zm,n = k | z−(m,n),v, α, β)

have nice, closed form solutions, making them easy to sample from.
These conditional distributions have the following form:

P(zm,n = k | z−(m,n),v, α, β) ∝

(
n
−(m,n)
(k,m,·) + α

)(
n
−(m,n)
(k,·,v) + β

)
n
−(m,n)
(k,·,·) + V β

where

n(k,m,·) = the number of words in document m assigned to topic k

n(k,·,v) = the number of times term v is assigned to topic k

n(k,·,·) = the number of times topic k is assigned in the corpus

n
−(m,n)
(k,m,·) = n(k,m,·) − 1zm,n=k

n
−(m,n)
(k,·,v) = n(k,·,v) − 1zm,n=k

n
−(m,n)
(k,·,·) = n(k,·,·) − 1zm,n=k

1The Dirichlet distribution Dir(x1, ..., xs, α1, ..., αs) usually requires the parameter α to be a vector of length s, but
when α is a scalar, it is called the “concentration parameter” and behaves like a vector of length s whose entries are
all equal to α.

85

Thus, if we simply keep track of these count matrices, then we can easily create a Gibbs sampler
over the topic assignments. This is actually a particular class of samplers known as collapsed Gibbs
samplers, because we have collapsed the sampler by integrating out θ and ϕ.

We have provided for you the structure of a Python object LDACGS with several methods, listed
at the end of this lab. The object defines attributes n_topics, alpha, and beta upon initialization.
The method buildCorpus() then defines attributes vocab and documents, where vocab is a list
of strings (terms), and documents is a list of dictionaries (a dictionary for each document). For
dictionary m in documents, each entry is of the form n : v, where v is the index in vocab of the nth

word in document m.
The remainder of this lab will guide you through writing several more methods in order to

implement the Gibbs sampler. The first step is to initialize the assignments and create count matrices
n(k,m,·), n(k,·,v) and vector n(k,·,·).

Problem 3. Complete the method _initialize() to initialize as attributes n_words, n_docs,
the three count matrices, and the topic assignment dictionary topics.

To do this, you will need to initialize nkm, nkv, and nk to be zero arrays of the correct
size. Matrix nkm corresponds to n(k,m,·), nkv to n(k,·,v), and nk to n(k,·,·). You will then iterate
through each word found in each document. In the second of these for-loops (for each word),
you will randomly assign k as an integer from the correct range of topics. Then, you will
increment each of the count matrices by 1, given the values for k, m, and v, where v is the index
in vocab of the nth word in document m. Finally, assign topics as given.

The next method fully outlines a sweep of the Gibbs sampler.

Problem 4. Complete the method _sweep().
To do this, iterate through each word of each document. The first part of this method

will undo what _initialize() did by decrementing each of the count matrices by 1. Then,
call the method _conditional() to use the conditional distribution (instead of the uniform
distribution used previously) to pick a more accurate topic assignment k. Finally, repeat what
_initialize() did by incrementing each of the count matrices by 1, but this time using the
more accurate topic assignment.

You are now prepared to write the full Gibbs sampler.

Problem 5. Complete the method sample(). The argument filename is the name and lo-
cation of a .txt file, which can be read in by the provided method buildCorpus() to build
the corpus. Stopwords are removed if the stopwords argument is provided. Note that in
buildCorpus(), each line of filename is considered a document.

Initialize attributes total_nkm, total_nkv, and logprobs as zero arrays. total_nkm and
total_nkv will be the sums of every sample_rateth nkm and nkv matrix respectively. logprobs
is of length burnin + sample_rate ∗ n_samples and will store each log-likelihood after each
sweep of the sampler.

86 Lab 9. Gibbs Sampling and LDA

Burn-in the Gibbs sampler. After the burn-in, iterate further for n_samples iterations,
adding nkm and nkv to total_nkm and total_nkv respectively, at every sample_rateth itera-
tion. Also, compute and save the log-likelihood at each iteration in logprobs using the method
_loglikelihood().

You should now have a working Gibbs sampler to perform LDA inference on a corpus. Let’s
test it out on some of Ronald Reagan’s State of the Union addresses, found in reagan.txt. Note
that in reagan.txt, each line is an entire paragraph from one of Reagan’s addresses, so your Gibbs
sampler will consider each paragraph as a seperate document.

Problem 6. Create an LDACGS object with 20 topics, letting α and β be the default values.
Run the Gibbs sampler, with a burn-in of 100 iterations, accumulating 10 samples, only keeping
the results of every 10th sweep with the reagan.txt file. Use stopwords.txt as the stopwords
file.
Plot the log-likelihoods. How many iterations did it take to burn-in?

Make sure to save the LDACGS object, it will be used in the next problem.

We can estimate the values of each ϕk and each θm as follows:

ϕ̂k,v =
n(k,·,v) + β

V · β +
∑V

v=1 n(k,·,v)

θ̂m,k =
n(k,m,·) + α

K · α+
∑K

k=1 n(k,m,·)

We have provided methods phi and theta that do this for you. We often examine the topic-
term distributions ϕk by looking at the n terms with the highest probability, where n is small (say
10 or 20). We have provided a method topterms which does this for you.

Problem 7. Using the method topterms(), examine the topics for Reagan’s addresses. If
n_topics=20 and n_samples=10, you should get the top 10 words that represent each of the
20 topics. Print out all 20 topics associated 10 words. For the top 5 topics, decide what their
top 10 words jointly represent, and come up with a label for them.

We can use θ̂ to find the documents (paragraphs) in Reagan’s addresses that focus the most on
each topic. The documents with the highest values of θ̂k are those most heavily focused on topic k.
For example, if you chose the topic label for topic p to be the Cold War, you can find the five highest
values in θ̂p, which will tell you which five documents (paragraphs) are most centered on the Cold
War. For your convenience, the provided method toplines() accomplishes just that by printing out
the top n_lines documents corresponding to each topic.

87

Let’s take a moment to see what our Gibbs sampler has accomplished. By simply feeding in a
group of documents, and with no human input, we have found the most common topics discussed,
which are represented by the words most frequently used in relation to that particular topic. The
only work that the user has done is to assign topic labels, saying what the words in each group have
in common. As you may have noticed, however, these topics may or may not be relevant topics. You
might have noticed that some of the most common topics were simply English particles (words such
as a, the, an) and conjunctions (and, so, but). Industrial grade packages can effectively remove such
topics so that they are not included in the results.

88 Lab 9. Gibbs Sampling and LDA

Additional Material

LDACGS Source Code

class LDACGS:
""" Do LDA with Gibbs Sampling. """

def __init__(self, n_topics, alpha=0.1, beta=0.1):
""" Initializes attributes n_topics, alpha, and beta. """
self.n_topics = n_topics
self.alpha = alpha
self.beta = beta

def _buildCorpus(self, filename, stopwords_file=None):
""" Reads the given filename, and using any provided stopwords,

initializes attributes vocab and documents. In this lab,
each line of filename is considered a document.

vocab is a list of terms found in filename.

documents is a list of dictionaries (a dictionary for each
document); for dictionary m in documents, each entry is of
the form n:v, where v is the index in vocab of the nth word
in document m.

"""
with open(filename, 'r') as infile: # Create vocab

doclines = [line.rstrip().lower().split(' ') for line in infile]
n_docs = len(doclines)
self.vocab = list({v for doc in doclines for v in doc})

self.docs = doclines # Save the documents for toplines()

if stopwords_file: # If there are stopwords, remove them from vocab
with open(stopwords_file, 'r') as stopfile:

stops = stopfile.read().split()
self.vocab = [x for x in self.vocab if x not in stops]
self.vocab.sort()

self.documents = [] # Create documents
for i in range(n_docs):

self.documents.append({})
for j in range(len(doclines[i])):

if doclines[i][j] in self.vocab:
self.documents[i][j] = self.vocab.index(doclines[i][j])

def _initialize(self):
""" Initializes attributes n_words, n_docs, the three count matrices,

and the topic assignment dictionary topics.

89

Note that
n_topics = K, the number of possible topics
n_docs = M, the number of documents being analyzed
n_words = V, the number of words in the vocabulary

To do this, you will need to initialize nkm, nkv, and nk
to be zero arrays of the correct size.
Matrix nkm corresponds to n_(k,m,.)
Matrix nkv corresponds to n_(k,.,v)
Matrix nk corresponds to n_(k,.,.)
You will then iterate through each word found in each document.
In the second of these for-loops (for each word), you will
randomly assign k as an integer from the correct range of topics.
Then, you will increment each of the count matrices by 1,
given the values for k, m, and v, where v is the index in
vocab of the nth word in document m.
Finally, assign topics as given.

"""
self.n_words = len(self.vocab)
self.n_docs = len(self.documents)

Initialize the three count matrices
The (k, m) entry of self.nkm is the number of words in document m ←↩

assigned to topic k
self.nkm = np.zeros((self.n_topics, self.n_docs))
The (k, v) entry of self.nkv is the number of times term v is ←↩

assigned to topic k
self.nkv = np.zeros((self.n_topics, self.n_words))
The (k)-th entry of self.nk is the number of times topic k is ←↩

assigned in the corpus
self.nk = np.zeros(self.n_topics)

Initialize the topic assignment dictionary
self.topics = {} # Key-value pairs of form (m,n):k

random_distribution = np.ones(self.n_topics) / self.n_topics
for m in range(self.n_docs):

for n in self.documents[m]:
Get random topic assignment, i.e. k = ...
Increment count matrices
Store topic assignment, i.e. self.topics[(m,n)]=k
raise NotImplementedError("Problem 3 Incomplete")

def _sweep(self):
""" Iterates through each word of each document, giving a better

topic assignment for each word.

90 Lab 9. Gibbs Sampling and LDA

To do this, iterate through each word of each document.
The first part of this method will undo what _initialize() did
by decrementing each of the count matrices by 1.
Then, call the method _conditional() to use the conditional
distribution (instead of the uniform distribution used
previously) to pick a more accurate topic assignment k.
Finally, repeat what _initialize() did by incrementing each of
the count matrices by 1, but this time using the more
accurate topic assignment.

"""
for m in range(self.n_docs):

for n in self.documents[m]:
Retrieve vocab index for n-th word in document m
Retrieve topic assignment for n-th word in document m
Decrement count matrices
Get conditional distribution
Sample new topic assignment
Increment count matrices
Store new topic assignment
raise NotImplementedError("Problem 4 Incomplete")

def sample(self, filename, burnin=100, sample_rate=10, n_samples=10, ←↩
stopwords_file=None):
""" Runs the Gibbs sampler on the given filename.

The argument filename is the name and location of a .txt
file, which can be read in by the provided method _buildCorpus()
to build the corpus. Stopwords are removed if the stopwords
argument is provided. Note that in buildCorpus(),
each line of filename is considered a document.

Initialize attributes total_nkm, total_nkv, and logprobs as
zero arrays.
total_nkm and total_nkv will be the sums of every
sample_rate-th nkm and nkv matrix respectively.
logprobs is of length burnin + sample_rate * n_samples
and will store each log-likelihood after each sweep of
the sampler.

Burn-in the Gibbs sampler. After the burn-in, iterate further
for n_samples iterations, adding nkm and nkv to total_nkm and
total_nkv respectively, at every sample_rate-th iteration.
Also, compute and save the log-likelihood at each iteration
in logprobs using the method _loglikelihood().

"""
self._buildCorpus(filename, stopwords_file)
self._initialize()

91

self.total_nkm = np.zeros((self.n_topics, self.n_docs))
self.total_nkv = np.zeros((self.n_topics, self.n_words))
self.logprobs = np.zeros(burnin + sample_rate * n_samples)

for i in range(burnin):
Sweep and store log likelihood
raise NotImplementedError("Problem 5 Incomplete")

for i in range(sample_rate * n_samples):
Sweep and store log likelihood
raise NotImplementedError("Problem 5 Incomplete")
if not i % sample_rate:

Accumulate counts
raise NotImplementedError("Problem 5 Incomplete")

def _conditional(self, m, v):
""" Returns the conditional distribution given m and w.

Called by _sweep(). """
dist = (self.nkm[:, m] + self.alpha) * (self.nkv[:, v] + self.beta) / (←↩

self.nk + self.beta * self.n_words)
return dist / np.sum(dist)

def _loglikelihood(self):
""" Computes and returns the log-likelihood. Called by sample(). """
lik = 0

for k in range(self.n_topics):
lik += np.sum(gammaln(self.nkv[k, :] + self.beta)) - gammaln(np.sum←↩

(self.nkv[k, :] + self.beta))
lik -= self.n_words * gammaln(self.beta) - gammaln(self.n_words * ←↩

self.beta)

for m in range(self.n_docs):
lik += np.sum(gammaln(self.nkm[:, m] + self.alpha)) - gammaln(np.←↩

sum(self.nkm[:, m] + self.alpha))
lik -= self.n_topics * gammaln(self.alpha) - gammaln(self.n_topics ←↩

* self.alpha)

return lik

def _phi(self):
""" Initializes attribute phi. Called by topterms(). """
phi = self.total_nkv + self.beta
self.phi = phi / np.sum(phi, axis=1)[:, np.newaxis]

def _theta(self):
""" Initializes attribute theta. Called by toplines(). """
theta = self.total_nkm + self.alpha
self.theta = theta / np.sum(theta, axis=1)[:, np.newaxis]

92 Lab 9. Gibbs Sampling and LDA

def topterms(self, n_terms=10):
""" Returns the top n_terms of each topic found. """
self._phi()
vec = np.atleast_2d(np.arange(0, self.n_words))
topics = []
for k in range(self.n_topics):

probs = np.atleast_2d(self.phi[k,:])
mat = np.append(probs, vec, 0)
sind = np.array([mat[:, i] for i in np.argsort(mat[0])]).T
topics.append([self.vocab[int(sind[1, self.n_words - 1 - i])]

for i in range(n_terms)])
return topics

def toplines(self, n_lines=5):
""" Print the top n_lines corresponding to each topic found. """
self._theta()
lines = np.zeros((self.n_topics ,n_lines))
for k in range(self.n_topics):

args = np.argsort(self.theta[:, k]).tolist()
args.reverse()
lines[k, :] = np.array(args)[0:n_lines] + 1

lines = lines.astype(int)

for k in range(self.n_topics):
print(f"TOPIC {k + 1}")
for document in lines[k]:

print(' '.join(self.docs[document]))

10 Gaussian Mixture
Models

Lab Objective: Understand the formulation of Gaussian Mixture Models (GMMs) and use the
Expectation Maximization algorithm to estimate GMM parameters.

Mixture models are a useful way to combine distributions together that allows us to describe
much more complicated distributions than using just the standard list of named distributions. The
essential idea of a mixture model is in its name: it is a mixture of several different models, or
probability distributions. Each of these model is called a component. Each component has a certain
probability associated with it, called its weight, that describes how likely it is for a sample from the
model to come from that component. We denote the weight of the i-th component as wi.

In this lab, we focus on Gaussian Mixture Models, or GMMs for short. In a GMM, each
component is a multivariate Gaussian (normal) distribution. Each of these is parameterized by a
mean µi and a covariance matrix Σi.

A GMM with K components thus has parameters θ = (w1, . . . , wK , µ1, . . . , µK ,Σ1, . . . ,ΣK).
We can use the law of total probability to evaluate the density of a GMM, which is given by

P (z|θ) =
K∑

k=1

wkN (z|µk,Σk)

where
N (z|µ,Σ) = 1√

det(2πΣ)
exp

(
−1

2
(z − µ)

T
Σ−1 (z − µ)

)
is the density function of a multivariate normal distribution.

It is important to keep in mind that a GMM does not arise from adding weighted multivariate
normal random variables, but rather from weighting the responsibility of each multivariate normal
random variable. The first case simply results in a different multivariate normal distribution. Refer
to Figure 10.1 for a visualization of these two cases.

Problem 1. Throughout this lab, we will build a GMM class with various methods. Write the
__init__ method for this class. It should accept a parameter for the number of components and
optional parameters for the weights, means, and covariance matrices which define the GMM,
and store these.a

93

94 Lab 10. Gaussian Mixture Models

(a) Sum of weighted multivariate normal random vari-
ables.

(b) Weighted mixture of multivariate normal random
variables.

Figure 10.1

If we have K components and d dimensions, then the weights should have shape (K,),
the means (K,d), and the covariances (K,d,d). The parameters for the k-th component can
be found as weights[k], means[k], covars[k].

aIf we don’t have a good guess for the parameters of the GMM to pass into the class, it makes more sense to
initialize these from the dataset we are training on, which we will do later in the fit method; hence, we let the
parameters be optional here.

Problem 2. Write a method component_logpdf for your class that accepts a component k
and a point z and computes

logwk + logN (z|µk,Σk),

the logarithm of the contribution of the k-th component of the pdf. Also write a method pdf
that accepts a point z and returns the probability density of the whole GMM at that point.

Hint: scipy.stats.multivariate_normal.pdf and scipy.stats.multivariate_normal
.logpdf can be used to efficiently evaluate the multivariate normal pdf.

We will use the following initialization to test the next several problems. The initialization
code has been provided for you in the ’Check Section’ as the function ’init_gmm’:

gmm = GMM(n_components = 2,
weights = np.array([0.6, 0.4]),
means = np.array([[-0.5, -4.0], [0.5, 0.5]]),
covars = np.array([

[[1, 0],[0, 1]],
[[0.25, -1],[-1, 8]],

]))

Your functions should give the following output:

95

>>> gmm.pdf(np.array([1.0, -3.5]))
0.05077912539363083
Component 0
>>> gmm.component_logpdf(0, np.array([1.0, -3.5]))
-3.598702690175336
Component 1
>>> gmm.component_logpdf(1, np.array([1.0, -3.5]))
-3.7541677982835004

Note that since this GMM is 2-dimensional, the input point must be an array of length 2.
In order to get credit for the next few problems, you must write tests in the ’Check Section’

that show your functions give the proper outputs. The check for problem 2 has been written
for you as an example.

In order to draw a value from a mixture model, we must first draw a variable X ∼ Cat(w1, . . . , wK)

that represents which component the sample comes from. We can then draw the sample Z ∼
N (µX ,ΣX). If we want to draw multiple samples, we need to repeat this process for each one (draw
an X and then draw a Z.

Problem 3. Write a method draw for the GMM class that randomly draws from the model.
If m points are drawn and the GMM is d-dimensional, the returned array should have shape
(m,d).

The function ’check_problem3()’ is also provided. It will test your draw function by
plotting your sample draw against your pdf function. If done correctly, running the check
function should make 2 plots that look "good".

We now consider how to estimate the parameters of a GMM given some observed data Z =

z1, . . . , zn. Ordinarily, a good approach would be to try to directly maximize the log-likelihood

l(θ) =

n∑
i=1

log

K∑
j=1

wjN (zi|µj ,Σj).

However, this expression is very difficult to deal with using standard optimization methods, partic-
ularly because of the sum inside of the logarithm. A good alternative in this case is the expectation
maximization (EM) algorithm. This is an iterative algorithm, where each step consists of maximizing
a function that is designed to approximate the log-likelihood while being much easier to maximize.

Each iteration consists of two steps, the E-step and the M-step. Suppose our estimated param-
eters at the t-th iteration are θt = (wt

1, . . . , w
t
K , µt

1, . . . , µ
t
K ,Σt

1, . . . ,Σ
t
K). Note that t is an index, not

an exponent. For each data point zi, 1 ≤ i ≤ n and each component 1 ≤ k ≤ K, the E-step consists
of computing

qti(k) = P (Xi = k|zi, θt)

=
P (zi|Xi = k, θt)

P (zi|θt)

=
wt

kN (zi|µt
k,Σ

t
k)∑K

k′=1 w
t
k′ N (zi|µt

k′ ,Σt
k′)

96 Lab 10. Gaussian Mixture Models

In order to accurately compute this quantity, however, we need to be more careful. It is
possible that due to floating point underflow1 that each term wt

k′ N (zi|µk′ ,Σk′) in the sum in the
denominator becomes zero, which is a major problem. This particularly happens if the exponents
in the multivariate normal densities all are large negative numbers. To avoid this problem, we can
rescale the numerator and denominator. Let

ℓi,k = logwt
k + logN (zi|µt

k,Σ
t
k),

the logarithm of each term in the denominator. For each data point zi, we can find

Li = max
k′

ℓi,k′ ,

the largest of these logarithms. Then, we can rewrite the quantity we want to calculate as

qti(k) =
wt

kN (zi|µt
k,Σ

t
k)∑K

k′=1 w
t
k′ N (zi|µt

k′ ,Σt
k′)

=
eℓi,k∑K

k′=1 e
ℓi,k′

=
eℓi,ke−Li∑K

k′=1 e
ℓi,k′ e−Li

=
eℓi,k−Li∑K

k′=1 e
ℓi,k′−Li

.

This rescaling makes the largest term in the denominator equal to 1, so computing qti(k) in this way
avoids underflow problems. Note that for the computation of any individual qti(k), the value Li is
a scalar that is the same for all components; however, you will have as many of these values as you
have data points. As a reminder, i corresponds to the index of a data point and k corresponds to
which componet we are comparing it to.

Problem 4. Write a method _compute_e_step that calculates the qti(k) as given by the E-
step, given a collection of observations. Be sure to do the calculation in a way that avoids
underflow, and use array broadcasting when possible.

Your method will accept an array of shape (n,d), where n is the number of data points and
d is the dimensionality of the data (i.e. each row is a data point). The array you produce should
have shape (n_components, n) where result[k,i] = qti(k) (i.e. each row is one component,
and each column is a data point). The various intermediate values should have shapes similar
to the following:

• The array of ℓi,ks should have shape (n_components, n)

• The array of Lis should have shape (n,)

• The array of the denominator values
∑K

k′=1 e
ℓi,k′−Li should also have shape (n,)

With the GMM from the example in Problem 2, you should get the following results:

1As a refresher, one way that floating point numbers are limited is that they cannot represent positive numbers
arbitrarily close to zero; at some point, if the number in a computation becomes too small, the computer is forced
to round it to zero, which is called underflow. The threshhold is about 10−323 for the 64-bit floating point numbers
used in python. Even if underflow does not occur, very small floating points have greatly reduced precision, so it is
generally good to avoid using them.

97

>>> data = np.array([
[0.5, 1.0],
[1.0, 0.5],
[-2.0, 0.7]

])
>>> gmm._compute_e_step(data)
array([[3.49810771e-06, 5.30334386e-05, 9.99997070e-01],

[9.99996502e-01, 9.99946967e-01, 2.93011749e-06]])

Complete the check_problem4() function in the Check Section to show your GMM gets
the correct result.

Now that we have the qti(k), we can perform the M-step. This step consists of maximizing the
function

Qt(θ) =

n∑
i=1

K∑
k=1

qti(k) logw
t
kN (zi|µk,Σk)

We then set
θt+1 = argmax

θ
Qt(θ)

and iterate until the method appears to converge. In the case of GMMs, the maximizer θt+1 of Qt(θ)

is given by

wt+1
k =

1

n

n∑
i=1

qti(k)

µt+1
k =

∑n
i=1 q

t
i(k)zi∑n

i=1 q
t
i(k)

Σt+1
k =

∑n
i=1 q

t
i(k)(zi − µt+1

k)(zi − µt+1
k)⊤∑n

i=1 q
t
i(k)

For details on the derivation of the maximizer, refer to the Volume 3 textbook.

Problem 5. Write a method _compute_m_step for your GMM class that takes the output of
Problem 4 as the qti(k) values and calculates the next iteration of weights and means using the
formulas above. Be sure to use array broadcasting when possible. Coding the formula for the
sigma update requires a rather involved approach using devious array broadcasting and a very
useful function, np.einsum.a

This gets the centered observations for the numerator
by subtracting them as per the formula
obs_centered = np.expand_dims(Z, 0) - np.expand_dims(new_means, 1)
This function creates the rest of the numerator and uses array
broadcasting to implement the denominator. The K, n, d, and D tell
np.einsum which axes to multiply and which to sum
new_covars =

98 Lab 10. Gaussian Mixture Models

np.einsum('Kn,Knd,KnD->KdD', q_values, obs_centered, obs_centered) / ←↩
q_sum.reshape(-1, 1, 1)

The code above has been provided in the spec file, but a general understanding of the
method will be useful in a variety of other situations. Return the updated parameters (weights,
means, and covariance matrices).

