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Preface

This lab manual is designed to accompany the textbooks Foundations of Applied Mathematics
Volume 2: Algorithms, Approximation, and Optimization by Humpherys and Jarvis. The labs focus
mainly on data structures, signal transforms, and numerical optimization, including applications to
data science, signal processing, and machine learning. The reader should be familiar with Python
[VD10] and its NumPy [Oli06, ADH+01, Oli07] and Matplotlib [Hun07] packages before attempting
these labs. See the Python Essentials manual for introductions to these topics.

©This work is licensed under the Creative Commons Attribution 3.0 United States License.
You may copy, distribute, and display this copyrighted work only if you give credit to Dr. J. Humpherys.
All derivative works must include an attribution to Dr. J. Humpherys as the owner of this work as
well as the web address to

https://github.com/Foundations-of-Applied-Mathematics/Labs
as the original source of this work.
To view a copy of the Creative Commons Attribution 3.0 License, visit

http://creativecommons.org/licenses/by/3.0/us/
or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105,
USA.
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1 Binary Search Trees

Lab Objective: Linked data structures chain data together in a useful way for many applications.
A tree is a linked data structure that can be used for efficient sorting and searching algorithms. In this
lab, we overview the basics of linked data structures and recursion. We then implement a recursively
structured doubly linked binary search tree (BST). Finally, we compare the standard linked list, our
BST, and an AVL tree to illustrate the relative strengths and weaknesses of each data structure.

Linked Data Structures

A linked data structure is a data structure which consists of a set of containers (nodes) that are linked
together by references. Each node in a linked data structure stores a piece of data and at least one
reference to another node in the data structure. Linked data structures offer flexibility in organizing
data and are the basis of many efficient algorithms.

Linked Lists

A linked list is a basic example of linked data structure. Every linked list needs a reference to the
first item in the chain, called the head. A reference to the last item in the chain, called the tail, is
also often included. The nodes of a singly linked list have a single reference to the next node in the
list (see Figure 1.1), while the nodes of a doubly linked list have two references: one for the previous
node, and one for the next node (see Figure 1.2). This allows for a doubly linked list to be traversed
in both directions, whereas a singly linked list can only be traversed in one direction.

A B C D

head

Figure 1.1: A singly linked list with just a reference to the head node.

3



4 Lab 1. Binary Search Trees

A B C D

tailhead

Figure 1.2: A doubly linked list with references to both the head and tail nodes.

Modifying Linked Lists

To insert a new node into a doubly linked list, we assign its prev and next attributes to reference
the nodes that come before and after it. We then adjust the attributes of nodes that come before
and after the new node to reference the new node (See Figure 1.3). To remove a node from a doubly
linked list, we remove all references to that node. This is done by changing the attributes of the
previous and next nodes so that they reference each other (See Figure 1.4).

Achtung!

Python keeps track of the variables in use and automatically deletes a variable (freeing up
the memory that stored the object) if there is no access to it. This feature is called garbage
collection. In many other languages, leaving a reference to an object without explicitly deleting
it can lead to a serious memory leak. See https://docs.python.org/3/library/gc.html for
more information on Python’s garbage collection system.

A B D

C

A B D

C

head tail head tail

Figure 1.3: Insertion for doubly linked lists.

A B C D A B C D

Figure 1.4: Removal for doubly linked Lists. To avoid gaps in the chain, nodes B and D must be
linked together. Python will automatically delete node C since there are no references to it.

Problem 1. Consider the following class for doubly linked lists.

class DoublyLinkedListNode:
"""A node with a value and a reference to the previous and next ←↩

nodes."""
def __init__(self, data):

https://docs.python.org/3/library/gc.html
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self.value = data
self.prev, self.next = None, None

class DoublyLinkedList:
"""A doubly linked list with a head and a tail."""
def __init__(self):

self.head, self.tail = None, None

def __len__(self):
'''Return the number of nodes in the list.'''
count = 0
current = self.head
while current:

count += 1
current = current.next

return count

def __str__(self):
'''Format and return the list like a standard Python list.'''
result = []
current = self.head
while current:

result.append(str(current.value))
current = current.next

return '[' + ', '.join(result) + ']'

Add an insert() method to the DoublyLinkedList class that accepts an integer index
and data to add to the list. Insert a new node containing data immediately before the node
in the list at position index. After the insertion, the new node should be at position index.
For example, Figure 1.3 places a new node containing C at index 2. If index is equal to the
number of nodes in the list, then add the new node to the end of the list. Carefully account
for the special cases of inserting before the first node and after the last node. Make sure to
properly reassign the head or tail attribute to reflect the new structure of the list. If the list
is empty, make the new node both the head and tail. If index is negative or strictly greater
than the number of nodes in the list, raise an IndexError.

Hint: The __len__() and __str__() methods have been adapted for this class. Use them
in addition to the provided unit test for writing/debugging purposes. Also, attributes can be
chained together for locating specific nodes (self.head.next, self.prev.prev.value, etc.)

Recursion

A recursive function is one that calls itself. When the function is executed, it continues calling itself
until reaching a base case where the value of the function is known. The function then exits without
calling itself again, and each previous function call is resolved. The idea is to solve large problems
by first solving smaller problems, then combining their results.
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As a simple example, consider the function f : N→ N that sums all positive integers from 1 to
some integer n.

f(n) =

n∑
i=1

i = n+

n−1∑
i=1

i = n+ f(n− 1)

Since f(n− 1) appears in the formula for f(n), f can be implemented recursively. Calculating f(n)
requires the value of f(n − 1), which requires f(n − 2), and so on. The base case is f(1) = 1, at
which point the recursion halts and unwinds. For example, f(4) is calculated as follows.

f(4) = 4 + f(3)

= 4 + (3 + f(2))

= 4 + (3 + (2 + f(1)))

= 4 + (3 + (2 + 1))

= 4 + (3 + 3)

= 4 + 6

= 10

The implementation accounts separately for the base case and the recursive case.

def recursive_sum(n):
"""Calculate the sum of all positive integers in [1, n] recursively."""
if n <= 1: # Base case: f(1) = 1.

return 1
else: # Recursive case: f(n) = n + f(n-1).

return n + recursive_sum(n-1)

Many problems that can be solved iteratively can also be solved with a recursive approach.
Consider the function g : N→ N that calculates the nth Fibonacci number.

g(n) = g(n− 1) + g(n− 2), g(0) = 0, g(1) = 1.