With the same GMM and data as in Problem 4, you should get the following results:

>>> gmm._compute_m_step(data)
(array([0.3333512, 0.6666488]),
array([[-1.99983216, 0.69999044],

[0.74998978, 0.75000612]]),
array([[[4.99109197e-04, -2.91933135e-05],

[-2.91933135e-05, 2.43594533e-06]],

[[6.25109881e-02, -6.24997069e-02],
[-6.24997069e-02, 6.24999121e-02]]]))

finish writing check_problem5() to show you have the correct outputs
aFor a detailed explanation of np.einsum, see the Additional Materials section of the Advanced Numpy

lab.

Problem 6. Write a fit method for your GMM class.
First, if the GMM’s parameters are uninitialized (set to None), initialize the parameters

of the components. We want to do this in a way that the algorithm starts with reasonable
values for the dataset. A good way to initialize the means is to randomly select points from the
dataset. The covariance matrices can be initialized as diagonal matrices based on the variance
of the data. Ensure that the weights you choose add up to 1.

Then, perform the expectation maximization algorithm. Use the functions you created
in Problems 4 and 5 to calculate the parameters at each step. Repeat until the parameters
converge. Use the following to measure the change in the parameters with each iteration:

change = (np.max(np.abs(new_weights - old_weights))
+ np.max(np.abs(new_means - old_means))
+ np.max(np.abs(new_covars - old_covars)))

The file gmm_data.npy contains a collection of data drawn from a two-dimensional GMM.
Finish check_problem6() by creating a variable named gmm that is a GMM object initialized
with 3 componnts and fitted to the data from gmm_data.npy.

The check function will plot the pdf of your trained gmm and a hexbin plot of the training
data. They should look very similar to each other. Additionally, your class should take less
than 15 seconds to train on the dataset. The check code will time your fit function and print
the training time to make sure you are within that range.

99

Clustering with GMMs

An important use of mixture models is for clustering. The objective of clustering is to take an
unlabeled dataset and separate it into some number of clusters, which can then be labeled. This is
an instance of unsupervised learning, as it is a machine learning task where the the training algorithm
does not need the true answers (in this case, the actual clusters).

In order to cluster a dataset using a GMM, we first need to train the GMM on that data. Then,
we can assign each point a label by finding which component has the largest contribution to the pdf
there. Written symbolically, for a data point z, we have

Cluster(z) = argmaxkwkN (z|µk,Σk).

Note that the number of clusters (components) is a hyperparameter that must be selected before a
GMM is trained. In general, cross-validation or some other method must be used to find the right
number of clusters.

Problem 7. Write a predict method for your class. Given a set of data points, return which
cluster has the highest pdf density for each data point.

The file classification.npz contains a set of 3-dimensional data points (X) and their
labels (y). Use your class with n_components=4 to cluster the data. Plot the points with the
predicted and actual labels, and compute and return your model’s accuracy. Your class should
take less than 30 seconds to train on this dataset. Make sure to time your .fit() or .fit_predict()
and print the time spent in training to receive credit.

Note that the labels may be permuted; for instance, your model might cluster the points
correctly, but swap the labels of clusters 1 and 2 compared to the true labels. The model would
still be considered accurate in this case; we only care what the clusters are, not how the model
labels them. To resolve this problem, we need to find the permutation of the labels that results
in the highest accuracy. The following function does this in a way that is more efficient than
directly checking all permutations:

from scipy.optimize import linear_sum_assignment
from sklearn.metrics import confusion_matrix

def get_accuracy(pred_y, true_y):
"""
Helper function to calculate the actually clustering accuracy,
accounting for the possibility that labels are permuted.
"""
Compute confusion matrix
cm = confusion_matrix(pred_y, true_y)
Find the arrangement that maximizes the score
r_ind, c_ind = linear_sum_assignment(cm, maximize=True)
return np.sum(cm[r_ind, c_ind]) / np.sum(cm)

For convenience, a method fit_predict for the class is also included in the specifications
file that calls both fit and predict to make the clustering process simpler.

100 Lab 10. Gaussian Mixture Models

Clustering with GMMs is closely related to the K-means algorithm. In fact, K-means can be
viewed as a special case of GMMs where the covariance matrices are all the identity. How might this
affect its ability to cluster? We now compare the effectiveness of GMMs for classification on this
dataset with K-means, as well as comparing to sklearn’s implementation.

Problem 8. The function method_comparison Initializes an instance of your GMM as well as
a GMM and K-means object from Sklearn and compares the 3 based on accuracy and time to
train. Run the function and observe the results, then answer in the markdown cell below why
K-Means might have performed worse than the GMM’s.

You may also find it interesting that sklearn’s GMM is actually faster on this dataset than
K-means despite GMM’s being more complicated to train. This is in part because the dataset is
rather low-dimensional. As the dimension of the dataset grows, GMMs suffer computationally from
the curse of dimensionality much more than the K-means algorithm.

101

Additional Materials
Jax

Jax is a combination of both Autograd and XLA (Accelerated Linear Algebra) to provide high
performance computations. It is a tool that can automatically differentiate various Python and
NumPy code including if statement, for loops, recursion, and other native code types.

Jax provides a Numpy-like API to build machine learning models. Jax can only run on GPUs
and TPUs which makes it more efficient than NumPy, which can only run on a CPU. The three main
Jax functions include jit, grad and vmap.

• jit: Adding @jax.jit to the beginning of a function creates an optimized version of the function.

• grad: Used to compute the gradient or derivative of a function.

• vmap: This is used to vectorize your functions. Since list comprehension isn’t available using
Jax’s version of NumPy, this can be helpful and used instead.

Dynamax
Dynamax is a library that uses Jax for probabilistic state space models (SSMs). The SSMs that
Dynamax is able to compute include Hidden Markov Models (HMMs), Linear and Nonlinear Gaussian
state space models, and Generalized Gaussian state space models. More information can be found
at the website: https://probml.github.io/dynamax/.

https://probml.github.io/dynamax/

102 Lab 10. Gaussian Mixture Models

11 Discrete Hidden
Markov Models

Lab Objective: Understand how to use discrete Hidden Markov Models.

A common probabilistic model is the hidden Markov model (HMM). In an HMM, we have two
sequences of random variables, (Xt)

∞
t=0 and (Zt)

∞
t=0. The Xt are called the state sequence or hidden

state, and the Zt are known as the observation sequence. We assume that the Xt form a Markov
chain, i.e. the distribution of Xt is entirely determined by the value of Xt−1, and that the distribution
of Zt is determined by the value of Xt. We also typically assume that we only know the values of
the Zt, not the Xt (hence the name). We denote the state space as X and the observation space
as Z , so that for all t we have Xt ∈ X and Zt ∈ Z . Hidden Markov models are useful in many
situations where we have indirect observations of a sequential or time-based process, including speech
and handwriting prediction, text analysis, gene prediction, and many other areas.

In this lab, we explore HMMs with discrete state and observation spaces. Assume the state
space X and observation space Z are finite sets where |X | = n and |Z | = m. For simplicity we
relabel these sets as X = {0, 1, 2, . . . , n− 1} and Z = {0, 1, 2, . . . ,m− 1} We will also assume that
the HMM is temporally homogeneous, i.e. that the transition probabilities do not change with t.

In this case, we can parameterize all such HMMs by θ = (π, A,B) where π ∈ Rn represents the
distribution of X0 (the initial state distribution), A is a n × n column-stochastic matrix describing
how Xt is affected by Xt−1 (the state transition matrix), and B is a m×n column-stochastic matrix
describing how Zt is affected by Xt (the state observation matrix). The entries of π, A, and B

specifically are the following:

πi = P (X0 = i)

aij = P (Xt = i|Xt−1 = j)

bij = P (Zt = i|Xt = j)

Finally, we let z = [z0, z1, . . . zT−1] be a vector of observations, where each zt is a draw from Zt.
Given one or both of θ and z, there are several questions we might want to answer:

1. What is the likelihood that our model generated the observation sequence? In other words,
what is P (z|θ)?

2. Given z, θ, and an integer 0 ≤ k ≤ T − 1, what is the most likely value for the state Xk at
time k?

3. Given z and θ, what is the most likely state sequence x to have generated z?

103

104 Lab 11. Discrete Hidden Markov Models

4. How can we choose the parameters θ that maximize P (z|θ)?

The first of these is answered by the forward pass algorithm; the second by the backwards pass
algorithm; the third by the Viterbi algorithm; and the fourth is typically approached using the
Baum-Welch algorithm, which is the special case of expectation maximization applied to an HMM.
Throughout this lab, we will use all four of these algorithms.

Problem 1. Create a class called HMM. Create the constructor, which accepts arguments pi,
A, and B. Save each of these as an attribute with the same name.

The Forward Pass

The goal of the forward pass algorithm is to efficiently compute P (z|θ). Directly expanding this
out as a sum over all state sequences requires a number of computations that grows exponentially
with the length of the observation sequence, and is completely impractical. Instead, the forward pass
algorithm splits this probability into separate values that can be easily computed recursively.

As the first step of the algorithm, consider the values

αt(i) = P (z0, . . . , zt, xt = i|θ).

The law of total probability gives us that

P (z|θ) =
∑
i∈X

αT−1(i),

so finding the αt(i) lets us find P (z|θ). It can be shown that1

α0(i) = πibz0,i

αt(i) = bzt,i
∑
j∈X

αt−1(j)aij

which allows us to efficiently compute the αt(i) iteratively. When we implement this algorithm, we
will store the values of αt(i) in a single 2D array. The (t, i)-th entry of this array will be the value
αt(i).

Problem 2. Create a method forward_pass in your HMM class to implement the forward
pass algorithm. This function should accept the observation sequence z (with shape (T,)) and
return the array of αt(i) values (with shape (T,n)).

To test your code, use the following example HMM:

>>> pi = np.array([.6, .4])
>>> A = np.array([[.7, .4],[.3, .6]])
>>> B = np.array([[.1,.7],[.4, .2],[.5, .1]])
>>> z_example = np.array([0, 1, 0, 2])
>>> example_hmm = HMM(pi, A, B)

You should get the following output using the example HMM:

1For verification of the mathematics behind this and the other algorithms in this lab, refer to the Volume 3 textbook.

105

>>> alpha = example_hmm.forward_pass(z_example)
>>> print(np.sum(alpha[-1, :]) # the probability of the observation
0.009629599999

Problem 3. Consider the following (very simplified) model of the price of a stock over time as
an HMM. The observation states will be the change in the value of the stock. For simplicity,
we will group these into five values: large decrease, small decrease, no change, small increase,
large increase, labeled as integers from 0 to 4. The hidden state will be the overall trends of
the market. We’ll consider the market to have three possible states: declining in value (bear
market), not changing in value (stagnant), and increasing in value (bull market), labeled as
integers from 0 to 2. Let the HMM modeling this scenario have parameters

π =

1/31/3

1/3

 , A =

0.5 0.3 0

0.5 0.3 0.3

0 0.4 0.7

 , B =

0.3 0.1 0

0.3 0.2 0.1

0.3 0.4 0.3

0.1 0.2 0.4

0 0.1 0.2

The file stocks.npy contains a sequence of 50 observations drawn from this HMM. What is the
probability of this observation sequence given these model parameters? Use your implementa-
tion of the forward pass algorithm from Problem 2 to find the answer. Note that the answer is
very small, because there are lots of possible observation sequences.

The Backward Pass

The backward pass algorithm seeks to answer the second question: given an observation sequence,
parameters for an HMM, and a specific timestep, what is the most likely state at that step? As with
the first question, trying to directly compute the answer via expanding into a sum over individual
terms is completely impractical. The backwards pass algorithm takes a different approach.

Define the function
γt(i) = P (Xt = i|z,θ).

The answer to the second question is then given by argmaxi∈X γt(i) for a fixed timestep t. In order
to compute the γt(i) efficiently, the backwards pass breaks the problem up in a clever way to allow
an efficient iterative solution. Consider the values

βt(j) = P (zt+1, zt+2, . . . , zT−1|Xt = j,θ).

where βT−1(i) = 1. It can be shown that

βt(j) =
∑
i∈X

aijβt+1(i)bzt+1,i

and that

γt(i) =
αt(i)βt(i)

P (z|θ)
,

106 Lab 11. Discrete Hidden Markov Models

allowing efficient computation of these values. The backwards pass algorithm simply consists of
iteratively computing the βt(i) values and using those to compute γt(i). Note that the backwards
pass algorithm requires running the forward pass algorithm first, and iterates over t in the opposite
order.

Problem 4. Create a method backward_pass in your HMM class to implement the backward
pass algorithm. This function should accept the observation sequence z (with shape (T,)) and
return two arrays of the βt(i) and γt(i) values (each with shape (T,n)).

To test your function, your code should produce the following output on the example
HMM:

>>> beta, gamma = example_hmm.backward_pass(z_example, alpha)
>>> print(beta)
[[0.0302 0.02792]
[0.0812 0.1244]
[0.38 0.26]
[1. 1.]]

>>> print(gamma)
[[0.18816981 0.81183019]
[0.51943175 0.48056825]
[0.22887763 0.77112237]
[0.8039794 0.1960206]]

With your function and the stock model from Problem 3, answer the following question:
given the observation sequence in stocks.npy, what is the most likely initial hidden state X0?

Most Likely Sequence with the Viterbi Algorithm

The Viterbi algorithm is a dynamic programming algorithm that seeks to find the most likely sequence
of hidden states x = (x0, . . . , xT−1) that satisfies

x∗ = argmax
x

P (x|z,θ).

The algorithm proceeds by considering the values

ηt(i) = max
x0,...,xt−1

P (x0, . . . , xt−1, Xt = i, z0, . . . , zt|θ)

The Bellman optimality principal can be used to show that

η0(i) = bz0,iπi,

ηt(i) = max
j∈X

bzt,iaijηt−1(j),

allowing us to compute these efficiently. The ηt(i) give the maximizing probabilities at each timestep
assuming we are in a certain hidden state. To extract the most likely sequence from the ηt(i)s, we
iterate backwards as follows:

x∗
T−1 = argmax

j∈X
ηT−1(j)

x∗
t−1 = argmax

j∈X
bzt,x∗

t
ax∗

t ,j
ηt−1(j) = argmax

j∈X
ax∗

t ,j
ηt−1(j).

107

Problem 5. Creating a method viterbi_algorithm in your HMM class to implement the
Viterbi algorithm. This function should accept the observation sequence z (with shape (T,))
and return the most likely state sequence x∗ (as an array with shape (T,)).

To test your function, it should output the following on the example HMM:

>>> xstar = example_hmm.viterbi_algorithm(z_example)
>>> print(xstar)
[1 1 1 0]

Apply your function to the stock market HMM from Problem 3. With the observaition sequence
from stocks.npy, what is the most likely sequence of hidden states? Is the initial state of the
most likely sequence the same as the most likely initial state you found in Problem 4?

Text Analysis with HMMs

We now turn to an interesting application of the Baum-Welch algorithm to train HMMs. We have
coded most of the pieces needed for the Baum-Welch algorithm already in this lab. However, many
of these require the computations to be done in a more careful way than we have presented here
in order to prevent underflow. Instead of delving into the details of that, we will use the HMM
implementation provided by the hmmlearn package, specifically the hmmlearn.hmm.CategoricalHMM
class.

This class uses slightly different conventions and syntax from the HMM class that we have
coded in this lab, so we will illustrate how to use this class on the data from stocks.npy.

import numpy as np
from hmmlearn import hmm
z = np.load("stocks.npy")

In the initializer, we specify the number of hidden states as the n_components argument (we will use
3):

h = hmm.CategoricalHMM(n_components=3)

To train the HMM, call the fit method. This method accepts the observation sequence z. However,
it expects it to be an array with shape (T,1), so reshape it as follows when you pass it in:

h.fit(z.reshape(-1, 1))

Now the HMM is trained. To see the trained HMM parameters, use the following attributes: π is
stored as h.startprob_, A is stored as h.transmat_, and B is stored as h.emissionprob_. However,
A and B are transposed from the convention we are using, so extracting the parameters looks like
the following:

pi = h.startprob_
A = h.transmat_.T
B = h.emissionprob_.T

108 Lab 11. Discrete Hidden Markov Models

The particular application we will use this for is to take some text and treat it as the observation
sequence z of an HMM. Using the Baum-Welch algorithm to train an HMM with this setup can reveal
interesting information about the underlying text. We will specifically use the sequence of characters
(after stripping out punctuation and converting everything to lower-case) as our observation sequence.

In order to convert the raw text into data we can use with the hmmlearn package, we need
to read and process the text and then map the characters to integer values. The following code
accomplishes this task:

import numpy as np
import string
import codecs

def vec_translate(a, my_dict):
translate numpy array from symbols to state numbers or vice versa
return np.vectorize(my_dict.__getitem__)(a)

def prep_data(filename):
"""
Reads in the file and prepares it for use in an HMM.
Returns:

symbols (dict): a dictionary that maps characters to their integer ←↩
values

obs_sequence (ndarray): an array of integers representing the read-in ←↩
text

"""
Get the data as a single string
with codecs.open(filename, encoding="utf-8") as f:

data=f.read().lower() # and convert to all lower case
remove punctuation and newlines
remove_punct_map = {ord(char):

None for char in string.punctuation+"\n\r"}
data = data.translate(remove_punct_map)
make a list of the symbols in the data
symbols = sorted(list(set(data)))
convert the data to a NumPy array of symbols
a = np.array(list(data))
make a conversion dictionary from symbols to state numbers
symbols_to_obsstates = {x: i for i, x in enumerate(symbols)}
convert the symbols in a to state numbers
obs_sequence = vec_translate(a,symbols_to_obsstates)
return symbols, obs_sequence.reshape(-1, 1)

Problem 6. The file declaration.txt contains the text of the Declaraction of Independence.

109

Train an hmmlearn.hmm.CategoricalHMM on this data with N = 2 states and M =

len(set(obs)) = 27 observation values (26 lower case characters and 1 whitespace character).
Train the HMM with n_iter=200 and tol=1e-4 (note that both of these are arguments to the
constructor, not to the fit function).

Once the learning algorithm converges, analyze the state observation matrix B. Note
which rows correspond to the largest and smallest probability values in each column of B, and
check the corresponding characters. The code below displays typical results for a well-converged
HMM. (Note that the u before the " indicates that the string should be unicode, which will be
useful in the next problem.)

>>> B = h.emissionprob_.T
>>> for i in range(len(B)):
>>> print(u"{}, {:0.4f}, {:0.4f}"

.format(symbols[i], *B[i,:]))
, 0.0051, 0.3324

a, 0.0000, 0.1247
c, 0.0460, 0.0000
b, 0.0237, 0.0000
e, 0.0000, 0.2245
d, 0.0630, 0.0000
g, 0.0325, 0.0000
f, 0.0450, 0.0000
i, 0.0000, 0.1174
...

What do you notice about the columns of B? (Hint: Look at the vowels). Write your obser-
vations in a markdown cell. If there is nothing apparent in your output, try re-running your
HMM. Note that the order of the columns is completely arbitrary, and your code may switch
the role of the two columns.

Problem 7. The file WarAndPeace.txt contains a portion of the Russian text of War and
Peace by Tolstoy. Train an HMM on the text in this file with N = 2 states as in Problem 6.
Interpret/explain your results. Which Cyrillic characters appear to be vowels?

110 Lab 11. Discrete Hidden Markov Models

12 Speech Recognition
using CDHMMs

Lab Objective: Understand how speech recognition via CDHMMs works, and implement a sim-
plified speech recognition system.

Continuous Density Hidden Markov Models
Some of the most powerful applications of hidden Markov models, speech and voice recognition,
result from allowing the observation space to be continuous instead of discrete. These are called
continuous density hidden Markov models (CDHMMs). The two most common formulations are
Gaussian HMMs and Gaussian mixture model HMMs (GMMHMMs). In this lab, we will focus on
GMMHMMs.

A GMMHMM is an HMM where the observation sequence variables (Zt)
∞
t=0 are distributed

according to a Gaussian mixture model. To review, a Gaussian mixture model is a continuous
multivariate distribution composed of K Gaussian distributions N (µk,Σk) (where µk ∈ RM and
Σk ∈ RM×M) with corresponding weights ck, for 1 ≤ k ≤ K. A useful way to think of an individual
GMM Z is to think of it as a pair of random variables Y and Z. The variable Y is a categorical
variable on {1, 2, . . . ,K} with probabilities given by the ck (i.e. P (Y = k) = ck) and determines
which Gaussian Z is drawn from. We then draw Z ∼ N (µY ,ΣY). The density function of a GMM
is given as

f(z) =

K∑
k=1

ckN (z; µk,Σk).

For an example of what this looks like, refer to Figure 12.1. Note that this is a weighted sum of the
density functions of Gaussian variables; remember that this is different from a sum of independent
Gaussian random variables, which is just another Gaussian random variable!

GMMHMMs are then formulated similar to the discrete HMMs we have encountered before.
We will assume that the hidden states Xt have N possible values. Then, the hidden state of the
GMMHMM is parameterized by an initial state vector π ∈ RN and a state transition matrix A ∈
RN×N (both of these are the same as in the discrete case). The observation state is parameterized
by one GMM per hidden state. We denote these as follows: for each hidden state 1 ≤ i ≤ n,
the observation state is distributed according to the GMM with component weights {ci,1, . . . , ci,K},
component means {µi,1, . . . , µi,K}, and component covariance matrices {Σi,1, . . . ,Σi,K}.

To sample from a GMMHMM, follow the following process for each time step:

111

112 Lab 12. Speech Recognition using CDHMMs

Figure 12.1: The probability density function of a mixture of Gaussians with four components.

• Determine the hidden state Xt (for X0 this is with π, and afterwards is determined by A and
Xt−1).

• Determine the GMM component Yt by drawing from a categorical variable with probabilities
cXt,1, . . . , cXt,K (so P (Yt = j) = cXt,j).

• Sample Zt from the GMM by drawing from the normal distribution N (µXt,Yt
,ΣXt,Yt

).

For an example of a sequence drawn from a GMMHMM, refer to Figure 12.2, which shows an
observation sequence generated from a GMMHMM with two mixture component and two hidden
states.

Problem 1. Consider the following GMMHMM with N = 3 states, components of dimension
M = 4, and K = 5 components:

NxN transition matrix
A = np.array([[.3, .3, .4], [.2, .3, .5], [.3, .2, .5]])
NxK collection of component weights
weights = np.array([[.3, .2, .1, .2, .2], [.1, .3, .3, .2, .1],

[.1, .3, .2, .1, .3]])
NxKxM collection of component means
means = np.array([np.floor(np.random.uniform(-100, 100, size = (5, 4)))

for i in range(3)])
NxKx(MxM) collection of component covariance matrices
covars = np.array([[np.floor(np.random.uniform(1, 20))*np.eye(4)

for i in range(5)] for j in range(3)])
(N,) ndarray initial state distribution
pi = np.array([.15, .15, .7])

113

Figure 12.2: An observation sequence generated from a GMMHMM with two mixture components
and two states. The observations (points in the plane) are shown as solid dots, the color indicating
from which state they were generated. The connecting dotted lines indicate the sequential order of
the observations.

The weight ci,k is weights[i,k], the mean µi,k is means[i,k,:], and the covariance matrix
Σi,k is covars[i,k,:,:].

Write a function sample_gmmhmm which accepts an integer T , and draws T samples from
the above GMMHMM.

Use your function to draw T = 900 samples. Use sklearn.decomposition.PCA with 2
components to plot the observations in two-dimensional space. Color the observations by state.
How many distinct clusters do you see?

Hint: the function np.random.choice will be useful for drawing the hidden states and
the GMM components, and np.random.multivariate_normal for the observation sequence.
When plotting the samples, using the keyword argument c in plt.scatter allows you to specify
the colors of the individual points.