This function is doubly recursive since g(n) calls itself twice, and there are two different base cases to
deal with. On the other hand, g(n) could be computed iteratively by calculating g(0), g(1), . . . , g(n)
in that order. Compare the iterative and recursive implementations for g given below.

def iterative_fib(n):
"""Calculate the nth Fibonacci number iteratively."""
if n <= 0: # Special case: g(0) = 0.

return 0
g0, g1 = 0, 1 # Initialize g(0) and g(1).
for i in range(1, n): # Calculate g(2), g(3), ..., g(n).

g0, g1 = g1, g0 + g1
return g1

def recursive_fib(n):
"""Calculate the nth Fibonacci number recursively."""
if n <= 0: # Base case 1: g(0) = 0.

return 0
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elif n == 1: # Base case 2: g(1) = 1.
return 1

else: # Recursive case: g(n) = g(n-1) + g(n-2).
return recursive_fib(n-1) + recursive_fib(n-2)

g(4)

g(3)

g(2)

g(1) g(0)

g(1)

g(2)

g(1) g(0)

3

2

1

1 0

1

1

1 0

Figure 1.5: To calculate g(n) recursively, call g(n− 1) and g(n− 2), down to the base cases g(0) and
g(1). As the recursion unwinds, the values from the base cases are passed up to previous calls and
combined, eventually giving the value for g(n).

Problem 2. Consider the following method for doubly linked lists.

def iterative_find(self, data):
"""Search iteratively for a node containing the data."""
current = self.head
while current is not None:

if current.value == data:
return current

current = current.next
raise ValueError(str(data) + " is not in the list")

Write a method called recursive_find() that does the same task as iterative_find(), but
with the following recursive approach. Define a function within the method that checks a single
node for the data. There are two base cases: if the node is None, meaning the data could not
be found, raise a ValueError; if the node contains the data, return the node. Otherwise, call
the function on the next node in the list. Start the recursion by calling this inner function on
the head node.
(Hint: see BST.find() in the next section for a similar idea.)

Note

The is operator is not the same as the == operator. While == checks for numerical equality,
is evaluates whether or not two objects are the same by checking their location in memory.
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>>> 7 == 7.0 # True since the numerical values are the same.
True

# 7 is an int and 7.0 is a float, so they cannot be stored at the same
# location in memory. Therefore 7 "is not" 7.0.
>>> 7 is 7.0
False

For numerical comparisons, always use ==. When comparing to built-in Python constants
such as None, True, False, or NotImplemented, use is instead.

Achtung!

It is usually not better to rewrite an iterative method recursively, partly because recursion
results in an increased number of function calls. Each call requires a small amount of memory
so the computer remembers where to return to in the program. By default, Python raises a
RuntimeError after 1000 calls to prevent a stack overflow. On the other hand, recursion lends
itself well to some problems; in this lab, we use a recursive approach to construct a few data
structures, but it is possible to implement the same structures with iterative strategies.

Binary Search Trees

Mathematically, a tree is a directed graph with no cycles. A tree can be implemented as a linked
data structure similar to a linked list. The first node in a tree is called the root, like the head of
a linked list. The root node points to other nodes, which are called its children. A node with no
children is called a leaf node.

A binary search tree (BST) is a tree that allows each node to have up to two children, usually
called left and right. The left child of a node contains a value that is less than its parent node’s
value; the right child’s value is greater than its parent’s value. This specific structure makes it easy
to search a BST: while the computational complexity of finding a value in a linked list is O(n) where
n is the number of nodes, a well-built tree finds values in O(log n) time.

Binary search tree nodes have attributes that keep track of their value, their children, and (in
doubly linked trees) their parent. The actual binary search tree has an attribute to keep track of its
root node.
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4

5 3

2 7

5

2

1

7

6 8

Figure 1.6: Both of these graphs are trees, but the tree on the left is not a binary search tree because
5 is to the left of 4. Swapping 5 and 3 in the graph on the left would result in a BST.

class BSTNode:
"""A node class for binary search trees. Contains a value, a
reference to the parent node, and references to two child nodes.
"""
def __init__(self, data):

"""Construct a new node and set the value attribute. The other
attributes will be set when the node is added to a tree.
"""
self.value = data
self.prev = None # A reference to this node's parent node.
self.left = None # self.left.value < self.value
self.right = None # self.value < self.right.value

class BST:
"""Binary search tree data structure class.
The root attribute references the first node in the tree.
"""
def __init__(self):

"""Initialize the root attribute."""
self.root = None

Note

Conceptually, each node of a BST partitions the data of its subtree into two halves: the data
that is less than the parent, and the data that is greater. We will extend this concept to higher
dimensions in the next lab.
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Locating Nodes

Finding a node in a binary search tree can be done recursively. Starting at the root, check if the
target data matches the current node. If it does not, then if the data is less than the current node’s
value, search again on the left child; if the data is greater, search on the right child. Continue the
process until the data is found or until hitting a dead end. This method illustrates the advantage of
the binary structure—if a value is in a tree, then we know where it ought to be based on the other
values in the tree.

class BST:
# ...
def find(self, data):

"""Return the node containing the data. If there is no such node
in the tree, including if the tree is empty, raise a ValueError.
"""

# Define a recursive function to traverse the tree.
def _step(current):

"""Recursively step through the tree until the node containing
the data is found. If there is no such node, raise a Value Error.
"""
if current is None: # Base case 1: dead end.

raise ValueError(str(data) + " is not in the tree.")
if data == current.value: # Base case 2: data found!

return current
if data < current.value: # Recursively search left.

return _step(current.left)
else: # Recursively search right.

return _step(current.right)

# Start the recursion on the root of the tree.
return _step(self.root)

Insertion

New elements are always added to a BST as leaf nodes. To insert a new value, recursively step
through the tree as if searching for the value until locating an empty slot. The node with the empty
child slot becomes the parent of the new node; connect it to the new node by modifying the parent’s
left or right attribute (depending on which side the child should be on) and the child’s prev
attribute.
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5

2

1

7

3 8

root

5

2

1

7

3 8

parent

Figure 1.7: To insert 3 to the BST on the left, start at the root and recurse down the tree as if
searching for 3: since 3 < 5, step left to 2; since 2 < 3, step right. However, 2 has no right child, so
2 becomes the parent of a new node containing 3.