Speech Recognition and Hidden Markov Models
The questions we asked about discrete HMMs can also be asked about CDHMMs, and the algorithms
that answer these questions are virtually identical to the discrete case. However, with continuous
observations it is much more difficult to implement the algorithms in a numerically stable way. We
will not have you implement any of the algorithms for CDHMMs yourself; instead, we will use the
hmmlearn package.

Hidden Markov Models are the basis of modern speech recognition systems. The essential idea
is that we will use the sound data as the observation sequence. However, there are a lot of details
that we won’t address in this lab; a fair amount of signal processing must precede the HMM stage,
and more sophisticated approaches require the use of language models.

To transform the audio data into data for our HMMs, we will use the following process:

114 Lab 12. Speech Recognition using CDHMMs

• Divide the audio into frames of approximately 30 ms. These are short enough that we can treat
the signal as being constant over these intervals.

• Transform the audio signal into mel-frequency cepstral coefficients (MFCCs). This transfor-
mation is similar to a Fourier transform in that it breaks the sound signal into frequencies.

• Keep the first M = 10 of these coefficients for each time frame. These will be our observation
sequence in RM .

Problem 2. In the remainder of this lab, we will create a speech recognition system for the
vocabulary of the following five words/phrases: “biology”, “mathematics”, “political science”,
“psychology”, and “statistics”.

The Samples folder contains 30 recordings for each of the words/phrases in the vocabulary.
These audio samples are 2 seconds in duration, recorded at a rate of 44100 samples per second,
with samples stored as 16-bit signed integers in WAV format. For each of the words, create a
list holding the MFCC coefficients of the recordings of that word.

The function scipy.io.wavfile.read can be used to load the sound files, and the func-
tion extract in MFCC.py implements the MFCC coefficient algorithm:

from scipy.io import wavfile
import MFCC

samplerate, sound_data = wavfile.read(filename)
coefficients = MFCC.extract(sound_data)

Hint: it might be helpful to use a dictionary to store the lists of coefficients.

Industrial-grade speech recognition systems train a GMMHMM for each individual English
phoneme, or distinct sound. This allows for a lot of versatility, but also comes with its own set of
challenges: it requires a lot of training data, with the audio files split into individual phonemes, as
well as requiring the true words to be written in terms of their phonemes. The setup also becomes
much more complicated if we try to account for multiple dialects of English.

Instead, in this lab, we will train a GMMHMM for each of the five individual words in the
vocabulary.1 Recall, however, that the training procedure can get stuck in a poor local minimum.
To combat this, we will train 10 GMMHMMs for each word (using a different random initialization
of the parameters each time) and keep the model with the highest log-likelihood.

For training our HMM, we will use the hmmlearn.hmm.GMMHMM class. We will illustrate how to
use this class. Let data be a list of arrays, where each array is the output of the MFCC extraction
for a speech sample. Then the model can be trained as follows:

import numpy as np
from hmmlearn import hmm

hmmlearn expects the data to be in a single array:
data_collected = np.vstack(data)

1For a larger vocabulary, this requires a ludicrous number of GMMHMMs, which is why speech recognition systems
don’t typically do this.

115

To separate the sequences, it requires the length of each:
lengths = [item.shape[0] for item in data]

Initialize and train the model
model = hmm.GMMHMM(n_components=5, covariance_type="diag")
model.fit(data_collected, lengths=lengths)

Check the log-likelihood
log_likelihood = model.monitor_.history[-1]

Problem 3. For each word, randomly split the list of MFCCs into a training set of 20 samples
and a test set of the remaining 10 samples.

Use the training sets to train GMMHMMs on each word in the vocabulary. For each word
in the vocabulary, train 10 GMMHMMs on the training set, using n_components=5. Keep the
model with the highest log-likelihood for each word.

We have now trained our speech recognition system. With this model, if we are given a speech
sample, how do we determine which word it is?

The method we use is as follows. First, we convert the sound into MFCC coefficients. Let z

denote these coefficients. Then, for each of the words in our vocabulary, we find logP (z |word), the log
probability density of this observation sequence assuming that it came from that word’s GMMHMM.
This can be done with the score method of the GMMHMM. Then, whichever word’s GMMHMM gives
the highest log probability density will be our speech recognition model’s prediction.

Problem 4. Write a predict function for your speech recognition model. In this function:

• Accept the MFCC coefficients of the speech sample to be predicted.

• Find the log probability density of the coefficients for each word’s GMMHMM.

• Return the word with the highest probability as the speech recognition model’s prediction.

Problem 5. For each of the five test sets, call your predict function on each sample, and find
the proportion of each test set that your model predicts correctly. Display your results. How
well does your model perform on this dataset?

116 Lab 12. Speech Recognition using CDHMMs

13 Kalman Filter

Lab Objective: Understand how to implement the standard Kalman Filter. Apply to the problem
of projectile tracking.

Measured observations are often prone to significant noise, due to restrictions on measurement
accuracy. For example, most commercial GPS devices can provide a good estimate of geolocation,
but only within a dozen meters or so. A Kalman filter is an algorithm that takes a sequence of noisy
observations made over time and attempts to get rid of the noise, producing more accurate estimates
than the original observations. To do this, the algorithm needs information about the system being
observed.

Consider the problem of tracking a projectile as it travels through the air. Short-range projec-
tiles approximately trace out parabolas, but a sensor that is recording measurements of the projectile’s
position over time will likely show a path that is much less smooth. Because we know something
about the laws of physics, we can filter out the noise in the measurements using basic Newtonian
mechanics, recovering a more accurate estimate of the projectile’s trajectory. In this lab, we will sim-
ulate measurements of a projectile and implement a Kalman filter to estimate the complete trajectory
of the projectile.

Linear Dynamical Systems
The standard Kalman filter assumes that: (1) we have a linear dynamical system, (2) the state of the
system evolves over time with some noise, and (3) we receive noisy measurements about the state of
the system at each iteration. More formally, letting xk denote the state of the system at time k, we
have

x0 = µ0 +w0 (13.1)
xk = Fk−1xk−1 +Gk−1uk−1 +wk k = 1, . . . , T (13.2)

where Fk is a state-transition model, Gk is a control-input model, uk is a control vector, and wk

is the noise present in state k. This noise is assumed to be drawn from a multivariate Gaussian
distribution with zero mean and covariance matrix Qk. We let µ0 be the expected value of the initial
condition x0, i.e. x0 ∼ N (µ0, Q0). The control-input model and control vector allow the assumption
that the state can be additionally influenced by some other factor than the linear state-transition
model.

117

118 Lab 13. Kalman Filter

We further assume that the states are “hidden,” and we only get the noisy observations

zk = Hkxk + vk k = 0, . . . , T (13.3)

where Hk is the observation model mapping the state space to the observation space, and vk is the
observation noise present at iteration k. As with the aforementioned error, we assume that this noise
is drawn from a multivariate Gaussian distribution with zero mean and covariance matrix Rk.

The dynamics stated above are all taken to be linear. Thus, for our purposes, the operators
Fk, Gk, and Hk are all matrices, and xk, uk, zk, and vk are all vectors.

We will assume that the transition and observation models, the control vector, and the noise
covariances are constant, i.e. for each k, we will replace Fk, Qk, Hk, Rk, and uk and with F,Q,H,R,
and u. We will also assume that G = I is the identity matrix, so it can safely be ignored.

Problem 1. Begin implementing a KalmanFilter class by writing an initialization method
that stores the transition and observation models, noise covariances, and control vector. We
provide an interface below:

class KalmanFilter(object):
def __init__(self, F, Q, H, R, u):

"""
Initialize the dynamical system models.

Parameters

F : ndarray of shape (n, n)

The state transition model.
Q : ndarray of shape (n, n)

The covariance matrix for the state noise.
H : ndarray of shape (m, n)

The observation model.
R : ndarray of shape (m, m)

The covariance matrix for observation noise.
u : ndarray of shape (n,)

The control vector.
"""
pass

We now derive the linear dynamical system parameters for a projectile traveling through R2

undergoing a constant downward gravitational force of 9.8 m/s2. The relevant information needed to
describe how the projectile moves through space is its position and velocity. Thus, our state vector
has the form

xk =

sxk

syk

V x
k

V y
k

 ,

119

where sxk and syk give the x and y coordinates of the position (in meters) at the kth time interval,
and V x

k and V y
k give the horizontal and vertical components of the velocity (in meters per second)

at the kth time interval, respectively.

How does the system evolve from one time step to the next? Assuming each time step is 0.1
seconds, it is easy enough to calculate the new position:

sxk+1 = sxk + (0.1)V x
k

syk+1 = syk + (0.1)V y
k .

Further, since the only force acting on the projectile is gravity (we are ignoring things like wind
resistance), the horizontal velocity remains constant:

V x
k+1 = V x

k .

The vertical velocity, however, does change due to the effects of gravity. From basic Newtonian
mechanics, we have

V y
k+1 = V y

k − (0.1)(9.8).

In summary, over one time step, the state evolves from xk to xk+1, where

xk+1 =

sxk + (0.1)V x

k

syk + (0.1)V y
k

V x
k

V y
k − 0.98

 .

From this equation, you can extract the state transition model F and the control vector u.

We now turn our attention to the observation model. Imagine that a radar sensor captures
(noisy) measurements of the projectile’s position as it travels through the air. At each time step, the
radar transmits the observation z = (zx, zy) given by

zx = sx + vx

zy = sy + vy,

where (vx, vy) is a noise vector assumed to be drawn from a multivariate Gaussian with mean zero
and some known covariance. These equations indicate the appropriate choice of observation model.

Problem 2. Work out the transition and observation models F and H, along with the control
vector u, corresponding to the projectile. Assume that the noise covariances are given by

Q = 0.1 · I4
R = 5000 · I2.

Instantiate a KalmanFilter object with these values.

120 Lab 13. Kalman Filter

Generating Testable Data
In real-world problems, we would only have access to the observation data, but for this lab, we would
like to see for certain how well our Kalman filter is predicting the true states. To do this, we’ll need
a toy dataset consisting of a sequence of true states and corresponding observations, which we’ll
simulate from the dynamical system derived above. In addition to the system parameters, we need
an initial state x0 to get started. Computing the subsequent states and observations is simply a
matter of following Equations 13.2 and 13.3. Bear in mind that the initial state x0 does not have
added noise, but the initial observation and all subsequent states and observations take noise into
account.

Problem 3. Write a function that generates a state and observation sequence by evolving the
dynamical system from a given initial state (the function numpy.random.multivariate_normal
will be useful). To do this, implement the following:

def evolve(x0, N, F, Q, H, R, u):
"""
Generate the first N states and observations from the dynamical system←↩

.

Parameters

x0 : ndarray of shape (n,)

The initial state.
N : integer

The number of time steps to evolve.
F : ndarray of shape (n, n)

The state transition model.
Q : ndarray of shape (n, n)

The covariance matrix for the state noise.
H : ndarray of shape (m, n)

The observation model.
R : ndarray of shape (m, m)

The covariance matrix for observation noise.
u : ndarray of shape (n,)

The control vector.

Returns

states : ndarray of shape (n, N)

States 0 through N-1, given by each column.
obs : ndarray of shape (m, N)

Observations 0 through N-1, given by each column.
"""
pass

121

0 5000 10000 15000 20000 25000 30000 35000
x

0

2500

5000

7500

10000

12500

15000

17500
y

True Trajectory

0 5000 10000 15000 20000 25000 30000 35000
x

0

2500

5000

7500

10000

12500

15000

17500

y

Observed Trajectory

Figure 13.1: State sequence (left) and sampling of observation sequence (right).

To test our Kalman filter, simulate the true and observed trajectories of a projectile with initial
state

x0 =

0

0

300

600

 .

Approximately 1250 time steps should be sufficient for the projectile to hit the ground (i.e. for
the y coordinate to return to 0). Plot both the true trajectory (as a blue line) and the observed
trajectory (as red dots). Your results should qualitatively match those given in Figure 13.1.

State Estimation with the Kalman Filter

The Kalman filter is a recursive estimator that smooths out the noise in real time, estimating each
current state based on the past state estimate and the current measurement. This process is done by
repeatedly invoking two steps: Predict and Update. The predict step is used to estimate the current
state based on the previous state. The update step then combines this prediction with the current
observation, yielding a more robust estimate of the current state.

To describe these steps in detail, we need additional notation. Let

• x̂n|m be the state estimate at time n given only measurements up through time m; and

• Pn|m be an error covariance matrix, measuring the estimated accuracy of the state at time n

given only measurements up through time m.

The elements x̂k|k and Pk|k represent the state of the filter at time k, giving the state estimate
and the accuracy of the estimate, respectively. We evolve the filter recursively, as follows:

122 Lab 13. Kalman Filter

(Initialize) x̂0|−1 = µ0 (13.4a)
P0|−1 = Q0 (13.4b)

Predict x̂k|k−1 = F x̂k−1|k−1 + u k = 1, . . . , T (13.4c)

Pk|k−1 = FPk−1|k−1F
T +Q k = 1, . . . , T (13.4d)

Update Kk = Pk|k−1H
T
(
HPk|k−1H

T +R
)−1

k = 0, . . . , T (13.4e)
x̂k|k = x̂k|k−1 +Kk

(
zk −Hx̂k|k−1

)
k = 0, . . . , T (13.4f)

Pk|k = (I −KkH)Pk|k−1 k = 0, . . . , T (13.4g)

The more observations we have, the greater the accuracy of these estimates becomes (i.e the
norm of the error covariance matrix converges to 0).

Problem 4. Use Equations (14.21) to add a method to your KalmanFilter class that estimates
a state sequence corresponding to a given observation sequence and initial state estimate. Im-
plement the following class method:

def estimate(self, x, P, z):
"""
Compute the state estimates using the Kalman filter.
If x and P correspond to time step k, then z is a sequence of
observations starting at time step k+1.

Parameters

x : ndarray of shape (n,)

The initial state estimate.
P : ndarray of shape (n, n)

The initial error covariance matrix.
z : ndarray of shape (m, N)

Sequence of N observations (each column is an observation).

Returns

out : ndarray of shape (n, N)

Sequence of state estimates (each column is an estimate).
"""
pass

123

0 5000 10000 15000 20000 25000 30000 35000
x

0

2500

5000

7500

10000

12500

15000

17500
y

State Estimates

7500 7750 8000 8250 8500 8750 9000
x

12000

12250

12500

12750

13000

13250

13500

y

State Estimates Zoomed View

Figure 13.2: State estimates (green) together with observations (red) and true state sequence (blue).

Returning to the projectile example, we now assume that our radar sensor has taken observa-
tions from time steps 200 through 800 (take the corresponding slice of the observations produced
in Problem 3). Using these observations, we seek to estimate the corresponding true states of the
projectile. We must first come up with a state estimate x̂200 for time step 200, and then feed this
into the Kalman filter to obtain estimates x̂201, . . . , x̂800.

Problem 5. Calculate an initial state estimate x̂200 as follows: For the horizontal and vertical
positions, simply use the observed position at time 200. For the velocity, compute the average
velocity between the observations zk and zk+1 for k = 200, . . . , 208, then average these 9 values
and take this as the initial velocity estimate. (Hint: numpy.diff is useful here.)

Using the initial state estimate, P200 = 106 ·Q and your Kalman filter, compute the next
600 state estimates, i.e. compute x̂201, . . . , x̂800. Plot these state estimates as a smooth green
curve together with the radar observations (as red dots) and the entire true state sequence (as
a blue curve). Zoom in to see how well it follows the true path. Your plots should be similar
to Figure 13.2.

In the absence of observations, we can still estimate some information about the state of the
system at some future time. We can do this by recognizing that the expected state noise E [εk] = 0

at any time k. Thus, given a current state estimate x̂n|m using only measurements up through time
m, the expected state at time n+ 1 is

x̂n+1|m = F x̂n|m + u

Problem 6. Add a method to your class that predicts the next k states given a current state
estimate but in the absence of observations. Do so by implementing the following method:

def predict(self, x, k):
"""
Predict the next k states in the absence of observations.

124 Lab 13. Kalman Filter

0 5000 10000 15000 20000 25000 30000 35000
x

0

2500

5000

7500

10000

12500

15000

17500

y

Predicted State Sequence

37080 37100 37120 37140 37160 37180 37200 37220
x

0

20

40

60

80

100

y

Predicted State Sequence Zoomed View

Figure 13.3: Predicted (yellow) vs. actual (blue) point of impact.

Parameters

x : ndarray of shape (n,)

The current state estimate.
k : integer

The number of states to predict.

Returns

out : ndarray of shape (n, k)

The next k predicted states.
"""
pass

We can use this prediction routine to estimate where the projectile will hit the surface.

Problem 7. Using the final state estimate x̂800 that you obtained in Problem 5, predict the
future states of the projectile until it hits the ground. Predicting approximately the next 450
states should be sufficient.

Plot the actual state sequence together with the predicted state sequence (as a yellow
curve), and observe how near the prediction is to the actual point of impact. Your results
should be similar to those shown in Figure 13.3. The following code will help you plot both the
actual and predicted state sequences together in a nice plot.

>>> predicted = kal.predict(estimates[:, -1],450)

>>> # create a dynamic xlim to always plot both sequences together
>>> x1 = actual_states[0, :][np.where(actual_states[1, :]>=0)][-1]
>>> x2 = predicted[0, :][np.where(predicted[1, :]>=0)][-1]

125

>>> plt.xlim(min(x1, x2)-50, max(x1, x2)+50)

In the absence of observations, we can also reverse the system and iterate backward in time to
infer information about states of the system prior to measured observations. The system is reversed
by

xk = F−1(xk+1 − u− εk+1).

Considering again that E [εk] = 0 at any time k, we can ignore this term, simplifying the recursive
estimation backward in time.

0 5000 10000 15000 20000 25000 30000 35000 40000
0

2500

5000

7500

10000

12500

15000

17500

Rewound States

250 200 150 100 50 0 50
0

20

40

60

80

100
Rewound States Zoomed View

Figure 13.4: Predicted (green) vs. actual (blue) point of origin.

Problem 8. Add a method to your class that rewinds the system from a given state estimate,
returning predictions for the previous states. Do so by implementing the following method:

def rewind(self, x, k):
"""
Predict the k states preceding the current state estimate x.

Parameters

x : ndarray of shape (n,)

The current state estimate.
k : integer

The number of preceding states to predict.

Returns

out : ndarray of shape (n, k)

The k preceding predicted states.
"""
pass

126 Lab 13. Kalman Filter

Returning to the projectile example, we can now predict the point of origin.

Problem 9. Using your state estimate x̂250, predict the point of origin of the projectile along
with all states leading up to time step 250. Note that you may have to take a few extra time
steps to predict the point of origin. (The point of origin is the first point along the trajectory
where the y coordinate is 0.) Plot these predicted states (in green) together with the original
state sequence. Zoom in to see how accurate your prediction is. Your plots should be similar
to Figure 13.4.

Repeat the prediction starting with x̂600. Compare to the previous results. Which is
better? Why?

14 ARMA Models

Lab Objective: ARMA(p, q) models combine autoregressive and moving-average models in order
to forecast future observations using time-series. In this lab, we will build an ARMA(p, q) model to
analyze and predict future weather data and then compare this model to statsmodels built-in ARMA
package as well as the VARMAX package. Then we will forecast macroeconomic data as well as the
future height of the Rio Negro.

Time Series
A time series is any discrete-time stochastic process. In other words, it is a sequence of random
variables, {Zt}Tt=1, that are determined by their time t. We let the realization of the time series
{Zt}Tt=1 be denoted by {zt}Tt=1. Examples of time series include heart rate readings over time,
pollution readings over time, stock prices at the closing of each day, and air temperature. Often
when analyzing time series, we want to forecast future data, such as what will the stock price of a
company will be in a week and what will the temperature be in 10 days.

ARMA(p, q) Models
One way to forecast a time series is using an ARMA model. The Wold Theorem says that any
covariance-stationary time series can be well approximated with an ARMA model. An ARMA(p, q)

model combines an autoregressive model of order p and a moving average model of order q on a time
series {Zt}Tt=1. The model itself is a discrete-time stochastic process (Zt)t∈Z satisfying the equation

Zt = c+

(
p∑

i=1

ΦiZt−i

)
︸ ︷︷ ︸

AR(p)

+

 q∑
j=1

Θjεt−j

︸ ︷︷ ︸

MA(q)

+ εt (14.1)

where each εt is an identically-distributed Gaussian variable with mean 0 and constant covariance
Σ, c ∈ Rn, and Φi and Θj are in Mn(R).

127

128 Lab 14. ARMA Models

AR(p) Models

An AR(p) model works similar to a weighted random walk. Recall that in a random walk, the
current position depends on the immediate past position. In the autogregressive model, the current
data point in the time series depends on the past p data points. However, the importance of each of
the past p data points is not uniform. With an error term to represent white noise and a constant
term to adjust the model along the y-axis, we can model the stochastic process with the following
equation:

Zt = c+

p∑
i=1

ΦiZt−i + εt (14.2)

If there is a high correlation between the current and previous values of the time series, then
the AR(p) model is a good representation of the data, and thus the ARMA(p, q) model will most
likely be a good representation. The coefficients {Φi}pi=1 are larger when the correlation is stronger.

In this lab, we will be using weather data from Provo, Utah1. To check that the data can be
represented well, we need to look at the correlation between the current and previous values.

15 20 25
zt

12

14

16

18

20

22

24

26

28

z t
1

15 20 25
zt

12

14

16

18

20

22

24

26

28

z t
2

15 20 25
zt

12

14

16

18

20

22

24

26

28

z t
3

Correlations of Weather Data

Figure 14.1: These graphs show that the weather data is correlated to its previous values. The
correlation is weaker in each graph successively, showing that the further in the past the data is, the
less correlated the data becomes.

MA(q) Models

A moving average model of order q is used to factor in the varying error of the time series. This model
uses the error of the current data point and the previous data points to predict the next datapoint.
Similar to an AR(p) model, this model uses a linear combination (which includes a constant term to
adjust along the y-axis..

1This data was taken from https://forecast.weather.gov/data/obhistory/metric/KPVU.html

129

Zt = c+ εt +

q∑
i=1

Θiεt−i (14.3)

This part of the model simulates shock effects in the time series. Examples of shock effects
include volatility in the stock market or sudden cold fronts in the temperature.

Combining both the AR(p) and MA(q) models, we get an ARMA(p, q) model which forecasts
based on previous observations and error trends in the data.

ARIMA(p, d, q) Models

Not all ARMA models are covariance stationary. However, many time series can be made covariance
stationary by differencing. Let δZt represent the time series zt = Zt − Zt−1 obtained by taking a
difference of the terms. If the trend is linear a first difference is usually stationary. If the trend
is quadratic a second difference may be necessary δ2Zt = δ(δZt). An ARIMA(p, d, q) model is a
discrete-time stochastic process (Zt)t∈Z satisfying the equation

δdZt = c+

(
p∑

i=1

Φizt−i

)
︸ ︷︷ ︸

AR(p)

+

 q∑
j=1

Θjεt−j

︸ ︷︷ ︸

MA(q)

+ εt (14.4)

Finding Parameters

One of the most difficult parts of using an ARMA(p, q) model is identifying the proper parameters
of the model. For simplicity, at the beginning of this lab we discuss univariate ARMA models with
parameters {ϕi}pi=1, {θi}

q
i=1, µ, and σ, where µ and σ are the mean and standard deviation of the

error. Note that {ϕi}pi=1 and {θi}qi=1 determine the order of the ARMA model. For this lab, we will
let c = 0.

A naive way to use an ARMA model is to choose p and q based on intuition. Figure 14.1 showed
that there is a strong correlation between zt and zt−1 and between zt and zt−2. The correlation is
weaker between zt and zt−3. Intuition then suggests to choose p = 2. By looking at the correlations
between the current noise with previous noise, similar to Figure 14.1, it can also be seen that there
is a weak correlation between zt and εt and between zt and εt−1. Between zt and εt−2 there is no
correlation. For more on how these error correlations were found, see Additional Materials. Intuition
from these correlations suggests to choose q = 1. Thus, a naive choice for our model is an ARMA(2, 1)
model.

130 Lab 14. ARMA Models

14 15 16 17 18
Day of the Month

4

2

0

2

4

6

8

Ch
an

ge
 in

 T
em

pe
ra

tu
re

 (C
) -

=

0
ARMA(2,1) Naive Forecast

Old Data
New Data

Figure 14.2: Naive forecast on weather.npy

Problem 1. Write a function arma_forecast_naive() that builds an ARMA(p,q) model.
Your function should accept as parameters p, q, and n, where p is the order of the autoregressive
model, q is the order of the moving average model, and n is the number of observations to
predict. Assume c= 0, and let ϕi = .5, θi = .1, and εi ∼ N (0, 1) for all i.

The file weather.npy contains data on the temperature in Provo, Utah from 7:56 PM
May 13, 2019 to 6:56 PM May 16, 2019, taken every hour. This time series is NOT covariance
stationary, so to make it covariance stationary, take its first difference (Hint: you might find
np.diff() helpful). We denote the new covariance stationary time series as {zt}Tt=1. Predict
the next n observations for {zt} by iterating through Equation 14.4.

Run your code on weather.npy, and plot the observed differences {zt}Tt=1 followed by
your predicted observations of zt. For p=2, q=1, and n=20, your plot should look similar to
Figure 14.2, however, due to the variance of the error εt, the plot will not look exactly like
Figure 14.2. The predictions may be higher or lower on the y-axis.

Let Θ = {ϕi, θj , µ, σ} be the set of parameters for an ARMA(p, q) model. Suppose we have a
set of observations {zt}nt=1. Our goal is to find the p, q, and Θ that maximize the likelihood of the
ARMA model given the data. Using the chain rule, we can factorize the likelihood of the model
given this data as

p({zt} | Θ) =

n∏
t=1

p(zt | zt−1, . . . , z1,Θ) (14.5)

131

State Space Representation

In a general ARMA(p, q) model, the likelihood is a function of the unobserved error terms εt and
is not trivial to compute. Simple approximations can be made, but these may be inaccurate under
certain circumstances. Explicit derivations of the likelihood are possible, but tedious. However, when
the ARMA model is placed in state-space, the Kalman filter affords a straightforward, recursive way
to compute the likelihood.

We demonstrate one possible state-space representation of an ARMA(p, q) model. Let r =

max(p, q + 1). Define

x̂t|t−1 =
[
xt−1 xt−2 · · · xt−r

]T
(14.6)

F =

ϕ1 ϕ2 · · · ϕr−1 ϕr

1 0 · · · 0 0

0 1 · · · 0 0
...

... · · ·
...

...
0 0 · · · 1 0

 (14.7)

H =
[
1 θ1 θ2 · · · θr−1

]
(14.8)

Q =

σ 0 · · · 0

0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

 (14.9)

wt ∼ MVN(0, Q), (14.10)

where ϕi = 0 for i > p, and θj = 0 for j > q. Note that Equation 14.2 gives

F x̂t−1|t−2 + wt =

∑r
i=1 ϕixt−i

xt−1

xt−2

...
xt−(r−1)

+

εt
0

0
...
0

 (14.11)

=
[
xt xt−1 · · · xt−(r−1)

]T
(14.12)

= x̂t|t−1 (14.13)

We note that zt|t−1 = Hx̂t|t−1 + µ.2

Then the linear stochastic dynamical system

x̂t+1|t = F x̂t|t−1 + wt (14.14)
zt|t−1 = Hx̂t|t−1 + µ (14.15)

describes the same process as the original ARMA model.

Note

2For a proof of this fact, see Additional Materials.

132 Lab 14. ARMA Models

Equation 14.15 involves a deterministic component, namely µ. The Kalman filter theory devel-
oped in the previous lab, however, assumed E[εt] = 0 for the observations zt|t−1,. This means
you should subtract off the mean µ of the error from the time series observations zt|t−1 when
using them in the predict and update steps.

Likelihood via Kalman Filter

We assumed in Equation 14.10 that the error terms of the model are Gaussian. This means that
each conditional distribution in 14.5 is also Gaussian, and is completely characterized by its mean
and variance:

mean Hx̂t|t−1 + µ (14.16)

variance HPt|t−1H
T (14.17)

where x̂t|t−1 and Pt|t−1 are easily found via the Kalman filter, during the Predict step. Given that
each conditional distribution is Gaussian, the likelihood can then be found as

p({zt} | Θ) =

n∏
t=1

N (zt | Hx̂t|t−1 + µ,HPt|t−1H
T). (14.18)

Problem 2. Write a function arma_likelihood() that returns the log-likelihood of an ARMA
model, given a time series {zt}Tt=1. This function should accept filename which contains the
observations, and it should accept as parameters each parameter in Θ. In this case, the time
series should be the change in temperature of weather.npy, which is the first difference of the
time series found in weather.npy, as was done in Problem 1. Adapt Equation 14.18 to calculate
and return the log-likelihood of the ARMA(p, q) model as a float.

Use the provided state_space_rep() function to generate F,Q, and H. The function
kalman() has also been provided to help calculate the means and covariances of each obser-
vation. Calling the function kalman() on a time series will return an array whose values are
x̂t|t−1 and an array whose values are Pt|t−1 for each t ≤ n.
Hint: remember to subtract off the mean µ from the inputted observation when using kalman().

Also, when implementing Equation 14.18, you may find it best to use scipy.stats.
distributions.norm.pdf, but keep in mind that this method accepts standard deviations,
not variances. When implemented correctly, your function should match the following output:

>>> arma_likelihood(filename="weather.npy", phis=np.array([0.9]),
thetas=np.array([0]), mu=17., std=0.4)

-1375.1805469978776

133

Model Identification

Now that we can compute the likelihood of a given ARMA model, we want to find the best choice
of parameters given our time series. In this lab, we define the model with the "best" choice of
parameters as the model which minimizes the AIC. The benefit of minimizing the AIC is that it
rewards goodness of fit while penalizing overfitting. The AIC is expressed by

2k

(
1 +

k + 1

n− k

)
− 2ℓ(Θ) (14.19)

where n is the sample size, k = p+ q + 2 is the number of parameters in the model, and ℓ(Θ) is the
maximum likelihood for the model class.

To compute the maximum likelihood for a model class, we need to optimize 14.18 over the space
of parameters Θ. We can do so by using an optimization routine such as scipy.optimize.minimize
on the function arma_likelihood() from Problem 2. Use the following code to run this routine.

from scipy.optimize import minimize

assume p, q, and time_series are defined
def f(x): # x contains the phis, thetas, mu, and std

try:
return -1*arma_likelihood(filename, phis=x[:i], thetas=x[i:i+j],

mu=x[-2], std=x[-1])
except np.linalg.LinAlgError:

return np.inf

create initial point
x0 = np.zeros(p + q + 2)
x0[-2] = time_series.mean()
x0[-1] = time_series.std()
sol = minimize(f, x0, method = "SLSQP")
sol = sol['x']

This routine will return a vector sol where the first p values are {ϕi}pi=1, the next q values
are {θi}qi=1, and the last two values are µ and σ, respectively. Note the wrapper f(x) returns the
negative log-likelihood. This is because scipy.optimize.minimize finds the minimizer of f(x)

and we are solving for the maximum likelihood.
To minimize the AIC, we perform model identification. This is choosing the order of our model,

p and q, from some admissible set. The order of the model which minimizes the AIC is then the
optimal model.

Problem 3. Write a function model_identification() that accepts filename containing the
time series data and parameters p_max and q_max as integers. Determine which ARMA(p, q)
model has the minimum AIC for all 1 ≤ p ≤ p_max and 1 ≤ q ≤ q_max. Then, return each
parameter in Θ of that model.
Hint: when calculating the AIC using Equation 14.19, bear in mind that −ℓ(Θ) = f(sol)
where sol is found in the code above and explained in the following paragraph.

Your code should replicate the following output up to at least 4 decimal places.

134 Lab 14. ARMA Models

>>> model_identification(filename="weather.npy", p_max=4, q_max=4)
(array([0.7213538]), array([-0.26246426]), 0.359785001944352, ←↩

1.5568374351425505)

Forecasting with Kalman Filter
We have now identified the optimal ARMA(p, q) model. We can use this model to predict future
states. The Kalman filter provides a straightforward way to predict future states by giving the mean
and variance of the conditional distribution of future observations. Observations can be found as
follows

zt+k | z1, · · · , zt ∼ N (zt+k | Hx̂t+k|t + µ, HPt+k|tH
T) (14.20)

To evolve the Kalman filter, recall the predict and update rules of a Kalman filter.

(Initialize) x̂0|−1 = µ0

P0|−1 = Q0

Predict x̂k|k−1 = F x̂k−1|k−1 + u k = 1, . . . , T

Pk|k−1 = FPk−1|k−1F
T +Q k = 1, . . . , T

Update Kk = Pk|k−1H
T
(
HPk|k−1H

T +R
)−1

k = 0, . . . , T

x̂k|k = x̂k|k−1 +Kk

(
zk −Hx̂k|k−1

)
k = 0, . . . , T

Pk|k = (I −KkH)Pk|k−1 k = 0, . . . , T

With ARMA, we define observational noise covariance R and drift term u to both be 0.

Achtung!

Recall that the values returned by kalman() are conditional on the previous observation. To
compute the mean and variance of future observations, the values xn|n and Pn|n MUST be
computed using the Update step. Once they are computed, only the Predict step is needed to
find the future means and covariances.

Problem 4. Write a function arma_forecast() that accepts filename containing a time se-
ries, the parameters for an ARMA model, and the number n of observations to forecast. Cal-
culate the mean and covariance of the future n observations using the Kalman filter.

135

To do this, use state_space_rep() to generate F , Q, and H. Then, use kalman() (with
µ subtracted off from the covariance stationary time series zk) to calculate x̂k|k−1 and Pk|k−1,
respectively. Use the Update step on the last elements of zk (with µ subtracted off), x̂k|k−1, and
Pk|k−1 to find x̂k|k and Pk|k. Then, iteratively use the Predict step to make future predictions
of the mean and covariance. Recall that R and u are both defined to be 0! Also, remember
that once you find a mean x̂k|k−1 and covariance Pk|k−1, you must use Equations 14.16 and
14.17 to transform them back into observation space.

Plot the original observations as well as the mean of each future observation. Plot a 95%
confidence interval (2 standard deviations away from the mean) around the means of future
observations. Hint: the standard deviation is the square root of the covariance calculated.

The following code should create a plot similar to Figure 14.3.

Get optimal model as found in the previous problem
phis, thetas, mu, std = np.array([0.72135856]), np.array([-0.26246788]), ←↩

0.35980339870105321, 1.5568331253098422

Forecast optimal mode
arma_forecast(filename="weather.npy", phis=phis, thetas=thetas,

mu=mu, std=std, n=30)

How does this graph compare to the naive ARMA graph from Problem 1?

Statsmodel ARMA
The module statsmodels contains a package that includes an ARMA model class. This is accessed
through ARIMA model, which stands for Autoregressive Integrated Moving Average. This class also
uses a Kalman Filter to calculate the MLE. When creating an ARIMA object, initialize the variables
endog (the data) and order (the order of the model). The order is of the form (p, d, q) where d is
the differences. To create an ARMA model, set d = 0. The object can then be fitted based on the
MLE using a Kalman Filter.

from statsmodels.tsa.arima.model import ARIMA
Intialize the object with weather data and order (1, 1)
>>> model = ARIMA(z, order=(p, 0, q), trend='c').fit(method="innovations_mle")

Access p and q
>>> model.specification.k_ar
p
>>> model.specification.k_ma
q

As in the other problems, the time series passed in should be covariance stationary. The AIC of
an ARMA model object is saved as the attribute aic. Since the AIC is much faster to compute using
statsmodels, model identification is much faster. Once a model is chosen, the method predict will
forecast n observations, where n is the number of known observations. It will return the mean of
each future observation.

Predict from the beginning of the model to 30 observations in the future

136 Lab 14. ARMA Models

14 15 16 17 18
Day of the Month

4

2

0

2

4

Ch
an

ge
 in

 T
em

pe
ra

tu
re

 (C
) -

=

0
ARMA(1,1)

Old Data
forecast
95% Confidence Interval

Figure 14.3: ARMA(1, 1) forecast on weather.npy

model.predict(start=0, end=len(data)+30)

Problem 5. Write a function sm_arma() that accepts filename containing a time series, in-
teger values for p_max and q_max, and the number n of values to predict.

As in Problem 3, perform model identification to find the ARMA(p, q) model with the
best AIC for 1 ≤ p ≤ p_max and 1 ≤ q ≤ q_max, but this time use statsmodels. Make sure
the model is fit using the MLE.

Use the optimal model to predict n future observations of the time series. Plot the original
observations along with the predicted observations from the beginning through n observations
in the future, as given by statsmodels. Return the AIC of the optimal model.

For p_max=3, q_max=3, and n=30, your graph should look similar to Figure 14.4. How
does this graph compare to Problem 1? Problem 4?

137

14 15 16 17 18
Day of the Month

4

2

0

2

4

Ch
an

ge
 in

 T
em

pe
ra

tu
re

 (C
) -

=

0
Statsmodel ARMA(1,1)

Old Data
ARMA Model

Figure 14.4: Statsmodel forecast on weather.npy.

Statsmodel VARMA
Until now we have been dealing with univariate ARMA models. Multivariate ARMA models are
used when we have multiple time series that can be useful in predicting one another. For example
say we have two time series zt,1 and zt,2. The multivariate ARMA(1,1) model is as follows:

zt,1 = c1 + ϕ11zt−1,1 + ϕ12zt−1,2 + θ11εt−1,1 + θ12εt−1,2 (14.22)
zt,2 = c1 + ϕ21zt−1,1 + ϕ22zt−1,2 + θ21εt−1,1 + θ22εt−1,2 (14.23)

This can be written in matrix form as shown in Equation 14.1. The module statsmodels
contains a package that includes a VARMAX model class which can be used to create a multivariate
ARMA model. VARMAX stands for Vector Autoregression Moving Average with Exogenous Regres-
sors. An exogenous regressor is a time series that affects the model but is not affected by it. In the
example below we have two time series corresponding to the price of copper and aluminum. Since
aluminum is a substitute for copper, it is reasonable to assume the price of aluminum may help us
predict the price of copper and vice versa.

from statsmodels.tsa.api import VARMAX
import statsmodels.api as sm

Load in world copper data
data = sm.datasets.copper.load_pandas().data
Create index compatible with VARMAX model
data.index = pd.period_range(start="1951", end="1975", freq='Y')

Initialize and fit model
mod = VARMAX(data[["ALUMPRICE", "COPPERPRICE"]])
mod = mod.fit(maxiter=1000, disp=False)

138 Lab 14. ARMA Models

Predict the price of aluminium and copper until 1985
pred = mod.predict("1951", "1985")

Get confidence intervals
forecast_obj = mod.get_forecast("1981")
all_CI = forecast_obj.conf_int(alpha=0.05)

Plot predictions against true price
pred.plot(figsize=(10,4))
plt.plot(data["ALUMPRICE"], label="Actual ALUMPRICE")
plt.plot(data["COPPERPRICE"], label="Actual COPPERPRICE")
plt.legend()
plt.title("VARMA Predictions for World Copper Market Dataset")

1955 1960 1965 1970 1975 1980 1985
year

20

25

30

35

40

45

50

pr
ice

VARMA Predictions for World Copper Market Dataset

ALUMPRICE
COPPERPRICE
Actual ALUMPRICE
Actual COPPERPRICE

Figure 14.5: Statsmodel VAR(1) forecast.

Problem 6. Write a function sm_varma() that accepts start and end dates for forecasting.
Use the statsmodels VARMAX class to forecast on macroeconomic data between the start and
end dates. The following code shows how to obtain the data.

Load in data
df = sm.datasets.macrodata.load_pandas().data
Create DatetimeIndex
dates = df[["year", "quarter"]].astype(int).astype(str)
dates = dates["year"] + "Q" + dates["quarter"]
dates = dates_from_str(dates)
df.index = pd.DatetimeIndex(dates)
Select columns used in prediction

139

df = df[["realgdp", "realcons", "realinv"]]

Initialize your VARMAX model with the df specified above, and include the parameter
freq="Q-DEC". Fit your model, and predict from the start date until the end date. Then, get
the model forecast until the end date. Plot the original data, prediction, and a 95% confidence
interval (2 standard deviations away from the mean) around the future observations. Return
the AIC of the chosen model. The plot should be similar to Figure 14.6.
Hint: in the example above, mod.predict("1951", "1985") returns a dataframe of 2 columns
that contain the predicted values of "ALUMPRICE" and "COPPERPRICE", respectively, from the
years 1951 to 1985. Also, all_CI is a dataframe where each column indicates the corresponding
dataset and whether it is a lower or upper bound of a confidence interval determined by the
alpha value. Thus, the column "lower ALUMPRICE" with alpha=0.05 contains the lower bounds
of a 95% confidence interval for the "ALUMPRICE" dataset.

The dataset "realgdp" contains the real gross domestic product, "realcons" contains
real personal consumption expenditures, and "realinv" contains real gross private domestic
investment. Since personal consumption and domestic investment are components of gross
domestic product, it is reasonable to assume these time series will be useful in predicting one
another.

Figure 14.6: Macroeconomic data is forecasted 12 years in the future using statsmodels.

140 Lab 14. ARMA Models

Optional

The statsmodels package can help us perform model identification. The method arma_order_select_ic
will find the optimal order of the ARMA model based on certain criteria. The first parameter y is

the data. The data must be a NumPy array, not a Pandas DataFrame. The parameter ic defines
the criteria trying to be minimized. The method will return a dictionary, where the minimal order
of each criteria can be accessed.

>>> import statsmodels.api as sm
>>> from statsmodel.tsa.stattools import arma_order_select_ic as order_select
>>> import pandas as pd

>>> # Get sunspot data and give DateTimeIndex
>>> sunspot = sm.datasets.sunspots.load_pandas().data
>>> sunspot.index = pd.Index(pd.date_range("1700", end="2009", freq="A-DEC"))
>>> sunspot.drop(columns = ["YEAR"],inplace = True)

>>> # Find best order where p < 5 and q < 5
>>> # Use AICc as basis for minimization
>>> order = order_select(sunspot.values,max_ar=4,max_ma=4,ic=["aic", "bic"],←↩

fit_kw={"method": "mle"})
>>> print(order["aic_min_order"])
(4,2)
>>> print(order["bic_min_order"])
(4,2)

>>> # Fit model
>>> # Note that we need to set the dimensionality to zero in order to have an ←↩

ARMA model.
>>> model = ARIMA(sunspot,order = (4,0,2)).fit(method="innovations_mle")

>>> # Predict values from 1950 to 2012.
>>> prediction = model.predict(start="1950", end="2012")

>>> # Plot the prediction along with the sunspot data.
>>> fig, ax = plt.subplots(figsize=(13, 7))
>>> plt.plot(prediction)
>>> plt.plot(sunspot["1950": "2009"])
>>> ax.set_title("Sunspot Dataset")
>>> ax.set_xlabel("Year")
>>> ax.set_ylabel("Number of Sunspots")
>>> plt.show()

141

1950 1960 1970 1980 1990 2000 2010
Year

0

25

50

75

100

125

150

175

200

Nu
m

be
r o

f S
un

sp
ot

s
Sunspot Dataset

forecast
SUNACTIVITY
95% confidence interval

Figure 14.7: Sunspot activity data is forecasted four years in the future using statsmodels.

Problem 7. The dataset manaus contains data on the height of the Rio Negro from every
month between January 1903 and January 1993. Write a function manaus() that accepts the
forecasting range as strings start and end, the maximum parameter for the AR model p and
the maximum parameter of the MA model q. The parameters start and end should be strings
corresponding to a DateTimeIndex in the form Y%M%D, where D is the last day of the month.

The function should determine the optimal order for the ARMA model based on the
AIC and the BIC. Then forecast and plot on the range given for both models and compare.
Return the order of the AIC model and the order of the BIC model, respectively. For the range
"1983-01-31" to "1995-01-31", your plot should look like Figure 14.8.

(Hint: The data passed into arma_order_select_ic must be a NumPy array. Use the
attribute values of the Pandas DataFrame.)

To get the manaus dataset and set it with a DateTimeIndex, use the following code:

Get dataset
raw = pydata("manaus")
Convert to DateTimeIndex
manaus = pd.DataFrame(raw.values,index=pd.date_range("1903-01", "1993-01",←↩

freq='M'))
manaus = manaus.drop(0, axis=1)
Set new column title
manaus.columns = ["Water Level"]

142 Lab 14. ARMA Models

1983 1985 1987 1989 1991 1993 1995
Year

4

2

0

2

4

W
at

er
 L

ev
el

AIC

forecast
Water Level
95% confidence interval

1983 1985 1987 1989 1991 1993 1995
Year

4

2

0

2

4

W
at

er
 L

ev
el

BIC

forecast
Water Level
95% confidence interval

Water Levels in the Rio Negro

Figure 14.8: AIC and BIC based ARMA models of manaus dataset.

143

Additional Materials

Finding Error Correlation

To find the correlation of the current error with past error, the noise of the data needs to be isolated.
Each data point yt can be decomposed as

yt = Tt + St +Rt, (14.24)

where Tt is the overall trend of the data, St is a seasonal trend, and Rt is noise in the data.
The overall trend is what the data tends to do as a whole, while the seasonal trend is what the data
does repeatedly. For example, if looking at airfare prices over a decade, the overall trend of the data
might be increasing due to inflation. However, we can break this data into individual years. We
call each year a season. The seasonal trend of the data might not be strictly increasing, but have
increases during busy seasons such as Christmas and summer vacations.

To find Tt, we use an M -fold method. In this case, M is the length of our season. We define
the equation

Tt =
1

M

∑
−M/2<i<M/2

yi+t. (14.25)

This means for each t, we take the average of the season surrounding yt.

To find the seasonal trend, first subtract the overall trend from the time series. Define xt =

yt − Tt. The value of the seasonal trend can then be found by averaging each day of the season over
every season. For example, if the season was one year, we would find the average value on the first
day of the year over all seasons, then the second, and so on. Thus,

St =
1

K

∑
i≡t (mod M)

xi (14.26)

where K is the number of seasons.

With the overall and seasonal trend known, the noise of the data is simply Rt = yt − Tt − St.
To determine the strength of correlations with the current error and the past error, plot yt vs. Rt−i

as in Figure 14.1.

144 Lab 14. ARMA Models

Proof of Equation 14.15

p∑
i=1

ϕi(zt−i − µ) + at +

q∑
j=1

θjat−j =

p∑
i=1

ϕi(Hx̂t−i) + at +

q∑
j=1

θjat−j (14.27)

=

r∑
i=1

ϕi(xt−i +

r−1∑
k=1

θkxt−i−k) + at +

r−1∑
j=1

θjat−j (14.28)

= at +

r∑
i=1

ϕi(xt−i) +

r−1∑
j=1

θj

(r∑
i=1

ϕixt−j−i + at−j

)
(14.29)

= at +

r∑
i=1

ϕi(xt−i) +

r−1∑
j=1

θjxt−k (14.30)

= xt +

r−1∑
j=1

θjxt−kθkxt−k (14.31)

= zt. (14.32)

15 Non-negative Matrix
Factorization
Recommender

Lab Objective: Understand and implement the non-negative matrix factorization for recommen-
dation systems.

Introduction
Collaborative filtering is the process of filtering data for patterns using collaboration techniques.
More specifically, it refers to making prediction about a user’s interests based on other users’ interests.
These predictions can be used to recommend items and are why collaborative filtering is one of the
common methods of creating a recommendation system.

Recommendation systems look at the similarity between users to predict what item a user is
most likely to enjoy. Common recommendation systems include Netflix’s Movies you Might Enjoy
list, Spotify’s Discover Weekly playlist, and Amazon’s Products You Might Like.