Problem 3. Write an insert() method for the BST class that accepts some data.

1. If the tree is empty, assign the root attribute to a new BSTNode containing the data.

2. If the tree is nonempty, create a new BSTNode containing the data and find the existing
node that should become its parent. Determine whether the new node will be the parent’s
left or right child, then double link the parent to the new node accordingly.
(Hint: write a recursive function like _step() to find and link the parent).

3. Do not allow duplicates in the tree: if there is already a node in the tree containing the
insertion data, raise a ValueError.

To test your method, use the __str__() and draw() methods provided in the Additional
Materials section. Try constructing the binary search trees in Figures 1.6 and 1.7.

Removal

Node removal is much more delicate than node insertion. While insertion always creates a new leaf
node, a remove command may target the root node, a leaf node, or anything in between. There are
three main requirements for a successful removal.

1. The target node is no longer in the tree.

2. The former children of the removed node are still accessible from the root. In other words, if
the target node has children, those children must be adopted by other nodes in the tree.

3. The tree still has an ordered binary structure.

When removing a node from a linked list, there are three possible cases that must each be accounted
for separately: the target node is the head, the target node is the tail, or the target node is in the
middle of the list. For BST node removal, we must similarly account separately for the removal of a
leaf node, a node with one child, a node with two children, and the root node.
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Removing a Leaf Node

Recall that Python’s garbage collector automatically deletes objects that cannot be accessed by the
user. If the node to be removed—called the target node—is a leaf node, then the only way to access
it is via the target’s parent. Locate the target with find(), get a reference to the parent node (using
the prev attribute of the target), and set the parent’s right or left attribute to None.

5

3

1

2

4

9

parent

target

5

3

1

2

4

9

Figure 1.8: To remove 2, get a reference to its parent. Then set the parent’s right attribute to None.
Even though 2 still points to 1, 2 is deleted since nothing in the tree points to it.

Removing a Node with One Child

If the target node has one child, the child must be adopted by the target’s parent in order to remain
in the tree. That is, the parent’s left or right attribute should be set to the child, and the child’s
prev attribute should be set to the parent. This requires checking which side of the target the child
is on and which side of the parent the target is on.

5

3

1

2

4

9parent

target

child

5

3

1

2

4

9

Figure 1.9: To remove 1, locate its parent (3) and its child (2). Set the parent’s left attribute to
the child and the child’s prev attribute to the parent. Even though 1 still points to other nodes, it
is deleted since nothing in the tree points to it.
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Removing a Node with Two Children

Removing a node with two children requires a slightly different approach in order to preserve the
ordering in the tree. The immediate predecessor of a node with value x is the node in the tree with
the largest value that is still smaller than x. Replacing a target node with its immediate predecessor
preserves the order of the tree because the predecessor’s value is greater than the values in the
target’s left branch, but less than the values in the target’s right branch. Note that because of how
the predecessor is chosen, any immediate predecessor can only have at most one child.

To remove a target with two children, find its immediate predecessor by stepping to the left
of the target (so that it’s value is less than the target’s value), and then to the right for as long as
possible (so that it has the largest such value). Remove the predecessor, recording its value. Then
overwrite the value of the target with the predecessor’s value.

5

3

1

2

4

9target

predecessor

5

2

1

3

4

9

Figure 1.10: To remove 3, locate its immediate predecessor 2 by stepping left to 1, then right as
far as possible. Since it is a leaf node, the predecessor can be deleted using the process in Figure
1.8. Delete the predecessor, and replace the value of the target with the predecessor’s value. If the
predecessor has a left child, it can be deleted with the procedure from Figure 1.9.

Removing the Root Node

If the target is the root node, the root attribute may need to be reassigned after the target is
removed. This adds two extra cases to consider:

1. If the root has no children, meaning it is the only node in the tree, set the root to None.

2. If the root has one child, that child becomes the new root of the tree. The new root’s prev
attribute should be set to None so the garbage collector deletes the target.

When the targeted root has two children, the node stays where it is (only its value is changed), so
root does not need to be reassigned.

Problem 4. Write a remove() method for the BST class that accepts some data. If the tree is
empty, or if there is no node in the tree containing the data, raise a ValueError. Otherwise,
remove the node containing the specified data using the strategies described in Figures 1.8–1.10.
Test your solutions thoroughly.
(Hint: Before coding anything, outline the entire method with comments and if-else
blocks. Consider using the following control flow to account for all possible cases.)
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1. The target is a leaf node.

(a) The target is the root.

(b) The target is to the left of its parent.

(c) The target is to the right of its parent.

2. The target has two children.
(Hint: use remove() on the predecessor’s value).

3. The target has one child.
(Hint: start by getting a reference to the child.)

(a) The target is the root.

(b) The target is to the left of its parent.

(c) The target is to the right of its parent.

Unit Test

Write a unit test for Problem 4: creating a remove method for your BST class. The unit test
is found in the file test_binary_trees.py and the function is called test_bst_remove.
There is an example unit test for Problem 3, your insert method, to help you structure your
unit test.

AVL Trees

The advantage of a BST is that it organizes its data so that values can be located, inserted, or
removed in O(log n) time. However, this efficiency is dependent on the balance of the tree. In a
well-balanced tree, the number of descendants in the left and right subtrees of each node is about the
same. An unbalanced tree has some branches with many more nodes than others. Finding a node
at the end of a long branch is closer to O(n) than O(log n). This is a common problem; inserting
ordered data, for example, results in a “linear” tree, since new nodes always become the right child
of the previously inserted node (see Figure 1.11). The resulting structure is essentially a linked list
without a tail attribute.

An Adelson-Velsky Landis tree (AVL) is a BST that prevents any one branch from getting longer
than the others by recursively “balancing” the branches as nodes are added or removed. Insertion
and removal thus become more expensive, but the tree is guaranteed to retain its O(log n) search
efficiency. The AVL’s balancing algorithm is beyond the scope of this lab, but the Volume 2 text
includes details and exercises on the algorithm.
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1

2

3

4

5

6

root

4

2

1 3

5

6

root

Figure 1.11: On the left, the unbalanced BST resulting from inserting 1, 2, 3, 4, 5, and 6, in that
order. On the left, the balanced AVL tree that results from the same insertion. After each insertion,
the AVL tree rebalances if necessary.