Non-negative Matrix Factorization
Non-negative matrix factorization is one algorithm used in collaborative filtering. It can be applied
to many other cases, including image processing, text mining, clustering, and community detection.
The purpose of non-negative matrix factorization is to take a non-negative matrix V and factor it
into the product of two non-negative matrices.

For V ∈ Rm×n, 0 ⪯W ,

minimize ||V −WH||
subject to 0 ⪯W, 0 ⪯ H

where W ∈ Rm×k, H ∈ Rk×n

k is the rank of the decomposition and can either be specified or found using the Root Mean
Squared Error (the square root of the MSE), SVD, Non-negative Least Squares, or cross-validation
techniques.

145

146 Lab 15. Non-negative Matrix Factorization Recommender

For this lab, we will use the Frobenius norm, given by

||A||F =

√√√√ m∑
i=1

n∑
j=1

|a|2ij .

It is equivalent to the square root of the sum of the diagonal of AHA.

Problem 1. Create the NMFRecommender class, which will be used to implement the NMF
algorithm. Initialize the class with the following parameters: random_state defaulting to 15,
tol defaulting to 1e−3, maxiter defaulting to 200, and rank defaulting to 2.

Add a method called _initialize_matrices that takes in m and n, the dimensions of
V . Set the random seed so that initializing the matrices can be replicated.

>>> np.random.seed(self.random_state)

Then, using np.random.random, initialize W and H with randomly generated numbers between
0 and 1, where W ∈ Rm×k and H ∈ Rk×n. Return W and H.

Finally, add a method called _compute_loss() that takes as parameters V, W, and H and
returns the Frobenius norm of V −WH.

Multiplicative Update

After initializing W and H, we iteratively update them using the multiplicative update step. There
are other methods for optimization and updating, but because of the simplicity and ease of this
solution, it is widely used. As with any other iterative algorithm, we perform the step until the tol
or maxiter is met.

Hs+1
ij = Hs

ij

((W s)TV)ij
((W s)TW sHs)ij

(15.1)

and

W s+1
ij = W s

ij

(V (Hs+1)T)ij
(W sHs+1(Hs+1)T)ij

(15.2)

Problem 2. Add a method to the NMF class called _update_matrices that takes as inputs
matrices V , W , H and returns Ws+1 and Hs+1 as described in Equations 15.1 and 15.2.

Problem 3. Finish the NMF class by adding a method fit that finds an optimal W and H.
It should accept V as a numpy array, perform the multiplicative update algorithm until

the loss is less than tol or maxiter is reached, and return W and H.
Call the function _initialize_matrices() in order to run _update_matrices() and

_compute_loss().

147

Finally add a method called reconstruct that reconstructs and returns V by multiplying
W and H. You may assume that fit has already been run (so self.V and self.W will already
be initialized, in particular).

Using NMF for Recommendations

Consider the following marketing problem where we have a list of five grocery store customers and
their purchases. We want to create personalized food recommendations for their next visit. We start
by creating a matrix representing each person and the number of items they purchased in different
grocery categories. So from the matrix, we can see that John bought two fruits and one sweet.

V =

John Alice Mary Greg Peter Jennifer

0 1 0 1 2 2 V egetables

2 3 1 1 2 2 Fruits

1 1 1 0 1 1 Sweets

0 2 3 4 1 1 Bread

0 0 0 0 1 0 Coffee

After performing NMF on V , we’ll get the following W and H.

W =

Component1 Component2 Component3

2.1 0.03 0. V egetables

1.17 0.19 1.76 Fruits

0.43 0.03 0.89 Sweets

0.26 2.05 0.02 Bread

0.45 0. 0. Coffee

H =

John Alice Mary Greg Peter Jennifer 0.00 0.45 0.00 0.43 1.0 0.9 Component1

0.00 0.91 1.45 1.9 0.35 0.37 Component2

1.14 1.22 0.55 0.0 0.47 0.53 Component3

W represents how much each grocery feature contributes to each component; a higher weight
means it’s more important to that component. For example, component 1 is heavily determined by
vegetables followed by fruit, then coffee, sweets and finally bread. Component 2 is represented almost
entirely by bread, while component 3 is based on fruits and sweets, with a small amount of bread.
H is similar, except instead of showing how much each grocery category affects the component, it
shows a much each person belongs to the component, again with a higher weight indicating that the
person belongs more in that component. We can see the John belongs in component 3, while Jennifer
mostly belongs in component 1.

To get our recommendations, we reconstruct V by multiplying W and H.

WH =

John Alice Mary Greg Peter Jennifer

0.0000 0.9723 0.0435 0.96 2.1105 1.9011 V egetables

2.0064 2.8466 1.2435 0.8641 2.0637 2.0561 Fruits

1.0146 1.3066 0.533 0.2419 0.8588 0.8698 Sweets

0.0228 2.0069 2.9835 4.0068 0.9869 1.0031 Bread

0.0000 0.2025 0.0000 0.1935 0.45 0.405 Coffee

148 Lab 15. Non-negative Matrix Factorization Recommender

Most of the zeros from the original V have been filled in. This is the collaborative filtering
portion of the algorithm. By sorting each column by weight, we can predict which items are more
attractive to the customers. For instance, Mary has the highest weight for bread at 2.9835, followed
by fruit at 1.2435 and then sweets at .533. So we would recommend bread to Mary.

Another way to interpret WH is to look at a feature and determine who is most likely to buy
that item. So if we were having a sale on sweets but only had funds to let three people know, using
the reconstructed matrix, we would want to target Alice, John, and Jennifer in that order. This gives
us more information that V alone, which says that everyone except Greg bought one sweet.

Problem 4. Use the NMFRecommender class to run NMF on V , defined above, with 2 com-
ponents. Return W , H as matrices, and the number of people who have higher weights in
component 2 than in component 1 as a float.

Sklearn NMF
Python has a few packages for recommendation algorithms: Surprise, CaseRecommender and of
course SkLearn. They implement various algorithms used in recommendation models. We’ll use
SkLearn, which is similar to the NMFRecommender class, for the last problems.

from sklearn.decomposition import NMF

>>> model = NMF(n_components=2, init="random", random_state=0)
>>> W = model.fit_transform(X)
>>> H = model.components_

As mentioned earlier, many big companies use recommendation systems to encourage purchas-
ing, ad clicks, or spending more time in their product. One famous example of a Recommendation
system is Spotify’s Discover Weekly. Every week, Spotify creates a playlist of songs that the user has
not listened to on Spotify. This helps users find new music that they enjoy and keeps Spotify at the
forefront of music trends.

Problem 5. Read the file artist_user.csv as a pandas dataframe with index_col=0. The
rows represent users, with the user id in the first column, and the columns represent artists.
For each artist j that a user i has listened to, the ij entry contains the number of times user i

has listened to artist j.
Identify the rank, or number of components to use. Ideally, we want the smallest rank

that minimizes the error. However, this rank may be too computationally expensive, as in this
situation.

We’ll choose the rank by using the following method:

1. First, calculate the frobenius norm of the dataframe and multiply it by 0.0001 (this will
be our benchmark value)

2. Next, iterate through rank= 10, 11, 12, 13, . . . and for each iteration:

149

(a) Run NMF using n_components=rank, init="random", random_state=0 and max_iter=500

(b) Reconstruct the matrix V

(c) Calculate the root mean square error (RMSE) by taking the square root of the MSE
– calculated by sklearn.metrics.mean_squared_error – of the original dataframe
and the reconstructed matrix V

(d) If the RMSE is less than the benchmark value, stop

3. Return the rank (as an integer) and the reconstructed matrix of this rank

Hint: the optimal rank can be found between 10 and 15, so you only actually need to iterate
through rank= 10, . . . , 15.

Problem 6. Write a function discover_weekly that takes in a user id and the reconstructed
matrix from Problem 5, and returns a list of 30 artists to recommend as strings.

This list of strings should be sorted so that the first artist is the recommendation with
the highest weight and the last artist is the least, and it should not contain any artists that the
user has already listed to. Use the file artists.csv with index_col=0, to match the artist ID
to their name.
As a check, the Discover Weekly for user 2 should return

[’Britney Spears’, ’Avril Lavigne’, ’Rihanna’, ’Paramore’, ’Christina Aguilera’,
’U2’, ’The Devil Wears Prada’, ’Muse’, ’Hadouken!’, ’Ke$ha’, ’Good Charlotte’,
’Linkin Park’, ’Enter Shikari’, ’Katy Perry’, ’Miley Cyrus’, ’Taylor Swift’,
’Beyoncé’, ’Asking Alexandria’, ’The Veronicas’, ’Mariah Carey’, ’Martin L. Gore’,
’Dance Gavin Dance’, ’Erasure’, ’In Flames’, ’3OH!3’, ’Blur’, ’Kelly Clarkson’,
’Justin Bieber’, ’Alesana’, ’Ashley Tisdale’]

150 Lab 15. Non-negative Matrix Factorization Recommender

16 Deep Learning

Lab Objective: Deep Learning is a popular method for machine learning tasks that have large
amounts of data, including image recognition, voice recognition, and natural language processing. In
this lab, we use PyTorch to write a convolution neural net to classify images. We also look at one of
the challenges of deep learning by performing an adversarial attack on our model.

Intro to Neural Networks

An artificial neural network is a machine learning tool inspired by the idea of neurons passing
information between each other to learn. The network is composed of layers of neurons, usually called
nodes, that are connected in various ways. Each connection has a weight based on its importance,
which is used as information is passed through the network from one layer to the next. For example,
in Figure 16.1, the yellow input is passed to the first layer, blue, then the green layer, and then to
the final output layer.

The middle layers for a neural network are considered “hidden” because they’re not directly
viewable to the outside world. You can view them but they will be a mess of seemingly random
numbers, not the helpful classification labels you would get from an end layer.

In a neural network, the input is often images, text, or sounds represented as a vector of real
numbers. In order to evaluate a network, these values are then multiplied by the weight of each
pertinent edge, and all respective values are added up to create the node value. A vector called
the bias of the layer is added to each respective node, finalizing the linear combination step. An
activation function takes these node values and applies a nonlinear transformation to them, which
allows the model to learn complex nonlinear transformations between the input and output. Without
these activation functions, the network would be linear and exactly the same as a network with no
hidden layers. Mathematically, a typical neural network looks like the nested function composition

fN (x) = a(Wka(. . .a(W2a(W1x+ b1) + b2) . . .) + bk)

where a is the activation function, and Wi and bi are the weights and biases of each layer of the
neural network. The model is trained by adjusting the weights and biases, typically using a variant
of gradient descent, until the model output accurately matches the training labels.

151

152 Lab 16. Intro to Deep Learning and PyTorch

Figure 16.1: A high level diagram of an artificial neural network.

Intro to PyTorch

PyTorch is an open source machine learning library developed by Facebook AI Research. It’s mainly
used for fast GPU processing of deep neural networks (neural networks with many hidden layers).
GPUs (graphics processing units) are designed to compute thousands of operations at once and are
vital for parallelizing the operations used by neural networks, which is why they are used here. For
more information and documentation on PyTorch, visit https://pytorch.org/

We will be working in Google’s Colaboratory, https://colab.research.google.com/notebooks/
intro.ipynb. Colab notebooks use Google’s cloud servers, which have a built-in GPU. To enable
the GPU in a Colab notebook, select the Runtime tab and then Change runtime type. This will open
a popup called Notebook Settings. Under Hardware Settings, select GPU.

We can verify that GPU is enabled by calling torch.cuda.is_available(). If this function
returns False, a GPU is not available, and the code will be run on the CPU.

Achtung!

Colab has a limit on the amount of GPU time available, and the longer one uses their GPUs on
the same Google account, the less priority one has. As we will use this feature for both this lab
and the Recurrent Neural Networks lab, it is advisable to not leave the GPU active while you
are not using it. Instead, switch to CPU while you are developing your code, then only switch
to GPU once you’re ready to fully train your model (we’ll explain what that means later).

Note that enabling or disabling the GPU resets the notebook environment, so be sure
that you save the results of any important computations before doing so, and you may need
to re-upload data to your session too. Also be aware that along with the limit on GPU time,
Colab sessions also time out and reset after a period of user inactivity, even if cells are running
and independent of whether CPU or GPU is being used.

If you still run out of GPU time, Kaggle—a platform for data science and data science
competitions—also offers free GPU time in a notebook environment very similar to Colab’s.

https://pytorch.org/
https://colab.research.google.com/notebooks/intro.ipynb
https://colab.research.google.com/notebooks/intro.ipynb

153

CUDA is a parallel computing platform for GPU computing. The PyTorch package torch.cuda
interfaces with this package and allows code to be run on the GPU.

PyTorch represents vectors and arrays using tensors. A tensor is a data structure similar to a
numpy array that is designed to be compatible with GPUs. Like a numpy array, it has a shape, data
type, and can be multi-dimensional.

In order for a tensor to be used by the GPU, it must be stored on the GPU. A tensor can be
sent directly to the GPU using variable.cuda(); however, if the GPU is not available, this will
cause an error. A more flexible approach is store which deivce we are doing computations on as
a variable device. Then, we can send our variables to the correct location in both cases by using
variable.to(device):

>>> import torch

>>> x = torch.tensor([3., 4.]) # Create tensor on CPU
>>> y = torch.tensor([1., 2.]).cuda() # Create tensor on GPU

Create the device, choosing GPU if available
>>> device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
>>> z = torch.tensor([1., 2.]).to(device) # Create tensor on device

You can check which device a variable is on by displaying it. If it is on a GPU, it will list which
number it is. cuda:0 means that the device running is the default GPU. If you are using a machine
that has multiple GPUs, you can set the device to be a specific GPU by changing the number. In
Colab, only cuda:0 is available.

>>> x
tensor([3., 4.]) # Check location of x (CPU)

>>> x = x.to(device) # Move x to GPU
>>> x # Check location of x (GPU 0)
tensor([3., 4.], device="cuda:0")

Achtung!

Cross-GPU operations are not allowed. This means that the model and data must all be on
the same device. If the model is called on data that is on a different device, say the model is
located on the GPU and the data is on the CPU, you will get the following runtime exception:

RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.←↩
FloatTensor) should be the same.

If you get this error, you will need to move one the variables so that they are all on the same
device.

154 Lab 16. Intro to Deep Learning and PyTorch

Data

For this lab, we will be using the CIFAR10 dataset. It consists of 60, 000 images of size 32 × 32,
represented as a 3×32×32 matrix, where the 3 channels describe the colors using RGB. The images
are evenly split into ten classes represented by the numbers 0− 9: airplanes, cars, birds, cats, deer,
dogs, frogs, horses, ships, and trucks.

For convenience, the dataset is already split into a training and a testing set; however, we will
also add a validation set.

Using a train-validate-test split is good practice in general, because usually we will want to
test and compare different models and hyperparameter choices iteratively until we arrive at one that
works well for our problem. Once we are done training, we would like to use the test set to determine
how well our model fits the data. However, if we use the test set to compare how well each of our
models performs, it effectively becomes a second train set that we are learning by trying different
models, and using the test set to determine how well our model works on the whole dataset is no
longer really valid. As such, it is better practice to use a three-way split. We train each model on
the train set, use the validation set to compare the models, and use the test set to determine if our
final model appears to fit the data well.

The CIFAR10 dataset is split into a train set of 50,000 images and a test set of 10,000 images.
We will split the original train set into a new train set of 40,000 images and a validation set of
10,000 images. To use the data, we must transform it into PyTorch tensors. We also will normalize
the data, as this generally improves the results. We will normalize the values to have mean 0 and
standard deviation 1 for each component. Finally, we will split the dataset and place it inside a
torch.utils.data.DataLoader class for easier manipulation.

To load the dataset, we use the torchvision.datasets.CIFAR10 function, which accepts a
folder for the data to be stored in. Some important keyword arguments are listed in Table 16.1.

Parameter Explanation
train Whether to get the training data or the test data.

download Whether to download the data. You usually only
need this the first time you access the dataset.
Note that restarting Google Colab will require re-
downloading the data, however.

transform Applies the given transform when loading the
data. This transform always should convert the
data into a PyTorch tensor.

Table 16.1: Parameters of the datasets.CIFAR10 loading function

We can use the transform parameter in particular to easily normalize our data. PyTorch has
a module torchvision.transforms to make creating these transformations easier. In this case, we
want to use transforms.ToTensor to convert the data into tensors, and then transforms.Normalize
to normalize the data. The Normalize object accepts the desired mean and standard deviation after
normalization. We can use transforms.Compose to combine these together into a single transform
object:

>>> from torchvision import transforms

Transform data into a tensor and normalize
>>> transform = transforms.Compose([

155

... transforms.ToTensor(),

... transforms.Normalize((0.0, 0.0, 0.0), (1.0, 1.0, 1.0))

...])

We can then load the data:

>>> from torchvision import datasets

Download the CIFAR10 training data to ../data
>>> train_data = datasets.CIFAR10("../data", train=True, download=True, ←↩

transform=transform)

The data can then be accessed using indexing. Each data point is a tuple consisting of the 3×32×32

image and its class. You can also see the specs of the dataset by calling it without an index.

Get the first training data point
>>> train_data[0]
(tensor([[[0.2314, ..., 0.5804],

[0.0627, ..., 0.4784],
...,
[0.7059, ..., 0.3255],
[0.6941, ..., 0.4824]],

[[0.2431, ..., 0.4863],
[0.0784, ..., 0.3412],
...,
[0.5451, ..., 0.2078],
[0.5647, ..., 0.3608]],

[[0.2471, ..., 0.4039],
[0.0784, ..., 0.2235],
...,
[0.3765, ..., 0.1333],
[0.4549, ..., 0.2824]]]), 6)

Get the class of the first training data point
>>> train_data[0][1]
6

Get the specs of the CIFAR10 training set
>>> train_data
Dataset CIFAR10

Number of datapoints: 50000
Root location: ../data
Split: Train
StandardTransform

Transform: Compose(
ToTensor()
Normalize(mean=(0.0, 0.0, 0.0), std=(1.0, 1.0, 1.0))

156 Lab 16. Intro to Deep Learning and PyTorch

)

Problem 1. Create the device variable as indicated above. Download the CIFAR10 training
and test datasets, transform them into tensors, and normalize them as described above.

PyTorch has a special class DataLoader that splits the data into batches for easy manipulation.
Sending individual data points to the GPU one at a time to be processed by our model is very
inefficient, as it makes it impossible for the GPU to parallelize the computations. Instead, we use
batches, and send multiple data points together. Using larger batch sizes allows us to take advantage
of GPUs, speeding up the training time. Storing all of the data on the GPU is, however, generally
impossible due to memory constraints. Using too large of a batch size will cause out of memory
issues, and tends to reduce the effectiveness of training. Typical batch sizes are powers of 2: 32, 64,
128, 256.

The DataLoader class accepts the dataset as its first argument. The dataset can be a dataset
object like the one we created above, a list containing the data points, or any iterable. For the train
set, we will first split the loaded data into two lists to create the actual train and validation sets. The
dataset object does not support fancy indexing, so this step should be done with list comprehension:

>>> actual_train_data = [train_data[i] for i in range(40_000)]

>>> from torch.utils.data import DataLoader

Create a DataLoader from the shuffled training data
>>> train_loader = DataLoader(actual_train_data, batch_size=36, shuffle=True)
and similarly for the validation set

The data is not ordered by its classes, so directly indexing like this will put a good mixture of all
of the classes into both sets. For the test set, we can just directly pass the dataset object into the
DataLoader. Some other useful parameters of the DataLoader class are listed in Table 16.2.

Parameter Explanation
batch_size The size of batch to use
shuffle Whether to shuffle the data

num_worker The number of processes to use, in order to load
the data in parallel

Table 16.2: Parameters of the DataLoader object

Once we have the data in the DataLoader class, we can iterate through it to get data points.
We can turn it into an iterator using the iter method, and then get batches one-at-a-time using the
next method:

Get the 36 images of size 3x32x32 and labels in the first batch
>>> dataiter = iter(train_loader)
>>> images, labels = next(dataiter)
>>> images.size()
torch.Size([36, 3, 32, 32])

157

>>> images[0].size()
torch.Size([3, 32, 32])

>>> labels[0]
tensor(8)

This method is particularly useful if we just need a few images. We can also directly iterate through
all of the images using a for loop:

>>> for batch, (x, y_truth) in enumerate(train_loader):
... # Move to the GPU
... x, y_truth = x.to(device), y_truth.to(device)
... # ...

This will be a more convenient method for training.

Problem 2. Split the data into train, validate, and test sets, and create DataLoaders for each
one. The train set should have 40,000 data points and the test and validate sets should each
have 10,000 data points. Use a batch size of 32 for the training set and 1 for the validation and
test sets. Specify shuffle=True for the training set, and shuffle=False for the validation and
test sets (this is common practice in deep learning).

Neural Networks in PyTorch
Before creating a good model for this dataset, we will start with a simple model to illustrate how
to set up a neural network in PyTorch. This model will use only fully-connected linear layers and
activation functions. First, we need to import the nn module, which contains all of the classes we
need for this:

from torch import nn

Simple layers

A linear layer takes an input vector x and outputs Ax + b for a learned weight matrix A and
bias vector b. This is implemented in Pytorch as nn.Linear(in_features, out_features), where
in_features is the length of the input vector and out_features is the desired length of the output
vector. This is called a fully-connected layer, because every entry of A and b are allowed to be
nonzero.

After each layer, we want to pass the values through an activation function. This allows the
model to be nonlinear, allowing it to learn much more complicated behaviors than it would otherwise.
The most commonly used activation function is the Rectified Linear Unit (ReLU) function:

ReLu(x) = max(0, x) =

{
x x > 0

0 otherwise

158 Lab 16. Intro to Deep Learning and PyTorch

This activation function avoids many issues that other activation functions have, and is used almost
universally. For the final activation function, however, we will use a different activation function: the
softmax function

Softmax(x1, . . . , xn) =

(
ex1∑n
i=1 e

xi
, . . . ,

exn∑n
i=1 e

xi

)
.

The components of the output of the softmax function are all non-negative and sum to 1. This allows
the output of the final layer to be interpreted as probabilities, which is useful for classification. The
component with the highest probability will be the neural network’s prediction for the input image.
This also enables the use of cross-entropy as a very natural loss function, which will be discussed
later. These two activation functions are available as nn.ReLU and nn.Softmax.

Achtung!

The cross-entropy loss function from PyTorch, nn.CrossEntropyLoss, combines logarithmic
softmax log_softmax and the negative log likelihood loss NLLLoss, which means you should
NOT apply softmax as the last layer of your model.

Performing softmax twice can cause numerical instabiility in the model’s accuracy.

Creating a model

To create a neural network in PyTorch, we begin by creating a class that inherits from nn.Module:

class NNExample(nn.Module):

The class nn.Module handles internals so that training is simpler, as well as providing a variety
of useful methods. In the initializer of our class, we need to call the superconstructor super().
__init__() to initialize the nn.Module itself. Then, we initialize all of the layers we want to use in
our model. For this example, we will use two fully-connected linear layers with activation functions
after each. Since our inputs are 3× 32× 32 tensors and linear layers only work with vectors, we will
also include an nn.Flatten layer.

def __init__(self):
Initialize nn.Module
super().__init__()

Create our layers
self.flatten = nn.Flatten()
self.linear1 = nn.Linear(in_features=3*32*32, out_features=100)
self.relu = nn.ReLU()
self.linear2 = nn.Linear(in_features=100, out_features=10)

We need to set all of these layers as members of our class in order for them to be properly detected
in the training process. Notice that the input dimension of the first layer (linear1) is equal to the
dimension of the (flattened) input image (3 × 32 × 32), but from there, the output dimension is
chosen arbitrarily to be 100. The second layer (linear2) must then have input dimension equal to
the output dimension of linear1, but its output dimension is chosen to be 10, which is the number
of classes possible in the CIFAR10 dataset.