Problem 5. Write a function to compare the build and search times of the DoublyLinkedList
from Problem 1, the BST from Problems 3 and 4, and the AVL provided in the Additional

Materials section. Begin by reading the file english.txt, storing the contents of each line in a
list. For n = 23, 24, . . . , 210, repeat the following experiment.

1. Get a subset of n random items from the data set.
(Hint: use a function from the random or np.random modules.)

2. Time (separately) how long it takes to load a new DoublyLinkedList, a BST, and an
AVL with the n items. (Load your DoublyLinkedList by inserting each new value at the
head.)

3. Choose 5 random items from the subset, and time how long it takes to find all 5 items
in each data structure. Use the find() method for the trees, but to avoid exceeding the
maximum recursion depth, use the provided iterative_find() method from Problem 2
to search the DoublyLinkedList.

Report your findings in a single figure with two subplots: one for build times, and one for search
times. Use log scales where appropriate.
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Additional Material

Possible Improvements to the BST Class

The following are a few ideas for expanding the functionality of the BST class.

1. Add a keyword argument to the constructor so that if an iterable is provided, each element of
the iterable is immediately added to the tree. This makes it possible to cast other iterables as
a BST the same way that an iterable can be cast as one of Python’s standard data structures.

2. Add an attribute that keeps track of the number of items in the tree. Use this attribute to
implement the __len__() magic method.

3. Add a method for translating the BST into a sorted Python list.
(Hint: examine the provided __str__() method carefully.)

4. Add methods min() and max() that return the smallest or largest value in the tree, respectively.
Consider adding head and tail attributes that point to the minimal and maximal elements;
this would make inserting new minima and maxima O(1).

Other Kinds of Binary Trees

In addition to the AVL tree, there are many other variations on the binary search tree, each with its
own advantages and disadvantages. Consider writing classes for the following structures.

1. A B-tree is a tree whose nodes can contain more than one piece of data and point to more than
one other node. See the Volume 2 text for details.

2. The nodes of a red-black tree are labeled either red or black. The tree satisfies the following
rules to maintain a balanced structure.

(a) Every leaf node is black.

(b) Red nodes only have black children.

(c) Every (directed) path from a node to any of its descendent leaf nodes contains the same
number of black nodes.

When a node is added that violates one of these constraints, the tree is rebalanced and recolored.

3. A Splay Tree includes an additional operation, called splaying, that makes a specified node the
root of the tree. Splaying several nodes of interest makes them easier to access because they
are placed close to the root.

4. A heap is similar to a BST but uses a different binary sorting rule: the value of every parent
node is greater than each of the values of its children. This data structure is particularly useful
for sorting algorithms; see the Volume 2 text for more details.

Additional Code: Tree Visualization

The following methods may be helpful for visualizing instances of the BST and AVL classes. Note
that the draw() method uses NetworkX’s graphviz_layout, which requires the pygraphviz module
(install it with pip install pygraphviz).

https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
https://en.wikipedia.org/wiki/Splay_tree
https://en.wikipedia.org/wiki/Heap_(data_structure)
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import networkx as nx
from matplotlib import pyplot as plt
from networkx.drawing.nx_agraph import graphviz_layout

class BST:
# ...
def __str__(self):

"""String representation: a hierarchical view of the BST.

Example: (3)
/ \ '[3] The nodes of the BST are printed

(2) (5) [2, 5] by depth levels. Edges and empty
/ / \ [1, 4, 6]' nodes are not printed.

(1) (4) (6)
"""
if self.root is None:

return "[]"
out, current_level = [], [self.root]
while current_level:

next_level, values = [], []
for node in current_level:

values.append(node.value)
for child in [node.left, node.right]:

if child is not None:
next_level.append(child)

out.append(values)
current_level = next_level

return "\n".join([str(x) for x in out])

def draw(self):
"""Use NetworkX and Matplotlib to visualize the tree."""
if self.root is None:

return
# Build the directed graph.
G = nx.DiGraph()
G.add_node(self.root.value)
nodes = [self.root]
while nodes:

current = nodes.pop(0)
for child in [current.left, current.right]:

if child is not None:
G.add_edge(current.value, child.value)
nodes.append(child)

# Plot the graph. This requires graphviz_layout (pygraphviz).
nx.draw(G, pos=graphviz_layout(G, prog="dot"), arrows=True,

with_labels=True, node_color="C1", font_size=8)
plt.show()
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Additional Code: AVL Tree

Use the following class for Problem 5. Note that it inherits from the BST class, so its functionality is
dependent on the insert() method from Problem 3. Note that the remove() method is disabled,
though it is possible for an AVL tree to rebalance itself after removing a node.

class AVL(BST):
"""Adelson-Velsky Landis binary search tree data structure class.
Rebalances after insertion when needed.
"""
def insert(self, data):

"""Insert a node containing the data into the tree, then rebalance."""
BST.insert(self, data) # Insert the data like usual.
n = self.find(data)
while n: # Rebalance from the bottom up.

n = self._rebalance(n).prev

def remove(*args, **kwargs):
"""Disable remove() to keep the tree in balance."""
raise NotImplementedError("remove() is disabled for this class")

def _rebalance(self,n):
"""Rebalance the subtree starting at the specified node."""
balance = AVL._balance_factor(n)
if balance == -2: # Left heavy

if AVL._height(n.left.left) > AVL._height(n.left.right):
n = self._rotate_left_left(n) # Left Left

else:
n = self._rotate_left_right(n) # Left Right

elif balance == 2: # Right heavy
if AVL._height(n.right.right) > AVL._height(n.right.left):

n = self._rotate_right_right(n) # Right Right
else:

n = self._rotate_right_left(n) # Right Left
return n

@staticmethod
def _height(current):

"""Calculate the height of a given node by descending recursively until
there are no further child nodes. Return the number of children in the
longest chain down.
"""
if current is None: # Base case: the end of a branch.

return -1 # Otherwise, descend down both branches.
return 1 + max(AVL._height(current.right), AVL._height(current.left))

@staticmethod
def _balance_factor(n):

return AVL._height(n.right) - AVL._height(n.left)
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def _rotate_left_left(self, n):
temp = n.left
n.left = temp.right
if temp.right:

temp.right.prev = n
temp.right = n
temp.prev = n.prev
n.prev = temp
if temp.prev:

if temp.prev.value > temp.value:
temp.prev.left = temp

else:
temp.prev.right = temp

if n is self.root:
self.root = temp

return temp

def _rotate_right_right(self, n):
temp = n.right
n.right = temp.left
if temp.left:

temp.left.prev = n
temp.left = n
temp.prev = n.prev
n.prev = temp
if temp.prev:

if temp.prev.value > temp.value:
temp.prev.left = temp

else:
temp.prev.right = temp

if n is self.root:
self.root = temp

return temp

def _rotate_left_right(self, n):
temp1 = n.left
temp2 = temp1.right
temp1.right = temp2.left
if temp2.left:

temp2.left.prev = temp1
temp2.prev = n
temp2.left = temp1
temp1.prev = temp2
n.left = temp2
return self._rotate_left_left(n)

def _rotate_right_left(self, n):
temp1 = n.right
temp2 = temp1.left
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temp1.left = temp2.right
if temp2.right:

temp2.right.prev = temp1
temp2.prev = n
temp2.right = temp1
temp1.prev = temp2
n.right = temp2
return self._rotate_right_right(n)



2 Nearest Neighbor
Search

Lab Objective: The nearest neighbor problem is an optimization problem that arises in applications
such as computer vision, internet marketing, and data compression. The problem can be solved
efficiently with a k-d tree, a generalization of the binary search tree. In this lab we implement a k-d
tree, use it to solve the nearest neighbor problem, then use that solution as the basis of an elementary
machine learning algorithm.

The Nearest Neighbor Problem
Let X ⊂ Rk be a collection of data, called the training set, and let z ∈ Rk, called the target. The
nearest neighbor search problem is determining the point x∗ ∈ X that is “closest” to z.

For example, suppose you move into a new city with several post offices. Since your time is
valuable, you wish to know which post office is closest to your home. The set X could be addresses
or latitude and longitude data for each post office in the city; z would be the data that represents
your new home. The task is to find the closest post office in x ∈ X to your home z.

Metrics and Distance

Solving the nearest neighbor problem requires a definition for distance between z and elements of X.
In Rk, distance is typically defined by the Euclidean metric.

d(x, z) = ∥x− z∥ =

√√√√ k∑
i=1

(xi − zi)2 (2.1)

Here ∥ · ∥ is the standard Euclidean norm, which computes vector length. In other words, d(x, z) is
the length of the straight line from x to z. With this notation, the nearest neighbor search problem
can be written as follows.

x∗ = argmin
x∈X

d(x, z) d∗ = min
x∈X

d(x, z) (2.2)

NumPy and SciPy implement the Euclidean norm (and other norms) in linalg.norm(). This
function accepts vectors or matrices. Use the axis argument to compute the norm along the rows
or columns of a matrix: axis=0 computes the norm of each column, and axis=1 computes the norm
of each row (see the NumPy Visual Guide).

21
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>>> import numpy as np
>>> from scipy import linalg as la

>>> x0 = np.array([1, 2, 3])
>>> x1 = np.array([6, 5, 4])

# Calculate the length of the vectors x0 and x1 using the Euclidean norm.
>>> la.norm(x0)
3.7416573867739413
>>> la.norm(x1)
8.7749643873921226

# Calculate the distance between x0 and x1 using the Euclidean metric.
>>> la.norm(x0 - x1)
5.9160797830996161

>>> A = np.array([[1, 2, 3], # or A = np.vstack((x0,x1)).
... [6, 5, 4]])
>>> la.norm(A, axis=0) # Calculate the norm of each column of A.
array([ 6.08276253, 5.38516481, 5. ])
>>> la.norm(A, axis=1) # Calculate the norm of each row of A.
array([ 3.74165739, 8.77496439]) # This is ||x0|| and ||x1||.

Exhaustive Search

Consider again the post office example. One way to find out which post office is closest is to drive
from home to each post office, measuring the distance traveled in each trip. That is, we solve (2.2) by
computing ∥x− z∥ for every point x ∈ X. This strategy is called a brute force or exhaustive search.

Problem 1. Write a function that accepts a m × k NumPy array X (the training set) and a
1-dimensional NumPy array z with k entries (the target). Each of the m rows of X represents
a point in Rk that is an element of the training set.

Solve (2.2) with an exhaustive search. Return the nearest neighbor x∗ and its Euclidean
distance d∗ from the target z.
(Hint: use array broadcasting and the axis argument to avoid using a loop.)

The complexity of an exhaustive search for X ⊂ Rk with m points is O(km), since (2.1) is
O(k) and there are m norms to compute. This method works, but it is only feasible for relatively
small training sets. Solving the problem with greater efficiency requires the use of a specialized data
structure.

K-D Trees
A k-d tree is a generalized binary search tree where each node in the tree contains k-dimensional
data. Just as a BST makes searching easy in R, a k-d tree provides a way to efficiently search Rk.

https://en.wikipedia.org/wiki/K-d_tree
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A BST creates a partition of R: if a node contains the value x, all of the nodes in its left subtree
contain values that are less than x, and the nodes of its right subtree have values that are greater
than x. Similarly, a k-d tree partitions Rk. Each node is assigned a pivot value i ∈ {0, 1, . . . , k − 1}
corresponding to the depth of the node: the root has i = 0, its children have i = 1, their children
have i = 2, and so on. If a node has i = k − 1, its children have i = 0, their children have i = 1,
and so on. The tree is constructed such that for a node containing x = [x0, x1, . . . , xk−1]

T ∈ Rk, if a
node in the left subtree contains y, then yi < xi. Conversely, if a node in the right subtree contains
z, then xi ≤ zi. See Figure 2.1 for an example where k = 3.

[3, 1, 4]

[1, 2, 7]

[2, 0, 3] [2, 4, 5]

[1, 4, 3] [0, 5, 7]

[4, 3, 5]

[6, 1, 4]

[5, 2, 5]

pivot=0

pivot=1

pivot=2

pivot=0

Figure 2.1: A k-d tree with k = 3. The root [3, 1, 4] has an pivot of 0, so [1, 2, 7] is to the left of the
root because 1 < 3, and [4, 3, 5] is to the right since 3 ≤ 4. Similarly, the node [2, 4, 5] has an pivot
of 2, so [1, 4, 3] is to its left since 4 < 5 and [0, 5, 7] is to its right because 5 ≤ 7. The nodes that are
furthest from the root have an pivot of 0 because their parents have an pivot of 2 = k − 1.