159

Lastly, we define the forward() method, which calls all of the layers on an input image to give
us the output:

def forward(self, x):
x_flat = self.flatten(x)
x_layer1 = self.relu(self.linear1(x_flat))
output = x_layer1
return output

Even though each layer is really a class (note how we initialize them in __init__()), we can call
them as if they are functions. Any layer that contains learnable parameters (for example, the weights
present in linear layers), must be called individually in the forward() method, as otherwise this
would force it to reuse the parameters and reduce training effectiveness. However, for layers that do
not have learnable parameters, such as activation functions, we can safely reuse them and call them
multiple times in the forward() method. Hence, nn.ReLU() only needs to be defined once in the
__init__() method, even when it may be called multiple times in the forward() method.

This neural network would likely perform very poorly on the CIFAR10 dataset, however; only
using fully-connected linear layers does not work well for images. For a better method, we will turn
to convolutional neural networks.

Convolutional neural networks (CNNs) are a type of neural network that use convolution layers.
They also commonly use pooling layers They are particularly well-suited to working with images,
such as the CIFAR10 dataset. We now discuss these components and how to use them in PyTorch.

Convolution Layers

A convolution layer takes a two-dimensional array of weights called a kernel (sometimes called a
filter) and multiplies it by the input at all possible locations, “sliding” around the input. It is
particularly useful when working with images, as it preserves and extracts spacial structures, unlike
fully-connected linear layers.

Consider the following 5× 5 input image and 3× 3 kernel:

2 4 7 6 2
9 7 1 2 1
8 3 4 5 8
4 3 3 1 2
5 2 1 5 3

5×5 Input Image

1 0 -1
1 0 -1
1 0 -1

3×3 Kernel

To get each value in the output, the kernel is multiplied element-wise by 3x3 squares inside the input
and summed. For the top left square in this example, the output is

2 · 1 + 4 · 0 + 7 · (−1) + 9 · 1 + 7 · 0 + 1 · (−1) + 8 · 1 + 3 · 0 + 4 · (−1) = 7.

160 Lab 16. Intro to Deep Learning and PyTorch

2 · 1 4 · 0 7 · (−1) 6 2
9 · 1 7 · 0 1 · (−1) 2 1
8 · 1 3 · 0 4 · (−1) 5 8
4 3 3 1 2
5 2 1 5 3

5×5 Input Images

7 · · ·
...

3×3 Output

The 7 represents a feature of the 3×3 block in the top left corner. With a trained network applied to
the image, these features can represent things such lines, curves, and colors, or even more complicated
objects like a nose.

The stride of a convolution is how much the kernel slides at a time as it passes over the input.
With out example, if the kernel slides one spot over (has a stride of 1), there will be 9 submatrices
inside the input image that will be used, and we would get a 3 × 3 matrix as output. If we used a
stride of 2 instead, only the top-left, top-right, bottom-left, and bottom-right submatrices would be
used.

Notice that as the kernel slides around the image, the inside values are used in more multipli-
cations than the outside value, causing us to lose information, especially about the corners. If we
want to keep more infomation about the edges of the image, we can use padding. Padding consists
of adding a border around the input, usually filled with zeros. This can also allow the output of the
layer to be the same size as the input.

2 4 7 6 2
9 7 1 2 1
8 3 4 5 8
4 3 3 1 2
5 2 1 5 3

5×5 input image

0 0 0 0 0 0 0
0 2 4 7 6 2 0
0 9 7 1 2 1 0
0 8 3 4 5 8 0
0 4 3 3 1 2 0
0 5 2 1 5 3 0
0 0 0 0 0 0 0

5×5 input image padded with 0

Each dimension of the output for a convolution layer is calculated as follows:

input size− kernel size + 2 · padding size
stride

+ 1

In our example with stride 1, kernel size 3, and no padding, the output size is (5−3+2 ·0)/1+1 = 3.
It is good to ensure that the stride always divides the numerator, as otherwise the kernel will be
applied asymetrically to the image. Calculating the output dimension of a layer is necessary since
the following layer will have its input dimension size equal to the previous output dimension size.

One last feature that we need to discuss is channels. Image data (including ours) typically has
three channels, representing the red, green, and blue contents of pixels. Channels act like different
“layers” of the image or of the convolutional output. In a convolutional layer, there is one kernel for
each pair of input channel and output channel. If we have n input and m output channels, then we
will have mn total kernels that are learned individually. Each kernel is applied to its corresponding
input channel as described above. Then, each output channel is determined as the sum of the results
of the convolutions of all of its kernels, plus a learned bias value.

161

Convolutional layers are represented in PyTorch with nn.Conv2d. The constructor of this
class requires three parameters in_channels, out_channels, and kernel_size. It also has optional
arguments stride (default 1) and padding (default 0). Note that for each of the kernel size, stride,
and padding, only an integer needs to be specified, and it will be used for both the x and y directions.
The following creates a convolutional layer that accepts an image with 3 channels, output 8 channels,
and uses a 3× 3 kernel with stride 1 and no padding:

layer = nn.Conv2d(in_channels=3, out_channels=8, kernel_size=3)

Pooling layers

Pooling layers are used to reduce the size of the image while retaining important information. The
input image is broken into small pieces, called pools, each of which is condensed to a single number.
The most common form of pooling is max pooling, where the output of each pool is just the maximum
of its inputs.

4 7 6 2
7 1 2 1
3 3 1 2
2 1 5 3

4×4 Input Image

7 6
3 5

2×2 output after max pooling

Max pooling has the particularly nice property of making the output remain similar if the input
image is shifted slightly.

Max pooling layers are represented in PyTorch as nn.MaxPool2d. They accept a single param-
eter kernel_size; this is the size of each of the pools. Using 2× 2 pools is the most common. The
following creates a pooling layer that uses a 2× 2 pool size:

layer = nn.MaxPool2d(kernel_size=2)

Parameters

When working with neural networks, it can be useful to know how many learnable parameters our
model has. This particularly dictates the amount of space needed to store the model. The number
of parameters in each layer depends on the type of layer and its input and output sizes. Table 16.3
lists how to calculate this number for the layer types we have discussed.

For example, the example neural network above would have

(first linear layer) (3 · 32 · 32 + 1) · 100
(second linear layer) + (100 + 1) · 10 = 308310 parameters,

and the example convolutional layer would have

(3 · 32 + 1) · 8 = 224 parameters.

162 Lab 16. Intro to Deep Learning and PyTorch

Layer type Number of Parameters
Linear (in_features+ 1) ∗ out_features

Convolutional
(
in_channels · kernel_size2 + 1

)
∗ out_channels

Pooling No parameters
Flatten No parameters

Activation functions No parameters

Table 16.3: Parameter counts for layer types we use in this lab

Problem 3. Create a class for a convolutional neural network that accepts images as 3×32×32
tensors and returns 1D tensors of length 10, representing its predicted probabilities of each class.
Include at least the following:

• Three convolutional layers, each followed by an activation function

• A max pooling layer

• Two linear layers

Choose the size of the layers so that your model has at least 50,000 parameters (use Table
16.3), and print out this calculation in the Jupyter notebook file. In practice, specifications of
model architecture (i.e. number of layers, layer sizes, etc.) are chosen quite arbitrarily until
something works. As such, you may customize your model architecture to your liking, provided
your model meets the requirements specified above.

Hint: It can be very helpful to keep track of the size of the image after each step, so you
know what the input size should be for the next step. The max pooling layer should occur
immediately after a convolutional layer is passed through an activation function. Additionally,
you will need a nn.Flatten layer after the convolutional layers and before the linear layers.
You can check that your model works correctly by passing an (unsqueezed) image through it
as demonstrated in the following code:

>>> model = NNExample()
>>> model(images[0].unsqueeze(0))
tensor([[0.0952, 0.1120, 0.1019, 0.0992, 0.0955, 0.0984, 0.0886, 0.1326, ←↩

0.0966, 0.0800]], grad_fn=<AddmmBackward0>)

Note that your neural network will predict different probabilities for each of the categories.

Training the Model

Now that we have data and a model all set up, we need to train the model on the data. We do
this by iterating through the DataLoader, calling the model on the data, determining how well the
model classified the data, and then optimizing the model weights. We use a loss function, called the
objective, to calculate the loss, which is the difference between the model’s predicted labels and the
actual labels of the data. A common classification loss function is Cross Entropy Loss

LCE = −
∑
i

ailog(pi),

163

where i represents each data point, pi is the softmax probability for each data point, and ai is the
label for each data point. PyTorch’s nn.CrossEntropyLoss() conveniently handles all of this.

Once the loss is calculated by the objective, we can use it to optimize the model weights to make
the loss smaller. This can be done through backpropagation, which calculates the partial derivatives
of the loss function with respect to each weight, and then uses gradient descent to update every
weight. PyTorch has several predefined methods for optimization, but we’ll use the popular Adam
algorithm. PyTorch accumulates gradients when backpropagating, which is sometimes desireable,
but in our case it would cause the loss to increase. To prevent this, we need to zero out the gradients
before we perform each backpropagation. PyTorch streamlines this entire training sequence in a very
clean way, as shown in the following:

>>> import torch.optim as optim

Define the objective and optimizer
>>> objective = nn.CrossEntropyLoss()
>>> optimizer = optim.Adam(model.parameters(), lr=1e-4)

For each iteration of the DataLoader, do the following
>>> optimizer.zero_grad() # Zero out the gradients
>>> y_hat = model(x) # Predict labels
>>> loss = objective(y_hat, y_truth) # Calculate loss
>>> loss.backward() # Backpropagate to compute gradients
>>> optimizer.step() # Optimize and update the weights

An epoch is a complete training sequence that trains over the entire DataLoader. To improve
the model’s accuracy, we can train over many epochs. A good guideline is to train the model for the
number of epochs it takes for the loss to stop decreasing.

The loss is calculated using the training data, but at the end of each epoch we also want to know
how well the model performs with the validation data. Before we determine the validation accuracy,
we need to switch our model to evaluation mode so it doesn’t continue training. This is done by the
simple command model.eval(), but it’s important to switch the model back to training mode at the
start of each epoch using model.train() The validation accuracy is determined by simply iterating
through the validation DataLoader, and seeing if the model can correctly predict each data point.
The validation accuracy is then computed by dividing the number of correct predictions by the total
number of data points in the validation DataLoader.

>>> model.eval() # switch to evaluation mode
>>> validation_score = 0
>>> for x, y_truth in validation_loader:
>>> x, y_truth = x.to(device), y_truth.to(device)
>>> y_hat = model(x)
>>> if y_truth == y_hat.argmax(1): # compare with greatest probability
>>> validation_score += 1
>>> validation_accuracy = validation_score / len(validation_loader)

The validation accuracy does not determine the model’s final accuracy. The final accuracy is com-
puted in the same way as the validation accuracy, but this time using the testing data, and it’s only
computed one time, when the model finishes training entirely.

164 Lab 16. Intro to Deep Learning and PyTorch

TQDM is a python package that displays the progress of a for-loop, which can help estimate
the remaining time. TQDM is initialized outside the loop, then updated inside the loop, as follows:

>>> from tqdm import tqdm

>>> loop = tqdm(total=len(train_loader), position=0)

>>> for epoch in range(num_epochs):
>>> loop.set_description(f"epoch:{epoch}, loss:{loss.item():.4f}")
>>> loop.update()

>>> loop.close()

epoch:1 loss:1.8585: : 1402it [00:17, 79.69it/s]

Achtung!

Near the beginning of this lab we suggested developing your code while on CPU and only
switching to GPU once ready to fully train your model. A good practice is to train your model
for two epochs while on CPU before switching to GPU to run the full training procedure from
start to finish (and then switching back to CPU if continuing to develop solutions to other
problems). This ensures that your model and training loop are functioning correctly, rather
than wasting GPU time debugging.

You may still run into bugs when you switch to GPU that didn’t surface when on the CPU.
These often result from forgetting to specify the correct device for all components, including
the model and data (using variable.to(device)).

Another strategy to speed up debugging is to test your model on a small subset of the
data to ensure things are running and processing correctly, then scaling to larger data for more
robust tests. This ensures that simple issues are caught early before extensive time is spent
processing large datasets.

Problem 4. Send your model to the device and instantiate the objective and optimizer. Train
your model with a TQDM display, and calculate the Validation Accuracy after each epoch.
Begin by initializing your TQDM loop, then for each epoch, do the following:

1. Set your model to training mode (model.train())

2. Instantiate an empty loss_list

3. For each batch in train_loader:

(a) Send x and y_truth to device

(b) Zero out the gradients

(c) Use model to predict labels of x

165

(d) Calculate loss between predicted labels and y_truth

(e) Append loss (loss.item()) to loss_list (the .item() feature extracts the element
from a tensor with only one element)

(f) Update TQDM loop

(g) Backpropagate to compute gradients

(h) Optimize and update the weights

4. Save the loss mean as the mean of the losses in loss_list

5. Set your model to evaluation mode (model.eval())

6. Calculate and save validation accuracy

Finish the training by closing your TQDM loop. Train for 10 epochs, saving the mean loss
and validation accuracy for each epoch. Plot the mean losses and validation accuracies, which
should resemble Figure 16.2. Lastly, print the final test score using the testing data, as described
above.

0 2 4 6 8
Epochs

1.5

1.6

1.7

1.8

1.9

2.0

2.1

Tr
ai

ni
ng

 L
os

s

Mean Training Losses Per Epoch

0 2 4 6 8
Epochs

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

Va
lid

at
io

n
Ac

cu
ra

cy

Validation Accuracy Per Epoch

Figure 16.2: Training Loss and Validation Accuracy for a CNN on CIFAR10.

Adversarial Attacks

Just like any algorithm or software, deep learning is susceptible to attacks. For deep learning models,
this vulnerability most often manifests in the model being extremely sensitive to certain types of
changes in the input that really should not matter. This results in the model giving nonsensical
results, which, while amusing, can cause major problems. Examples of adversarial attacks against
neural networks range from adding a small amount of noise to a picture of a panda, resulting in the
model classifying the image as a gibbon with 99% confidence [GSS15] to fooling facial recognition by
printing a pair of eyeglasses [GKB17]. When designing machine learning models, it is important to
be aware of these issues so that their impact can be mitigated.

166 Lab 16. Intro to Deep Learning and PyTorch

Figure 16.3: A slight modification to a correctly-classified image of a panda results in the model
confidently classifying it as a gibbon, despite the image not having changed in any substantial way.

The example of modifying the image of a panda is an attack called the Fast Gradient Sign
Method (FGSM). FGSM is a white-box attack, meaning that the attacker has access to the model;
this is in contrast with a black-box attack where the attacker only has access to the model’s inputs
and outputs.

During model training, gradients are used to adjust the model weights so that loss is minimized.
In FGSM, the gradient is instead used to perturb the input image in a direction that maximizes the
loss, using the following equation:

xperturbed = x+ ε Sign(∇xLoss(θ, x, y))

where x is the input, y is the label, and θ is the model parameters.
We can calculate this perturbation in PyTorch as follows. To calculate the gradient of the

model with respect to a piece of data x, we first need to set x.requires_grad = True and call x.
retain_grad(). Then, we zero out the optimizer’s gradient, run x through the model, and compute
the loss, similar to training. After this, the gradient of the output with respect to x can be obtained
using the attribute x.grad.data.

The following function fgsm_attack accepts a model and an image and performs the FGSM
attack, returning the perturbed image:

167

def fgsm_attack(model, optimizer, objective, x, y, eps):
"""
Performs the FGSM attack on the given model and data point x with label y.
Returns the perturbed data point.
"""
Calculate the gradient
x.requires_grad = True
x.retain_grad()
optimizer.zero_grad()
output = model(x)
loss = objective(output, y)
loss.backward()
data_grad = x.grad.data
Perturb the images
x_perturbed = x + eps * data_grad.sign()

return x_perturbed

We will use this function to explore this type of adversarial attack on our neural network.

Problem 5. Write a function that loops through the test data using the function fgsm_attack
to perturb the images and using your trained model from Problem 4.

Run your function for each epsilon in [0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3], and
plot epsilon against the model’s accuracy.

Display the perturbed version of the first image in the test data for each epsilon, using
the following code. Be sure to show the old and new labels for each perturbed image. Make
sure the original image is classified correctly. Your figure should look similar to Figure 16.4.

Move the image to cpu and convert to numpy array
>>> ex = perturbed_data.squeeze().detach().cpu().numpy()

Plot the image
>>> img = ex / 2 + 0.5 # unnormalize
>>> plt.imshow(np.transpose(img, (1, 2, 0)))

168 Lab 16. Intro to Deep Learning and PyTorch

Figure 16.4: The first modified image for different values of epsilon.

169

Additional Materials
TensorBoard

TensorBoard is a visualization toolkit for neural networks. It was originally built for Tensorflow,
but also can be used with PyTorch. The main features of TensorBoard include model visualization,
dimenionality reduction, tracking and visualizing metrics, and displaying data.

To create a tensorboard, run the following code:

>>> import os
>>> from torch.utils.tensorboard import SummaryWriter
>>> %load_ext tensorboard
>>> logs_base_dir = "runs"
>>> os.makedirs(logs_base_dir, exist_ok=True)
>>> %tensorboard --logdir {logs_base_dir}

The TensorBoard homepage will show up inline:

Figure 16.5: The home page of an empty TensorBoard.

We write to TensorBoard using SummaryWriter. It writes to files in the logs_base_dir that
are used by TensorBoard to display information. You can view the logs_base_dir directory by
selecting the file icon on the far left of the page. For example, we can create an interactive graph of
our model.

>>> tb = SummaryWriter()
>>> tb.add_images("Image", images)
>>> tb.add_graph(model, images)
>>> tb.close()

This updates our TensorBoard with a GRAPHS tab, which describes the model. If it doesn’t
show up automatically, press the refresh button in the top right corner of the TensorBoard. You can
explore the model by clicking on the components.

170 Lab 16. Intro to Deep Learning and PyTorch

Figure 16.6: Examples of TensorBoard Graph Tab.

The following items can be added to TensorBoard, with more information at https://pytorch.
org/docs/stable/tensorboard.html.

• add_scalar/s

• add_image/s

• add_figure

• add_text

• add_graph

• add_hparams

To save the training loss, write a function that returns a matplotlib figure of the training loss
plot. Then use tb.add_figure(figure_name, plot_loss()).

writer.add_figure("Training Loss",plot_loss())

Problem 6. Create a TensorBoard for this project that includes the network, a plot of itera-
tions versus training loss and a plot of iterations versus test accuracy from the training done in
Problem 4.

https://pytorch.org/docs/stable/tensorboard.html
https://pytorch.org/docs/stable/tensorboard.html

17 Recurrent Neural
Networks

Lab Objective: Recurrent Neural Networks are powerful machine learning algorithms that accept
sequences as inputs and can process temporal data. In this lab, we generate a Mozart-like piano
sonata using the Long Short-term Memory RNN.

Achtung!

As is common when working with Neural Networks, this lab requires a large amount of data
processing which can be quite time consuming to debug. One of the best ways to mitigate this
is to debug your code using small subsets of the data rather than the entire dataset; that way,
you can quickly catch simple errors before running your code on the entire dataset.

Recurrent Neural Networks
Convolutional Neural Networks work well for problems like image classification where the inputs and
outputs are independent and of fixed size. However, many problems do not have these constraints.
For example, what if we want to predict the next word in a sentence? This is clearly not independent
since the output for one iteration becomes the input for the next iteration. Recurrent Neural Networks
(RNNs) address these issues by using sequences as the input, output, or both, allowing for temporal
dynamic behavior. They perform the same task for every element of the sequence, hence their
recurrent nature. Each task uses the input as well as recent previous information, called memory,
from the network to create the output. Even if the input is not sequential, it is possible to process
it sequentially using RNNs, resulting in powerful learning algorithms.

Data
For this lab, we will use Google Colab and its GPU capability. To enable the GPU in a Colab
notebook, select the Runtime tab and then Change runtime type. This will open a pop-up called
Notebook Settings. Under Hardware Settings, select GPU. We recommend mounting a Google Drive
to the notebook to make loading and saving data easier. This will save the data if the notebook is
disconnected; if the data is saved to the Colab directory, the entire project must be rerun. To mount
a Google Drive, run

171

172 Lab 17. Recurrent Neural Networks

>>> from google.colab import drive
>>> drive.mount("/content/drive")

Follow the instructions in the cell to authorize the account.
If you need to refresh your drive connection, you can run

>>> drive.mount("/content/drive", force_remount = True).

Download Data

We will be using a collection of Mozart piano sonatas as the data to train on. For easy download,
run the following function to save the files to filepath in the Google Drive folder.

def download_data(filepath):
if not os.path.exists(os.path.join(filepath, "mozart_sonatas.tar.gz")):

datasets.utils.download_url("https://github.com/Foundations-of-Applied-←↩
Mathematics/Data/raw/master/Volume3/mozart_sonatas.tar.gz", filepath,←↩
"mozart_sonatas.tar.gz", None)

print("Extracting 'mozart_sonatas.tar.gz'")
gzip_path = os.path.join(filepath, "mozart_sonatas.tar.gz")
with open(gzip_path.replace(".gz", ""), "wb") as out_f, gzip.GzipFile(←↩

gzip_path) as zip_f:
out_f.write(zip_f.read())

print(f"Untarring 'mozart_sonatas.tar'")
tar_path = os.path.join(filepath,"mozart_sonatas.tar")
z = tarfile.TarFile(tar_path)
z.extractall(tar_path.replace(".tar", "")"

>>> download_data("drive/MyDrive/Colab")
Downloading https://raw.githubusercontent.com/Foundations-of-Applied-←↩

Mathematics/Data/master/RNN/mozart_sonatas.tar.gz to drive/MyDrive/Colab/←↩
mozart_sonatas.tar.gz

Extracting mozart_sonatas.tar.gz
Untarring mozart_sonatas.tar

Parsing the Data

Music21 is a musical toolkit for Python developed by MIT.1 It can read and write music files with the
.mid extension, which are MIDI files, standing for Musical Instrument Digital Interface files. Midi
files contain information on music, like which notes are played, how loud each note is, and for how
long each note is held.

1https://web.mit.edu/music21/doc/index.html.

https://web.mit.edu/music21/doc/index.html.

173

There are two important object types: Notes and Chords. A Note object is comprised of three
attributes. The pitch and octave give information about the frequency of the Note. There are seven
pitches: A, B, C, D, E, F, and G. These pitches repeat, doubling the frequency of the vibration of
the previous matching pitch. The interval over which the frequency of a note is doubled is called an
octave. A piano has seven octaves, and the middle of the keyboard is called middle c. In Music21,
it is represented by C4, where 4 is the octave. Lastly, the offset is the temporal location of the
Note in the file. Chord objects contain multiple Note objects that are played at the same time.

from music21 import converter, instrument, note, chord, stream

Read the file piano_sonota_279.mid
midi = converter.parse("piano_sonata_279.mid")
notes_to_parse = instrument.partitionByInstrument(midi).parts.stream().recurse←↩

()

Display the Note and Chord objects, their pitches and offsets
for element in notes_to_parse:

if isinstance(element, note.Note):
print(element, element.pitch, element.offset)

elif isinstance(element, chord.Chord):
print(element, element.pitches, element.offset)

<music21.note.Note E> E5 803.0
<music21.note.Note F> F5 803.5
<music21.chord.Chord B3 B2> (<music21.pitch.Pitch B3>, <music21.pitch.Pitch B2←↩

>) 803.5
<music21.note.Note G> G5 804.0
<music21.note.Note F> F5 804.5
<music21.chord.Chord C4 C3> (<music21.pitch.Pitch C4>, <music21.pitch.Pitch C3←↩

>) 804.5
<music21.note.Note E-> E-5 805.0
<music21.note.Note D> D5 805.5
<music21.chord.Chord E-3 E-4> (<music21.pitch.Pitch E-3>, <music21.pitch.Pitch ←↩

E-4>) 805.5

Helper function to parse through a Chord object
def order_pitches(pitches):

""" pitches: element.pitches object where element is a chord.Chord
returns: sorted list of strings for each pitch in the chord

"""
return sorted(list(set([str(n) for n in pitches])))

Problem 1. Download the data. Write a function that accepts the path to the .mid files,
parses the files, and returns a list of the 114215 Notes and Chords as strings. There are many
element types in MIDI files, so be sure to only look for Notes and Chords. For the Chords, join
the pitches of the Notes in the Chords with a . as in ("D3.D2").