Problem 2. Write a KDTNode class whose constructor accepts a single parameter x ∈ Rk. If x
is not a NumPy array (of type np.ndarray), raise a TypeError. Save x as an attribute called
value, and initialize attributes left, right, and pivot as None. The pivot will be assigned
when the node is inserted into the tree, and left and right will refer to child nodes.

Unit Test

The file test_nearest_neighbor.py contains some prewritten unit tests for Problem 3. You
need to write at least one unit test for Problem 2 which will be graded.
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[3, 1, 4]

[1, 2, 7]

[2, 0, 3] [2, 4, 5]

[1, 4, 3] [0, 5, 7]

[4, 3, 5]

[6, 1, 4]

[5, 2, 5]

pivot=0

pivot=1

pivot=2

pivot=0

Figure 2.2: To locate the node containing [1, 4, 3], start by comparing [1, 4, 3] to the root [3, 1, 4].
The root has an pivot of 0, so compare the first component of the data to the first component of the
root: since 1 < 3, step left. Next, [1, 4, 3] must be to the right of [1, 2, 7] because 2 ≤ 4. Similarly,
[1, 4, 3] must be to the left of [2, 4, 5] as 3 < 5.

Constructing the Tree

Locating Nodes

The find() methods for k-d trees and binary search trees are very similar. Both recursively compare
the values of a target and nodes in the tree, but in a k-d tree, these values must be compared according
to their pivot attribute. Every comparison in the recursive _step() function, implemented below,
compares the data of target and current based on the pivot attribute of current. See Figure 2.2.

class KDT:
"""A k-dimensional tree for solving the nearest neighbor problem.

Attributes:
root (KDTNode): the root node of the tree. Like all other nodes in

the tree, the root has a NumPy array of shape (k,) as its value.
k (int): the dimension of the data in the tree.

"""
def __init__(self):

"""Initialize the root and k attributes."""
self.root = None
self.k = None

def find(self, data):
"""Return the node containing the data. If there is no such node in
the tree, or if the tree is empty, raise a ValueError.
"""
def _step(current):

"""Recursively step through the tree until finding the node
containing the data. If there is no such node, raise a ValueError.
"""
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if current is None: # Base case 1: dead end.
raise ValueError(str(data) + " is not in the tree")

elif np.allclose(data, current.value):
return current # Base case 2: data found!

elif data[current.pivot] < current.value[current.pivot]:
return _step(current.left) # Recursively search left.

else:
return _step(current.right) # Recursively search right.

# Start the recursive search at the root of the tree.
return _step(self.root)

Inserting Nodes

To add a new node to a k-d tree, determine which existing node should be the parent of the new
node by recursively stepping down the tree as in the find() method. Next, assign the new node as
the left or right child of the parent, and set its pivot based on its parent’s pivot: if the parent’s
pivot is i, the new node’s pivot should be i+ 1, or 0 if i = k − 1.

Consider again the k-d tree in Figure 2.2. To insert [2, 3, 4], search the tree for [2, 3, 4] until
hitting an empty slot. In this case, the search steps from the root down to [1, 4, 3], which has an
pivot of 0. Then since 1 ≤ 2, the new node should be to the right of [1, 4, 3]. However, [1, 4, 3] has
no right child, so it becomes the parent of [2, 3, 4]. The pivot of the new node should therefore be
1. See Figure 2.3 for another example.

Problem 3. Write an insert() method for the KDT class that accepts a point x ∈ Rk.

1. If the tree is empty, create a new KDTNode containing x and set its pivot to 0. Assign
the root attribute to the new node and set the k attribute as the length of x. Thereafter,
raise a ValueError if data to be inserted is not in Rk.

2. If the tree is nonempty, create a new KDTNode containing x and find the existing node that
should become its parent. Determine whether the new node will be the parent’s left or
right child, then link the parent to the new node accordingly. Set the pivot of the new
node based on its parent’s pivot.
(Hint: write a recursive function like _step() to find and link the parent.)

3. Do not allow duplicates in the tree: if there is already a node in the tree containing x,
raise a ValueError.

To test your method, use the __str__() method provided in the Additional Materials section.
Try constructing the trees in Figures 2.1 and 2.3. Also check that the provided find() method
works as expected.
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[5, 5]

A B

———- []

A B

(a) Insert [5, 5] as the root. The root always has an pivot of 0, so nodes to the left of the root contain points
from A = {(x, y) ∈ R2 : x < 5}, and nodes on the right branch have points in B = {(x, y) ∈ R2 : 5 ≤ x}.

[5, 5]

[3, 2]

A B

[8, 4]

C D

———-

A

B

C

D

(b) Insert [3, 2], then [8, 4]. Since 3 < 5, [3, 2] becomes the left child of [5, 5]. Likewise, as 5 ≤ 8, [8, 4] becomes
the right child of [5, 5]. These new nodes have an pivot of 1, so they partition the space vertically: nodes to
the right of [3, 2] contain points from B = {(x, y) ∈ R2 : x < 5, 2 ≤ y}; nodes to the left of [8, 4] hold points
from C = {(x, y) ∈ R2 : 5 ≤ x, y < 8}.

[5, 5]

[3, 2]

A [2, 6]

B C

[8, 4]

D E

———-

A

B C

D

E

(c) Insert [2, 6]. The pivot cycles back to 0 since k = 2, so nodes to the left of [2, 6] have points that lie in
B = {(x, y) ∈ R2 : x < 2, 2 ≤ y} and nodes to the right store points in C = {(x, y) ∈ R2 : 2 ≤ x < 5, 2 ≤ y}.

Figure 2.3: As a k-d tree is constructed (left), it creates a partition of Rk (right) by defining separating
hyperplanes that pass through the points. The more points, the finer the partition.
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Nearest Neighbor Search with K-D Trees

Given a target z ∈ Rk and a k-d tree containing a set X ⊂ Rk of m points, the nearest neighbor
problem can be solved by traversing the tree in a manner that is similar to the find() or insert()
methods from the previous section. The advantage of this strategy over an exhaustive search is that
not every x ∈ X has to be compared to z via (2.1); the tree structure makes it possible to rule out
some elements of X without actually computing their distances to z. The complexity is O(k log(m)),
a significant improvement over the O(km) complexity of an exhaustive search.

To begin, set x∗ as the value of the root and compute d∗ = d(x∗, z). Starting at the root, step
down through the tree as if searching for the target z. At each step, determine if the value x of the
current node is closer to z than x∗. If it is, assign x∗ = x and recompute d∗ = d(x∗, z). Continue
this process until reaching a leaf node.