174 Lab 17. Recurrent Neural Networks

Print the length of your list and the number of unique Notes and Chords.

Example of a part of the list
["A5", "C6", "G3.C4", "A5", "B-5", "A5", "G5", "D3.D2"]

Hint: An easy way to get the list of mozart sonata file names is with the following code.

import glob

>>> glob.glob(filepath + "/mozart_sonatas/mozart_sonatas/*.mid")

Also, you’ll want to wrap element.pitch with str() to convert it into a string. Furthermore,
the .join() method may be useful when constructing the Chord strings.

For the remainder of this lab, we will refer to the notes and chords in the list created in Problem
1 simply as pitches. In order for this data to be applied to an RNN, we need to create sequences. We
do this by looping through the list of pitches and slicing it into lists of a given length. The label for
each sequence, or the correct pitch we want the RNN to predict, is the element immediately following
the sequence. So for a sequence length of 10, given elements 1 through 10 as a sequence, element 11
would be the label.

Since RNNs only accept numbers, we need to convert the pitches to integers. Using the sample
list in Problem 1 as an example, we would map "A5" to 0, "C6" to 1, "G3.C4" to 2, "A5" to 0
again, and so on. The PyTorch DataLoader accepts a list of lists, where each element is of the form
[sequence, label], where the sequence is a PyTorch Long tensor, and the label is an integer. So
in our case, the sequence will be a tensor of integers representing pitches while the label will be the
integer representing the first pitch that follows the sequence.

Example Data
example_data = [169, 269, 165, 187, 24, 366, 353, 269, 260, 233, 223, 169,

162, 366, 353, 269, 260, 233, 223, 169, 162, 24, 8, 269, 260, 91]

Create sequences as Long Tensors
first_sequence = torch.LongTensor(example_data[0:10])
second_sequence = torch.LongTensor(example_data[1:11])
first_label = example_data[10]
second_label = example_data[11]

Example of data points formatted for the DataLoader, [sequence, label]
>>> [first_sequence, first_label]
[tensor([169, 269, 165, 187, 24, 366, 353, 269, 260, 233]), 223]

>>> [second_sequence, second_label]
[tensor([269, 165, 187, 24, 366, 353, 269, 260, 233, 223]), 169]

Problem 2. Using the list returned in Problem 1, create the training, validation, and testing
DataLoaders. Make sure to do all the following steps:

175

• Convert the pitches to integers.

• Split the data into Long tensors of length 10.

• Create the labels.

• Randomly split the data into training, validation, and test sets using a 70/15/15 split
(use torch.utils.data.random_split(data,lengths) where lengths=[0.7, 0.15,
0.15]).

• Create the DataLoaders for these sets of data, using batch_size=128 for the training
data and batch_size=32 for the validation and test data; also, set shuffle=True for the
training data and False for the validation and test data (this is common practice in Deep
Learning).

Print the length of each DataLoader (they should be 624, 536, and 536, respectively).
Hint: To keep all batches the same size, drop the last training batch in the DataLoader with
the parameter drop_last=True.

LSTM

While RNNs have the ability to look at short-term history, like the previous word in a sentence, they
lack longer term contexts. For example, predicting the last word in the "The boat is in the water"
is relatively easy. Consider the following two sentences separated by some other text: "I grew up
in France ... I speak fluent French." It’s clear that the last word will be a language, but we need
the previous information of France to correctly identify which language. RNNs can’t remember this
information due to exploding and vanishing gradients.

Long Short-Term Memory (LSTM) networks are a popular RNN variation capable of long-
term memory that solve this problem. They are used extensively in speech recognition, machine
translation, and text-to-speech programs. Every step in the LSTM has three inputs: the current
input, the short-term memory (hidden state) from the previous input, and the long-term memory
(cell state). There are three gates that regulate these three types of memory. The Input Gate decides
what information will be added to the long-term memory, the Forget Gate chooses which information
should be kept in the long-term memory, and the Output Gate creates the new short-term memory.

Defining the Network Layers

In PyTorch, the memory is a tuple (hidden state, cell state) and must be initialized before the LSTM
layer is called. Usually, the hidden state initialization function is defined in the network class and is
called during the training loop for each batch. The LSTM layer can be stacked, with the input from
one layer going directly to the next layer; num_layers is how many stacked LSTM layers there are
in the model. The hidden_size is the number of features in the hidden layer. This can be any size,
but for this lab we will use 256.

176 Lab 17. Recurrent Neural Networks

c0

h0

xi

Layer 1

c1

h1
Layer 2

c2

h2
. . .

cn−1

hn−1
Layer n

cn

hn

ŷi

Figure 17.1: PyTorch implementation of an LSTM. The LSTM takes as input two initial memory
states (hidden, cell) as well as the ith datapoint xi from a batch, and outputs the updated memory
states and predicted output ŷi. The input for each stacked layer is the hidden state from the previous
layer, and n is equal to num_layers. Note that the PyTorch LSTM runs all datapoints in a batch in
parallel to maximize efficiency.

class RNN(nn.Module):
""" Recurrent Neural Network Class """

def __init__(self):
super(RNN, self).__init__()

Define function to initialize hidden states
def init_hidden(self, batch_size):

weight = next(self.parameters()).data
h0 = weight.new(self.num_layers, batch_size, self.hidden_size).zero_().←↩

to(device)
h1 = weight.new(self.num_layers, batch_size, self.hidden_size).zero_().←↩

to(device)
return (h0, h1)

Before calling the LSTM layer, we will use an embedding layer to store the words. The embed-
ding layer is a lookup table that takes in indices and outputs the word embeddings. This is PyTorch’s
method of one-hot encoding, a process in which variables are converted to binary for better predic-
tions. The first parameter is the number of words in the dictionary; in our case, there are around
668 possible notes and chords. The second parameter is the embedding dimension. 32 and 64 are
good choices for the embedding dimension.

The LSTM layer has 5 parameters. The first three have already been discussed. The parameter
batch_first is a boolean that indicates if the batch size is the first or the second dimension in
the input tensor. Since we are using the DataLoader, the batch size will be the first dimension and
batch_first=True. If the last parameter, dropout, is defined, a Dropout layer is added after each
LSTM layer, except the last. During a Dropout layer, elements of the input tensor are randomly
zeroed out with probability p, and the output is scaled. This is sometimes used for regularization
to improve the network. However, we will NOT add a Dropout layer to our model, because we will
instead use a BatchNorm1d layer. BatchNorm1d layers normalize the input and have as parameters
the number of features of the input. Thus, if we were to use both Dropout to BatchNorm1d layers,
the input would be normalized over fewer nodes than the input actually contains, which would throw
off the scaling of the model.

177

Ordinarily, the last layer would be a softmax activation function. Softmax rescales a tensor to
[0, 1] with the sum of all elements equal to 1. Thus the output of Softmax can be thought of as a
probability vector. However, the Cross Entropy Loss function which we use for this model already
performs a Softmax for us. Doing the softmax twice is unneccessary and can be detrimental as it
can distort learning. Notice that all of the layers: Embedding, LSTM, Linear, BatchNorm1d, and
LogSoftmax are initialized in the __init__() function.

class RNN(nn.Module):
""" Example class for LSTM model """

def __init__(self, n_notes, embedding_dim):
super(RNN, self).__init__()

self.hidden_size = 256
self.num_layers = 3 # number of layers in the LSTM
self.n_notes = n_notes # number of unique pitches
self.embedding = nn.Embedding(n_notes, embedding_dim)
self.lstm = nn.LSTM(embedding_dim, self.hidden_size,

self.num_layers, batch_first=True)
self.batch1 = nn.BatchNorm1d(self.hidden_size)
self.linear = nn.Linear(self.hidden_size, self.n_notes)

def forward(self, x, hidden):
embeds = self.embedding(x)
lstm_out, hidden = self.lstm(embeds, hidden)
out = self.batch1(lstm_out[:, -1])
Output from final step is passed forward
return self.linear(out), hidden

During training, when the model is called, the input is embedded and then passed to the LSTM
layer with the hidden states. The hidden state output is saved for the next batch while the LSTM
output from the final step is sent through the rest of the model. To prevent differentiating the hidden
states, we must call the detach() method before taking a backwards step. This disables automatic
differentiation on the hidden states during training. Because we don’t do a backwards step during
testing, we don’t need to worry about detaching the hidden states during testing.

Initialize the model
model = RNN()

Hidden state training demonstration
for epoch in range(30):

for x_truth, y_truth in train_loader:

Initialize the hidden states
(h0, h1) = model.init_hidden(train_batch_size)

Pass data through the model to get output and new hidden states
output, (h0, h1) = model(x_truth, (h0, h1))

178 Lab 17. Recurrent Neural Networks

Disable automatic differentiation on the hidden states
h0 = h0.detach()
h1 = h1.detach()

A Faster Way to Calculate Validation Accuracy

We would like to periodically check our model’s validation accuracy as our model is training, but this
takes time. One way to save time is to only calculate validation accuracy every n epochs. Another
way is to increase the batch size of the validation DataLoader; this is the method we use in this
lab, which is why we set the validation and test DataLoader batch sizes to 32 in Problem 2. The
problem is, if we compare the predicted labels of a large batch to their true values at the same time,
the probability that every data point is correct is small, so the validation accuracy will be mostly 0.
The way to work around this is to compare the predicted labels of each batch with their true values
seperately, not together. An example of how this might be done is demonstrated in the following:

validation = 0
model.eval()
for x_truth, y_truth in validation_loader:

x_truth, y_truth = x_truth.to(device), y_truth.to(device)
(h0, h1) = model.init_hidden(val_batch_size)
y_hat, _ = model(x_truth, (h0, h1))

sum how many elements equal each other between the true and predicted
batches, then divide by the number of elements in the batch
validation += sum(torch.eq(y_truth, y_hat.argmax(1))) / val_batch_size

mean_validation_accuracy = validation.item() / len(validation_loader)

Achtung!

If you train your model using a GPU and see an error that begins like this:

RuntimeError: CUDA error: device-side assert triggered

it means that an error occurred while your code was being run on the GPU. Hardware
complications make it more difficult to pass information about exceptions that occur on the
GPU to the CPU. You can often get more debugging information about your specific error by
using

import os
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"

although this will involve restarting your kernel.

179

You can also switch from the GPU to the CPU and likely get more descriptive error
messages from the CPU.

Problem 3. Create an LSTM network class. Have a hidden layer size of 256, and include at
least 3 LSTM layers. Also have at least 2 Linear layers. The last LSTM layer and each of the
Linear layers except for the last Linear layer should be followed by a BatchNorm1d layer, for
at least 2 total BatchNorm layers.

Initialize the model. Define the loss as CrossEntropyLoss, and define the optimizer as
RMSprop.

optimizer = torch.optim.RMSprop(model.parameters(), lr=.001)

Train the model for 30 epochs. Make sure to reinitialize the hidden states (h0, h1) for
each training batch. After taking a backwards step during training, scale the gradients using

nn.utils.clip_grad_norm_(model.parameters(), 5)

This will ensure that the gradients are reasonably sized so that the model can learn.
At the end of every epoch, calculate the validation accuracy and mean loss on the valida-

tion data. Remember to change the model to eval() mode when running the validation data
and then train() when running on the training data. The hidden states (h0, h1) will also
need to be reinitialized for each validation batch.

Once the training is complete, plot the training and validation losses versus epochs on the
same plot. Also, plot the validation accuracy versus epochs. Then, print the final test accuracy
by running the finished model on the test data.

Hint: While training this model for 30 epochs on a GPU should take less than 5 minutes,
you may want to test your code by only training it for 2 epochs, and then when everything
works the way it should, train it for the whole 30 epochs. After 2 epochs, your model should
have a validation accuracy of 10− 20%.

180 Lab 17. Recurrent Neural Networks

Achtung!

Colab has a 12 hour limit on the amount of GPU available, and the longer one runs, the
less priority it has. If you follow the instructions given in this lab correctly, training should
take less than 5 minutes. Nevertheless, you may still wish to save the training progress of
your model’s weights after each epoch. If you wish to do so, you may include this block
of code in your for loop.

torch.save({
"epoch": epoch_number,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"loss": loss}, filename)

Then, if at any point the notebook has disconnected, all you need to do is reinitialize
the model, loss, and optimizer, and then run this function to load the saved model.

def load_model(filename):
""" Load a saved model to continue training or evaluate """
device = torch.device("cuda:0" if torch.cuda.is_available() ←↩

else "cpu")

n_notes is the number of unique pitches
model = RNN(n_notes, embedding_dim)
model = model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.RMSprop(model.parameters(),lr=.001)

checkpoint = torch.load(filename,map_location=torch.device("cpu←↩
"))

model.load_state_dict(checkpoint["model_state_dict"])
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
last_epoch = checkpoint["epoch"]
loss = checkpoint["loss"]
model.eval() # Toggle evaluation mode

return model, criterion, optimizer

Generating Music

Now that we have trained the model, we can create our own piano sonata excerpt by predicting a
new sequence of notes. We will start with an initial sequence of notes, predict what note should
follow, and then shift the sequence to include this new note in order to predict the next one, and
we’ll repeate this process for as long as we like.

181

Specifically, first select a random sequence from the test data, and initialize an empty list
of predictions. Then, for each note we wish to predict, initialize the hidden states using model.
init_hidden(batch_size), and then get a prediction by inputting the sequence and these hidden
states into the model, just as we did in the training step. The argmax of this prediction (prediction
.argmax().item()) is an integer representing a pitch. Append this integer to our list of predictions,
and then update the sequence by appending this integer to it, and then by dropping the first entry
of the sequence. Repeat this process for each note we wish to predict. The list of predictions (which
is a list of integers) can then be converted into pitches using the same method we used to initially
convert the pitches into integers.

Problem 4. Write a function that randomly chooses a sequence in the test data (which has
length 10) and predicts the next n elements, defaulting to 500. Convert the predicted elements
to pitches, and return them as a list of length n. It should look similar to

['D4', 'C#4', 'F#5', 'G5', 'A5', 'C6', 'G3.C4', 'B-5', 'A5', 'G5', 'A5']

Now we need to convert our list of pitches into Music21 Notes and Chords objects. For each
element in the list of pitches, we first determine if it’s a note or a chord by the presence of a . (period)
in the string. Music21 Note objects are created using the pitch and instrument type. If the element
is a chord, we can create a Muisc21 Chord object by first creating a list of Note objects for each note
in the chord.

Music21 Note and Chord objects must also have a specified offset. The offset indicates at what
timestep each object is to be played. The first object will have an offset of 0, and the offset will
increment for each following object. The simplest way to choose each offset is look at the distribution
of offsets in the original dataset and choose a set amount to increment the offset each time. Since the
most common offset (0.0) results in notes being played at the same time, we’ll ignore it and choose to
increment the offset by either 0.25 or 0.5. For a more advanced option, you could randomly generate
which offset to use based on a probability distribution that reflects the following:

0.0 1999
0.25 1167
0.5 507

Table 17.1: The three most common offset distance and their frequency in the Mozart data.

In summary, while looping through our predicted pitches, if we should come accross a Chord, the
code to create a Music21 Chord object would look like the following:

notes = []

Create Note objects for each note in the chord
for pitch in chord_pitches:

new_note = note.Note(pitch)
Specify Piano as the instrument type
new_note.storedInstrument = instrument.Piano()
notes.append(new_note)

182 Lab 17. Recurrent Neural Networks

Create a Chord object using list of Note objects
new_chord = chord.Chord(notes)

Specify offset for this o

Finally, we write the list of Music21 objects to a midi file and save it.

midi_stream = stream.Stream(output_notes)
midi_stream.write("midi", fp=file_location)

You can embed and play the file in your notebook using the following code, which first converts the
.midi file into a .wav file.

!apt install fluidsynth
!cp /usr/share/sounds/sf2/FluidR3_GM.sf2 ./font.sf2
!pip install midi2audio
from midi2audio import FluidSynth
from IPython.display import Audio

FluidSynth("font.sf2").midi_to_audio("file_location", "new_file_location.wav")
Audio("new_file_location.wav")

Problem 5. Convert the predictions from Problem 4 into Music21 Note and Chord objects
and save it as "mozart.mid". Embed your music file into the notebook.

Part II

Appendices

183

A NumPy Visual Guide

Lab Objective: NumPy operations can be difficult to visualize, but the concepts are straightforward.
This appendix provides visual demonstrations of how NumPy arrays are used with slicing syntax,
stacking, broadcasting, and axis-specific operations. Though these visualizations are for 1- or 2-
dimensional arrays, the concepts can be extended to n-dimensional arrays.

Data Access
The entries of a 2-D array are the rows of the matrix (as 1-D arrays). To access a single entry, enter
the row index, a comma, and the column index. Remember that indexing begins with 0.

A[0] =

× × × × ×
× × × × ×
× × × × ×
× × × × ×

 A[2,1] =

× × × × ×
× × × × ×
× × × × ×
× × × × ×

Slicing
A lone colon extracts an entire row or column from a 2-D array. The syntax [a:b] can be read as
“the ath entry up to (but not including) the bth entry.” Similarly, [a:] means “the ath entry to the
end” and [:b] means “everything up to (but not including) the bth entry.”

A[1] = A[1,:] =

× × × × ×
× × × × ×
× × × × ×
× × × × ×

 A[:,2] =

× × × × ×
× × × × ×
× × × × ×
× × × × ×

A[1:,:2] =

× × × × ×
× × × × ×
× × × × ×
× × × × ×

 A[1:-1,1:-1] =

× × × × ×
× × × × ×
× × × × ×
× × × × ×

185

186 Appendix A. NumPy Visual Guide

Stacking
np.hstack() stacks sequence of arrays horizontally and np.vstack() stacks a sequence of arrays
vertically.

A =

 × × ×
× × ×
× × ×

 B =

 ∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

np.hstack((A,B,A)) =

 × × × ∗ ∗ ∗ × × ×
× × × ∗ ∗ ∗ × × ×
× × × ∗ ∗ ∗ × × ×

np.vstack((A,B,A)) =

× × ×
× × ×
× × ×
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
× × ×
× × ×
× × ×

Because 1-D arrays are flat, np.hstack() concatenates 1-D arrays and np.vstack() stacks them
vertically. To make several 1-D arrays into the columns of a 2-D array, use np.column_stack().

x =
[
× × × ×

]
y =

[
∗ ∗ ∗ ∗

]

np.hstack((x,y,x)) =
[
× × × × ∗ ∗ ∗ ∗ × × × ×

]

np.vstack((x,y,x)) =

 × × × ×
∗ ∗ ∗ ∗
× × × ×

 np.column_stack((x,y,x)) =

× ∗ ×
× ∗ ×
× ∗ ×
× ∗ ×

The functions np.concatenate() and np.stack() are more general versions of np.hstack() and
np.vstack(), and np.row_stack() is an alias for np.vstack().

Broadcasting
NumPy automatically aligns arrays for component-wise operations whenever possible. See http:
//docs.scipy.org/doc/numpy/user/basics.broadcasting.html for more in-depth examples and
broadcasting rules.

http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

187

A =

 1 2 3

1 2 3

1 2 3

 x =
[
10 20 30

]

A + x =

 1 2 3

1 2 3

1 2 3

+[]
10 20 30

=

 11 22 33

11 22 33

11 22 33

A + x.reshape((1,-1)) =

 1 2 3

1 2 3

1 2 3

+

 10

20

30

 =

 11 12 13

21 22 23

31 32 33

Operations along an Axis
Most array methods have an axis argument that allows an operation to be done along a given axis.
To compute the sum of each column, use axis=0; to compute the sum of each row, use axis=1.

A =

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

A.sum(axis=0) =

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

 =
[
4 8 12 16

]

A.sum(axis=1) =

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

 =
[
10 10 10 10

]

188 Appendix A. NumPy Visual Guide

B Matplotlib Syntax and
Customization Guide

Lab Objective: The documentation for Matplotlib can be a little difficult to maneuver and basic
information is sometimes difficult to find. This appendix condenses and demonstrates some of the
more applicable and useful information on plot customizations. It is not intended to be read all at
once, but rather to be used as a reference when needed. For an interative introduction to Matplotlib,
see the Introduction to Matplotlib lab in Python Essentials. For more details on any specific function,
refer to the Matplotlib documentation at https: // matplotlib. org/ .

Matplotlib Interface
Matplotlib plots are made in a Figure object that contains one or more Axes, which themselves
contain the graphical plotting data. Matplotlib provides two ways to create plots:

1. Call plotting functions directly from the module, such as plt.plot(). This will create the plot
on whichever Axes is currently active.

2. Call plotting functions from an Axes object, such as ax.plot(). This is particularly useful for
complicated plots and for animations.

Table B.1 contains a summary of functions that are used for managing Figure and Axes objects.

Function Description
add_subplot() Add a single subplot to the current figure

axes() Add an axes to the current figure
clf() Clear the current figure

figure() Create a new figure or grab an existing figure
gca() Get the current axes
gcf() Get the current figure

subplot() Add a single subplot to the current figure
subplots() Create a figure and add several subplots to it

Table B.1: Basic functions for managing plots.

189

https://matplotlib.org/

190 Appendix B. Matplotlib Customization

Axes objects are usually managed through the functions plt.subplot() and plt.subplots().
The function subplot() is used as plt.subplot(nrows, ncols, plot_number). Note that if the
inputs for plt.subplot() are all integers, the commas between the entries can be omitted. For
example, plt.subplot(3,2,2) can be shortened to plt.subplot(322).

The function subplots() is used as plt.subplots(nrows, ncols), and returns a Figure
object and an array of Axes. This array has the shape (nrows, ncols), and can be accessed as any
other array. Figure B.1 demonstrates the layout and indexing of subplots.

1 2 3

4 5 6
Figure B.1: The layout of subplots with plt.subplot(2,3,i) (2 rows, 3 columns), where i is the
index pictured above. The outer border is the figure that the axes belong to.

The following example demonstrates three equivalent ways of producing a figure with two
subplots, arranged next to each other in one row:

>>> x = np.linspace(-5, 5, 100)

1. Use plt.subplot() to switch the current axes.
>>> plt.subplot(121)
>>> plt.plot(x, 2*x)
>>> plt.subplot(122)
>>> plt.plot(x, x**2)

2. Use plt.subplot() to explicitly grab the two subplot axes.
>>> ax1 = plt.subplot(121)
>>> ax1.plot(x, 2*x)
>>> ax2 = plt.subplot(122)
>>> ax2.plot(x, x**2)

3. Use plt.subplots() to get the figure and all subplots simultaneously.
>>> fig, axes = plt.subplots(1, 2)
>>> axes[0].plot(x, 2*x)
>>> axes[1].plot(x, x**2)

191

Achtung!

Be careful not to mix up the following similarly-named functions:

1. plt.axes() creates a new place to draw on the figure, while plt.axis() or ax.axis()
sets properties of the x- and y-axis in the current axes, such as the x and y limits.

2. plt.subplot() (singular) returns a single subplot belonging to the current figure, while
plt.subplots() (plural) creates a new figure and adds a collection of subplots to it.

Plot Customization
Styles

Matplotlib has a number of built-in styles that can be used to set the default appearance of plots.
These can be used via the function plt.style.use(); for instance, plt.style.use("seaborn")
will have Matplotlib use the "seaborn" style for all plots created afterwards. A list of built-in

styles can be found at https://matplotlib.org/stable/gallery/style_sheets/style_sheets_
reference.html.

The style can also be changed only temporarily using plt.style.context() along with a with
block:

with plt.style.context('dark_background'):
Any plots created here use the new style
plt.subplot(1,2,1)
plt.plot(x, y)
...

Plots created here are unaffected
plt.subplot(1,2,2)
plt.plot(x, y)

Plot layout

Axis properties

Table B.2 gives an overview of some of the functions that may be used to configure the axes of a
plot.

The functions xlim(), ylim(), and axis() are used to set one or both of the x and y ranges
of the plot. xlim() and ylim() each accept two arguments, the lower and upper bounds, or a single
list of those two numbers. axis() accepts a single list consisting, in order, of xmin, xmax, ymin,
ymax. Passing None instead of one of the numbers to any of these functions will make it not change
the corresponding value from what it was. Each of these functions can also be called without any
arguments, in which case it will return the current bounds. Note that axis() can also be called
directly on an Axes object, while xlim() and ylim() cannot.

axis() also can be called with a string as its argument, which has several options. The most
common is axis('equal'), which makes the scale of the x- and y-scales equal (i.e. makes circles
circular).

https://matplotlib.org/stable/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/stable/gallery/style_sheets/style_sheets_reference.html

192 Appendix B. Matplotlib Customization

Function Description
axis() set the x- and y-limits of the plot
grid() add gridlines
xlim() set the limits of the x-axis
ylim() set the limits of the y-axis

xticks() set the location of the tick marks on the x-axis
yticks() set the location of the tick marks on the y-axis
xscale() set the scale type to use on the x-axis
yscale() set the scale type to use on the y-axis

ax.spines[side].set_position() set the location of the given spine
ax.spines[side].set_color() set the color of the given spine

ax.spines[side].set_visible() set whether a spine is visible

Table B.2: Some functions for changing axis properties. ax is an Axes object.

To use a logarithmic scale on an axis, the functions xscale("log") and yscale("log") can
be used.

The functions xticks() and yticks() accept a list of tick positions, which the ticks on the
corresponding axis are set to. Generally, this works the best when used with np.linspace(). This
function also optionally accepts a second argument of a list of labels for the ticks. If called with no
arguments, the function returns a list of the current tick positions and labels instead.

The spines of a Matplotlib plot are the black border lines around the plot, with the left and
bottom ones also being used as the axis lines. To access the spines of a plot, call ax.spines[side],
where ax is an Axes object and side is 'top', 'bottom', 'left', or 'right'. Then, functions can
be called on the Spine object to configure it.

The function spine.set_position() has several ways to specify the position. The two simplest
are with the arguments 'center' and 'zero', which place the spine in the center of the subplot or
at an x- or y-coordinate of zero, respectively. The others are a passed as a tuple (position_type,
amount):

• 'data': place the spine at an x- or y-coordinate equal to amount.

• 'axes': place the spine at the specified Axes coordinate, where 0 corresponds to the bottom
or left of the subplot, and 1 corresponds to the top or right edge of the subplot.

• 'outward': places the spine amount pixels outward from the edge of the plot area. A negative
value can be used to move it inwards instead.

spine.set_color() accepts any of the color formats Matplotlib supports. Alternately, using
set_color('none') will make the spine not be visible. spine.set_visible() can also be used for
this purpose.

The following example adjusts the ticks and spine positions to improve the readability of a plot
of sin(x). The result is shown in Figure B.2.

>>> x = np.linspace(0,2*np.pi,150)
>>> plt.plot(x, np.sin(x))
>>> plt.title(r"$y=\sin(x)$")

#Set the ticks to multiples of pi/2, make nice labels
>>> ticks = np.pi / 2 * np.array([0,1,2,3,4])

193

>>> tick_labels = ["0", r"$\frac{\pi}{2}$", r"π", r"$\frac{3\pi}{2}$",
... r"2π"]
>>> plt.xticks(ticks, tick_labels)

#Move the bottom spine to zero, remove the top and right ones
>>> ax = plt.gca()
>>> ax.spines['bottom'].set_position('zero')
>>> ax.spines['right'].set_color('none')
>>> ax.spines['top'].set_color('none')

>>> plt.show()

0 2
3
2

2

1.0

0.5

0.0

0.5

1.0

y = sin(x)

Figure B.2: Plot of y = sin(x) with axes modified for clarity

Plot Layout

The position and spacing of all subplots within a figure can be modified using the function plt
.subplots_adjust(). This function accepts up to six keyword arguments that change different
aspects of the spacing. left, right, top, and bottom are used to adjust the rectangle around all of
the subplots. In the coordinates used, 0 corresponds to the bottom or left edge of the figure, and 1
corresponds to the top or right edge of the figure. hspace and wspace set the vertical and horizontal
spacing, respectively, between subplots. The units for these are in fractions of the average height
and width of all subplots in the figure. If more fine control is desired, the position of individual Axes
objects can also be changed using ax.get_position() and ax.set_position().

The size of the figure can be configured using the figsize argument when creating a figure:

>>> plt.figure(figsize=(12,8))

Note that many environments will scale the figure to fill the available space. Even so, changing the
figure size can still be used to change the aspect ratio as well as the relative size of plot elements.

The following example uses subplots_adjust() to create space for a legend outside of the
plotting space. The result is shown in Figure B.3.

194 Appendix B. Matplotlib Customization

#Generate data
>>> x1 = np.random.normal(-1, 1.0, size=60)
>>> y1 = np.random.normal(-1, 1.5, size=60)
>>> x2 = np.random.normal(2.0, 1.0, size=60)
>>> y2 = np.random.normal(-1.5, 1.5, size=60)
>>> x3 = np.random.normal(0.5, 1.5, size=60)
>>> y3 = np.random.normal(2.5, 1.5, size=60)

#Make the figure wider
>>> fig = plt.figure(figsize=(5,3))

#Plot the data
>>> plt.plot(x1, y1, 'r.', label="Dataset 1")
>>> plt.plot(x2, y2, 'g.', label="Dataset 2")
>>> plt.plot(x3, y3, 'b.', label="Dataset 3")

#Create a legend to the left of the plot
>>> lspace = 0.35
>>> plt.subplots_adjust(left=lspace)
#Put the legend at the left edge of the figure
>>> plt.legend(loc=(-lspace/(1-lspace),0.6))
>>> plt.show()

2 0 2 4

4

2

0

2

4Dataset 1
Dataset 2
Dataset 3

Figure B.3: Example of repositioning axes.

195

Colors

The color that a plotting function uses is specified by either the c or color keyword arguments; for
most functions, these can be used interchangeably. There are many ways to specific colors. The most
simple is to use one of the basic colors, listed in Table B.3. Colors can also be specified using an
RGB tuple such as (0.0, 0.4, 1.0), a hex string such as "0000FF", or a CSS color name like "
DarkOliveGreen" or "FireBrick". A full list of named colors that Matplotlib supports can be found
at https://matplotlib.org/stable/gallery/color/named_colors.html. If no color is specified
for a plot, Matplotlib automatically assigns it one from the default color cycle.

Code Color
'b' blue
'g' green
'r' red
'c' cyan
'm' magenta

Code Color
'y' yellow
'k' black
'w' white

'C0' - 'C9' Default colors

Table B.3: Basic colors available in Matplotlib

Plotting functions also accept an alpha keyword argument, which can be used to set the
transparency. A value of 1.0 corresponds to fully opaque, and 0.0 corresponds to fully transparent.

The following example demonstrates different ways of specifying colors:

#Using a basic color
>>> plt.plot(x, y, 'r')
#Using a hexadecimal string
>>> plt.plot(x, y, color='FF0080')
#Using an RGB tuple
>>> plt.plot(x, y, color=(1, 0.5, 0))
#Using a named color
>>> plt.plot(x, y, color='navy')

Colormaps

Certain plotting functions, such as heatmaps and contour plots, accept a colormap rather than a
single color. A full list of colormaps available in Matplotlib can be found at https://matplotlib.
org/stable/gallery/color/colormap_reference.html. Some of the more commonly used ones
are "viridis", "magma", and "coolwarm". A colorbar can be added by calling plt.colorbar()
after creating the plot.

Sometimes, using a logarithmic scale for the coloring is more informative. To do this, pass a
matplotlib.colors.LogNorm object as the norm keyword argument:

Create a heatmap with logarithmic color scaling
>>> from matplotlib.colors import LogNorm
>>> plt.pcolormesh(X, Y, Z, cmap='viridis', norm=LogNorm())

https://matplotlib.org/stable/gallery/color/named_colors.html
https://matplotlib.org/stable/gallery/color/colormap_reference.html
https://matplotlib.org/stable/gallery/color/colormap_reference.html

196 Appendix B. Matplotlib Customization

Function Description Usage
annotate() adds a commentary at a given point on the plot annotate(’text’,(x,y))

arrow() draws an arrow from a given point on the plot arrow(x,y,dx,dy)
colorbar() Create a colorbar colorbar()

legend() Place a legend in the plot legend(loc=’best’)
text() Add text at a given position on the plot text(x,y,’text’)

title() Add a title to the plot title(’text’)
suptitle() Add a title to the figure suptitle(’text’)

xlabel() Add a label to the x-axis xlabel(’text’)
ylabel() Add a label to the y-axis ylabel(’text’)

Table B.4: Text and annotation functions in Matplotlib

Text and Annotations

Matplotlib has several ways to add text and other annotations to a plot, some of which are listed in
Table B.4. The color and size of the text in most of these functions can be adjusted with the color
and fontsize keyword arguments.

Matplotlib also supports formatting text with LATEX, a system for creating technical docu-
ments.1 To do so, use an r before the string quotation mark and surround the text with dollar
signs. This is particularly useful when the text contains a mathematical expression. For example,
the following line of code will make the title of the plot be 1

2 sin(x
2):

>>> plt.title(r"$\frac{1}{2}\sin(x^2)$")

The function legend() can be used to add a legend to a plot. Its optional loc keyword
argument specifies where to place the legend within the subplot. It defaults to 'best', which will
cause Matplotlib to place it in whichever location overlaps with the fewest drawn objects. The other
locations this function accepts are 'upper right', 'upper left', 'lower left', 'lower right',
'center left', 'center right', 'lower center', 'upper center', and 'center'. Alternately,
a tuple of (x,y) can be passed as this argument, and the bottom-left corner of the legend will be
placed at that location. The point (0,0) corresponds to the bottom-left of the current subplot, and
(1,1) corresponds to the top-right. This can be used to place the legend outside of the subplot,
although care should be taken that it does not go outside the figure, which may require manually
repositioning the subplots.

The labels the legend uses for each curve or scatterplot are specified with the label keyword
argument when plotting the object. Note that legend() can also be called with non-keyword argu-
ments to set the labels, although it is less confusing to set them when plotting.

The following example demonstrates creating a legend:

>>> x = np.linspace(0,2*np.pi,250)

Plot sin(x), cos(x), and -sin(x)
The label argument will be used as its label in the legend.
>>> plt.plot(x, np.sin(x), 'r', label=r'$\sin(x)$')
>>> plt.plot(x, np.cos(x), 'g', label=r'$\cos(x)$')
>>> plt.plot(x, -np.sin(x), 'b', label=r'$-\sin(x)$')

1See http://www.latex-project.org/ for more information.

http://www.latex-project.org/

197

Create the legend
>>> plt.legend()

Line and marker styles

Matplotlib supports a large number of line and marker styles for line and scatter plots, which are
listed in Table B.5.

character description
- solid line style
-- dashed line style
-. dash-dot line style
: dotted line style
. point marker
, pixel marker
o circle marker
v triangle_down marker
ˆ triangle_up marker
< triangle_left marker
> triangle_right marker
1 tri_down marker
2 tri_up marker

character description
3 tri_left marker
4 tri_right marker
s square marker
p pentagon marker
* star marker
h hexagon1 marker
H hexagon2 marker
+ plus marker
x x marker
D diamond marker
d thin_diamond marker
| vline marker
_ hline marker

Table B.5: Available line and marker styles in Maplotlib.

The function plot() has several ways to specify this argument; the simplest is to pass it as the
third positional argument. The marker and linestyle keyword arguments can also be used. The
size of these can be modified using markersize and linewidth. Note that by specifying a marker
style but no line style, plot() can be used to make a scatter plot. It is also possible to use both a
marker style and a line style. To set the marker using scatter(), use the marker keyword argument,
with s being used to change the size.

The following code demonstrates specifying marker and line styles. The results are shown in
Figure B.4.

#Use dashed lines:
>>> plt.plot(x, y, '--')
#Use only dots:
>>> plt.plot(x, y, '.')
#Use dots with a normal line:
>>> plt.plot(x, y, '.-')
#scatter() uses the marker keyword:
>>> plt.scatter(x, y, marker='+')

#With plot(), the color to use can also be specified in the same string.
#Order usually doesn't matter.
#Use red dots:
>>> plt.plot(x, y, '.r')

198 Appendix B. Matplotlib Customization

#Equivalent:
>>> plt.plot(x, y, 'r.')

#To change the size:
>>> plt.plot(x, y, 'v-', linewidth=1, markersize=15)
>>> plt.scatter(x, y, marker='+', s=12)

plt.plot(x, y, '--') plt.plot(x, y, '.') plt.plot(x, y, '.-') plt.scatter(x, y, marker='+')

plt.plot(x, y, '.r') plt.plot(x, y, 'r.') plt.plot(x, y, 'v-',
linewidth=1, markersize=15)

plt.scatter(x, y,
marker='+', s=12)

Figure B.4: Examples of setting line and marker styles.

Plot Types

Matplotlib has functions for creaing many different types of plots, many of which are listed in Table
B.6. This section gives details on using certain groups of these functions.

199

Function Description Usage
bar makes a bar graph bar(x,height)
barh makes a horizontal bar graph barh(y,width)
boxplots makes one or more boxplots boxplots(data)
contour makes a contour plot contour(X,Y,Z)
contourf makes a filled contour plot contourf(X,Y,Z)
imshow shows an image imshow(image)
fill plots lines with shading under the curve fill(x,y)
fill_between plots lines with shading between two given y values fill_between(x,y1, y2=0)
hexbin creates a hexbin plot hexbin(x,y)
hist plots a histogram from data hist(data)
pcolormesh makes a heatmap pcolormesh(X,Y,Z)
pie makes a pie chart pie(x)
plot plots lines and data on standard axes plot(x,y)
plot_surface plot a surface in 3-D space plot_surface(X,Y,Z)
polar plots lines and data on polar axes polar(theta,r)
loglog plots lines and data on logarithmic x and y axes loglog(x,y)
scatter plots data in a scatterplot scatter(x,y)
semilogx plots lines and data with a log scaled x axis semilogx(x,y)
semilogy plots lines and data with a log scaled y axis semilogy(x,y)
specgram makes a spectogram from data specgram(x)
spy plots the sparsity pattern of a 2D array spy(Z)
triplot plots triangulation between given points triplot(x,y)

Table B.6: Some basic plotting functions in Matplotlib.

Line plots

Line plots, the most basic type of plot, are created with the plot() function. It accepts two lists of
x- and y-values to plot, and optionally a third argument of a string of any combination of the color,
line style, and marker style. Note that this method only works with the single-character color codes;
to use other colors, use the color argument. By specifying only a marker style, this function can
also be used to create scatterplots.

There are a number of functions that do essentially the same thing as plot() but also change
the axis scaling, including loglog(), semilogx(), semilogy(), and polar. Each of these functions
is used in the same manner as plot(), and has identical syntax.

Bar Plots

Bar plots are a way to graph categorical data in an effective way. They are made using the bar()
function. The most important arguments are the first two that provide the data, x and height. The
first argument is a list of values for each bar, either categorical or numerical; the second argument is
a list of numerical values corresponding to the height of each bar. There are other parameters that
may be included as well. The width argument adjusts the bar widths; this can be done by choosing
a single value for all of the bars, or an array to give each bar a unique width. Further, the argument
bottom allows one to specify where each bar begins on the y-axis. Lastly, the align argument can
be set to ’center’ or ’edge’ to align as desired on the x-axis. As with all plots, you can use the color
keyword to specify any color of your choice. If you desire to make a horizontal bar graph, the syntax
follows similarly using the function barh(), but with argument names y, width, height and align.

200 Appendix B. Matplotlib Customization

Box Plots

A box plot is a way to visualize some simple statistics of a dataset. It plots the minimum, maximum,
and median along with the first and third quartiles of the data. This is done by using boxplot()
with an array of data as the argument. Matplotlib allows you to enter either a one dimensional
array for a single box plot, or a 2-dimensional array where it will plot a box plot for each column of
the data in the array. Box plots default to having a vertical orientation but can be easily laid out
horizontally by setting vert=False.

Scatter and hexbin plots

Scatterplots can be created using either plot() or scatter(). Generally, it is simpler to use plot(),
although there are some cases where scatter() is better. In particular, scatter() allows changing
the color and size of individual points within a single call to the function. This is done by passing a
list of colors or sizes to the c or s arguments, respectively.

Hexbin plots are an alternative to scatterplots that show the concentration of data in regions
rather than the individual points. They can be created with the function hexbin(). Like plot()
and scatter(), this function accepts two lists of x- and y-coordinates.

Heatmaps and contour plots

Heatmaps and contour plots are used to visualize 3-D surfaces and complex-valued functions on a
flat space. Heatmaps are created using the pcolormesh() function. Contour plots are created using
contour() or contourf(), with the latter creating a filled contour plot.

Each of these functions accepts the x-, y-, and z-coordinates as a mesh grid, or 2-D array. To
create these, use the function np.meshgrid():

>>> x = np.linspace(0,1,100)
>>> y = np.linspace(0,1,80)
>>> X, Y = np.meshgrid(x, y)

The z-coordinate can then be computed using the x and y mesh grids.
Note that each of these functions can accept a colormap, using the cmap parameter. These

plots are sometimes more informative with a logarithmic color scale, which can be used by passing a
matplotlib.colors.LogNorm object in the norm parameter of these functions.

With pcolormesh(), it is also necessary to pass shading='auto' or shading='nearest' to
avoid a deprecation error.

The following example demonstrates creating heatmaps and contour plots, using a graph of
z = (x2 + y) sin(y). The results is shown in Figure B.5

>>> from matplotlib.colors import LogNorm

>>> x = np.linspace(-3,3,100)
>>> y = np.linspace(-3,3,100)
>>> X, Y = np.meshgrid(x, y)
>>> Z = (X**2+Y)*np.sin(Y)

#Heatmap
>>> plt.subplot(1,3,1)

201

>>> plt.pcolormesh(X, Y, Z, cmap='viridis', shading='nearest')
>>> plt.title("Heatmap")

#Contour
>>> plt.subplot(1,3,2)
>>> plt.contour(X, Y, Z, cmap='magma')
>>> plt.title("Contour plot")

#Filled contour
>>> plt.subplot(1,3,3)
>>> plt.contourf(X, Y, Z, cmap='coolwarm')
>>> plt.title("Filled contour plot")
>>> plt.colorbar()

>>> plt.show()

Figure B.5: Example of heatmaps and contour plots.

Showing images

The function imshow() is used for showing an image in a plot, and can be used on either grayscale
or color images. This function accepts a 2-D n×m array for a grayscale image, or a 3-D n×m× 3

array for a color image. If using a grayscale image, you also need to specify cmap='gray', or it will
be colored incorrectly.

It is best to also use axis('equal') alongside imshow(), or the image will most likely be
stretched. This function also works best if the images values are in the range [0, 1]. Some ways to
load images will format their values as integers from 0 to 255, in which case the values in the image
array should be scaled before using imshow().

3-D Plotting

Matplotlib can be used to plot curves and surfaces in 3-D space. In order to use 3-D plotting, you
need to run the following line:

202 Appendix B. Matplotlib Customization

>>> from mpl_toolkits.plot3d import Axes3D

The argument projection='3d' also must be specified when creating the subplot for the 3-D object:

>>> plt.subplot(1,1,1, projection='3d')

Curves can be plotted in 3-D space using plot(), by passing in three lists of x-, y-, and z-
coordinates. Surfaces can be plotted using ax.plot_surface(). This function can be used similar
to creating contour plots and heatmaps, by obtaining meshes of x- and y- coordinates from np.
meshgrid() and using those to produce the z-axis. More generally, any three 2-D arrays of meshes
corresponding to x-, y-, and z-coordinates can be used. Note that it is necessary to call this function
from an Axes object.

The following example demonstrates creating 3-D plots. The results are shown in Figure B.6.

#Create a plot of a parametric curve
ax = plt.subplot(1,3,1, projection='3d')
t = np.linspace(0, 4*np.pi, 160)
x = np.cos(t)
y = np.sin(t)
z = t / np.pi
plt.plot(x, y, z, color='b')
plt.title("Helix curve")

#Create a surface plot from np.meshgrid
ax = plt.subplot(1,3,2, projection='3d')
x = np.linspace(-1,1,80)
y = np.linspace(-1,1,80)
X, Y = np.meshgrid(x, y)
Z = X**2 - Y**2
ax.plot_surface(X, Y, Z, color='g')
plt.title(r"Hyperboloid")

#Create a surface plot less directly
ax = plt.subplot(1,3,3, projection='3d')
theta = np.linspace(-np.pi,np.pi,80)
rho = np.linspace(-np.pi/2,np.pi/2,40)
Theta, Rho = np.meshgrid(theta, rho)
X = np.cos(Theta) * np.cos(Rho)
Y = np.sin(Theta) * np.cos(Rho)
Z = np.sin(Rho)
ax.plot_surface(X, Y, Z, color='r')
plt.title(r"Sphere")

plt.show()

203

1
0

1 1
0

1
0
1
2
3
4

Helix curve

1
0

1 1
0

1

0.5
0.0
0.5

Hyperboloid

1
0

1 1
0

1
1.0
0.5

0.0
0.5
1.0

Sphere

Figure B.6: Examples of 3-D plotting.

Additional Resources
rcParams

The default plotting parameters of Matplotlib can be set individually and with more fine control than
styles by using rcParams. rcParams is a dictionary that can be accessed as either plt.rcParams or
matplotlib.rcParams.

For instance, the resolution of plots can be changed via the "figure.dpi" parameter:

>>> plt.rcParams["figure.dpi"] = 600

A list of parameters that can set via rcParams can be found at https://matplotlib.org/
stable/api/matplotlib_configuration_api.html#matplotlib.RcParams.

Animations

Matplotlib has capabilities for creating animated plots. The Animations lab in Volume 4 has detailed
instructions on how to do so.

Matplotlib gallery and tutorials

The Matplotlib documentation has a number of tutorials, found at https://matplotlib.org/
stable/tutorials/index.html. It also has a large gallery of examples, found at https://matplotlib.
org/stable/gallery/index.html. Both of these are excellent sources of additional information
about ways to use and customize Matplotlib.

https://matplotlib.org/stable/api/matplotlib_configuration_api.html#matplotlib.RcParams
https://matplotlib.org/stable/api/matplotlib_configuration_api.html#matplotlib.RcParams
https://matplotlib.org/stable/tutorials/index.html
https://matplotlib.org/stable/tutorials/index.html
https://matplotlib.org/stable/gallery/index.html
https://matplotlib.org/stable/gallery/index.html

204 Appendix B. Matplotlib Customization

Bibliography

[ADH+01] David Ascher, Paul F Dubois, Konrad Hinsen, Jim Hugunin, Travis Oliphant, et al.
Numerical python, 2001.

[GKB17] Ian J. Goodfellow, Alexey Kurakin, and Samy Bengio. Adversarial examples in the phys-
ical world. 2017.

[GSS15] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. 2015.

[Hun07] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science & Engi-
neering, 9(3):90–95, 2007.

[Oli06] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

[Oli07] Travis E Oliphant. Python for scientific computing. Computing in Science & Engineering,
9(3), 2007.

[VD10] Guido VanRossum and Fred L Drake. The python language reference. Python software
foundation Amsterdam, Netherlands, 2010.

205

	Preface
	to 20ptILabs
	Information Theory
	LSI and SkLearn
	K-Means Clustering
	Random Forests
	Linear Regression
	Logistic Regression
	Naive Bayes
	Metropolis Algorithm
	Gibbs Sampling and LDA
	Gaussian Mixture Models
	Discrete Hidden Markov Models
	Speech Recognition using CDHMMs
	Kalman Filter
	ARMA Models
	Non-negative Matrix Factorization Recommender
	Intro to Deep Learning and PyTorch
	Recurrent Neural Networks

	to 20ptIIAppendices
	NumPy Visual Guide
	Matplotlib Customization
	Bibliography