Next, backtrack along the search path and determine if the non-explored branch needs to be
searched. To do this, check that the sphere of radius d∗ centered at z does not intersect with the
separating hyperplane defined by the current node. That is, if the separating hyperplane is further
than d∗ from z, then no points on the other side of the hyperplane can possibly be the nearest
neighbor. See Figure 2.4 for an example and Algorithm 1 for the details of the procedure.

[5, 5]

[3, 2]

[2, 6]

[8, 4]

[7, 7]

———-

(a) Start at the root, setting x∗ = [5, 5]. The sphere of radius d∗ = d(x∗, z) centered at z intersects the
hyperplane x = 5, so (at this point) it is possible that a nearer neighbor lies to the right of the root.

[5, 5]

[3, 2]

[2, 6]

[8, 4]

[7, 7]

———-

(b) If the target z = [3, 2.75] were in the tree, it would be to the left of the root, so step left and examine
x = [3, 2]. Since d(x, z) < d(x∗, z), reassign x∗ = x and recompute d∗. Now the sphere of radius d∗ centered
at z no longer intersects the root’s hyperplane, so the nearest neighbor cannot be in the root’s right subtree.
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[5, 5]

[3, 2]

[2, 6]

[8, 4]

[7, 7]

———-

(c) Continuing the search, step right to check the point x = [2, 6]. In this case d(x, z) > d(x∗, z), meaning
x is not nearer to z than x∗. Since [2, 6] is a leaf node, retrace the search steps up the tree to check the
non-searched branches. However, the sphere around z does not intersect any splitting hyperplanes defined
by the tree, so x∗ is guaranteed to be the nearest neighbor.

Figure 2.4: Nearest neighbor search of a k-d tree with k = 2. The target is z = [3, 2.75] and the
nearest neighbor is x∗ = [3, 2] with minimal distance d∗ = 0.75. The tree structure allows the
algorithm to eliminate [8, 4] and [7, 7] from consideration without computing their distance from z.

Algorithm 1 k-d tree nearest neighbor search
1: procedure Nearest Neighbor Search(z, root)
2: procedure KDSearch(current, nearest, d∗)
3: if current is None then ▷ Base case: dead end.
4: return nearest, d∗

5: x← current.value
6: i← current.pivot
7: if d(x, z) < d∗ then ▷ Check if current is closer to z than nearest.
8: nearest ← current
9: d∗ ← d(x, z)

10: if zi < xi then ▷ Search to the left.
11: nearest, d∗ ← KDSearch(current.left, nearest, d∗)
12: if zi + d∗ ≥ xi then ▷ Search to the right if needed.
13: nearest, d∗ ← KDSearch(current.right, nearest, d∗)
14: else ▷ Search to the right.
15: nearest, d∗ ← KDSearch(current.right, nearest, d∗)
16: if zi − d∗ ≤ xi then ▷ Search to the left if needed.
17: nearest, d∗ ← KDSearch(current.left, nearest, d∗)
18: return nearest, d∗

19: node, d∗ ← KDSearch(root, root, d(root.value, z))
20: return node.value, d∗
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Problem 4. Write a method for the KDT class that accepts a target point z ∈ Rk. Use Al-
gorithm 1 to solve (2.2). Return the nearest neighbor x∗ (the actual NumPy array, not the
KDTNode) and its distance d∗ from z.

Compare your method to the exhaustive search in Problem 1 and to SciPy’s built-in
KDTree class. This structure is essentially a heavily optimized version of the KDT class. To
solve the nearest neighbor problem, initialize the tree with data, then “query” the tree with the
target point. The query() method returns a tuple of the minimum distance and the index of
the nearest neighbor in the data.

>>> from scipy.spatial import KDTree

# Initialize the tree with data (in this example, use random data).
>>> data = np.random.random((100, 5)) # 100 5-dimensional points.
>>> target = np.random.random(5)
>>> tree = KDTree(data)

# Query the tree for the nearest neighbor and its distance from 'target'.
>>> min_distance, index = tree.query(target)
>>> print(min_distance)
0.24929868807
>>> tree.data[index] # Get the actual nearest neighbor.
array([ 0.26927057, 0.03160271, 0.46830759, 0.26766863, 0.63073275])

Achtung!

There are a few caveats to using a k-d tree for the nearest neighbor search problem.

• Constructing the tree takes time. For small enough data sets, an exhaustive search may
be faster than the combined time of constructing and searching a tree. On the other hand,
once the tree is constructed, it can be used for multiple nearest-neighbor queries.

• In the worst case—when the tree is completely unbalanced—the search complexity is
O(km) instead of O(k log(m)). Fortunately, there are algorithms for constructing the
tree intelligently so that it is mostly balanced, and a random insertion order usually
results in a somewhat balanced tree.
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K-Nearest Neighbors
The nearest neighbor algorithm provides one way to solve a common machine learning problem.
In supervised learning, a training set X ⊂ D has a corresponding set of labels Y that specifies a
category for each element of X. For instance, X could contain financial data on m individuals, and
Y could be a set of m booleans indicating which individuals have filed for bankruptcy. Supervised
learning algorithms use the training data to construct a function f : D → Y that maps points to their
corresponding label. In other words, the algorithm “learns” enough about the relationship between
X and Y to intelligently label arbitrary elements of D. In the bankruptcy example, a person could
then use their own financial data to learn whether or not they look more like someone who files for
bankruptcy or someone who does not.

A k-nearest neighbors classifier uses a simple strategy to label an arbitrary z ∈ D: find the k
elements of X that are nearest to z (usually in terms of the Euclidean metric) and choose the most
common label from those k elements as the label of z. That is, the points in the k labeled points
that are most like z are allowed to “vote” on how z should be labeled. See Figure 2.5.

Figure 2.5: To classify the center node, determine its k-nearest neighbors and pick the most common
label of the neighbors. If k = 3, the k nearest points are two blues and a yellow, so the center node
is labeled blue. For k = 5, the k nearest points consists of two blues and three yellows, so the center
node is labeled yellow.

Achtung!

The k in k-d tree refers to the dimension of the data housed in the tree, but the k in k-nearest
neighbors refers to the number of neighbors to use in the voting scheme. Unfortunately,
both names are standard.

Problem 5. Write a KNeighborsClassifier class with the following methods.

1. The constructor should accept an integer n_neighbors, the number of neighbors to include
in the vote (the k in k-nearest neighbors). Save this value as an attribute.

2. fit(): accept an m× k NumPy array X (the training set) and a 1-dimensional NumPy
array y with m entries (the training labels). As in Problems 1 and 4, each of the m rows
of X represents a point in Rk. Here yi is the label corresponding to row i of X.

Load a SciPy KDTree with the data in X. Save the tree and the labels as attributes.
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3. predict(): accept a 1-dimensional NumPy array z with k entries. Query the KDTree for
the n_neighbors elements of X that are nearest to z and return the most common label
of those neighbors. If there is a tie for the most common label (such as if k = 2 in Figure
2.5), choose the alphanumerically smallest label.
(Hint: use scipy.stats.mode(). The default behavior splits ties correctly.)

To get several nearest neighbors from the tree, specify k in KDTree.query().

>>> data = np.random.random((100, 5)) # 100 5-dimensional points.
>>> target = np.random.random(5)
>>> tree = KDTree(data)

# Query the tree for the 3 nearest neighbors.
>>> distances, indices = tree.query(target, k=3)
>>> print(indices)
[26 30 32]

Note

The format of the KNeighborsClassifier in Problem 5 conforms to the style of scikit-learn
(sklearn), a large machine learning library in Python. In fact, scikit-learn has a class called
sklearn.neighbors.KNeighborsClassifier that is a more robust version of the class from
Problem 5. See http://scikit-learn.org/stable/modules/neighbors.html for more tools
from scikit-learn for solving the nearest neighbor problem in the context of machine learning.

Handwriting Recognition

Computer vision is a challenging area of artificial intelligence that focuses on autonomously interpret-
ing images. Perhaps the simplest computer vision problem is that of translating images into text.
Roughly speaking, computers store grayscale images as M × N arrays of pixel brightness values:
0 corresponds to black, and 255 to white. Flattening out such an array yields a vector in RMN .
Given some images of characters with labels (assigned by humans), a k-nearest neighbor classifier
can intelligently decide what character the image represents.

Problem 6. The file mnist_subset.npz contains part of the MNIST dataset,a a collection of
28× 28 images of handwritten digits and their labels. The data is split into four parts.

• X_train: A 3000 × 728 matrix, the training set. Each of the 3000 rows is a flattened
28× 28 image to be used in training the classifier.

• y_train: A 1-dimensional NumPy array with 3000 entries. The entries are integers from
0 to 9, the labels corresponding to the images in X_train.

• X_test: A 500× 728 matrix of 500 images to classify.

http://scikit-learn.org/stable/modules/neighbors.html


32 Lab 2. Nearest Neighbor Search

• y_test: A 1-dimensional NumPy array with 500 entries. These are the labels correspond-
ing to X_test, the “right answers” that the classifier will try to guess.

The following code uses np.load() to extract the data.

>>> data = np.load("mnist_subset.npz")
>>> X_train = data["X_train"].astype(np.float64) # Training data
>>> y_train = data["y_train"] # Training labels
>>> X_test = data["X_test"].astype(np.float64) # Test data
>>> y_test = data["y_test"] # Test labels

To visualize one of the images, reshape it as a 28× 28 array and use plt.imshow().

>>> from matplotlib import pyplot as plt
>>> plt.imshow(X_test[0].reshape((28, 28)), cmap="gray")
>>> plt.show()

Write a function than accepts an integer n_neighbors. Load a classifier from Problem 5
with the data X_train and the corresponding labels y_train. Use the classifier to predict the
labels of each image in X_test. Return the classification accuracy, the percentage of predictions
that match y_test. The accuracy should be at least 90% using 4 nearest neighbors.

aSee http://yann.lecun.com/exdb/mnist/.

Note

The k-nearest neighbors algorithm is not the best machine learning algorithm for this problem,
but it is a good starting point because of its simplicity. In fact, k-nearest neighbors is often
used as a baseline to compare against more complicated machine learning techniques.

http://yann.lecun.com/exdb/mnist/
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Additional Material
Ball Trees

The nearest neighbor problem can also be solved efficiently with a ball tree, another space-partitioning
data structure. Instead of separating Rk by hyperplanes, a ball tree uses nested hyperspheres to split
up the space. Since the partitioning scheme is different, a nearest neighbor search through a ball
tree is more efficient than the k-d tree search for some data sets. See https://en.wikipedia.org/
wiki/Ball_tree for more details.

The Curse of Dimensionality

The curse of dimensionality refers to a phenomena that occurs when dealing with high-dimensional
data: the computational cost of an algorithm increases much more rapidly as the dimension increases
than it does when the number of points increases. This problem occurs in many other areas involving
multi-dimensional data, but it is quite apparent in a nearest neighbor search.

25 27 29 211 213 215

m
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10 3

10 2

10 1
Construction Time
NN Search Time

(a) Fixing k and increasing m leads to consistent
growth in execution time.

25 27 29 211 213 215

k

10 4

10 3

10 2

10 1
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NN Search Time

(b) For fixed m, the times takes a sharp upturn
around k = 29 relative to previous growth rates.

Figure 2.6: Construction and nearest neighbor search times for a k-d tree with a m× k training set.

See https://en.wikipedia.org/wiki/Curse_of_dimensionality for more examples. One
way to avoid the curse of dimensionality is via dimension reduction, a process usually based on the
singular value decomposition (SVD) that projects data into a lower-dimensional space.

Tiebreaker Strategies

As mentioned in Problem 5, the majority voting scheme in the k-nearest neighbor algorithm can
often result in a tie. Breaking the tie intelligently is a science unto itself, but here are a few common
strategies.

1. For binary classification (meaning there are only two labels), choose an odd k to avoid a tie in
the first place.

2. Redo the search with k − 1 neighbors, repeating as needed until k = 1.

3. Choose the label that appears more frequently in the test set.

4. Choose randomly among the labels that are tied for most common.

https://en.wikipedia.org/wiki/Ball_tree
https://en.wikipedia.org/wiki/Ball_tree
https://en.wikipedia.org/wiki/Curse_of_dimensionality
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Additional Code

The following code creates a string representation for the KDT class. Use this to test Problem 3.

class KDT:
# ...
def __str__(self):

"""String representation: a hierarchical list of nodes and their axes.

Example: 'KDT(k=2)
[5,5] [5 5] pivot = 0
/ \ [3 2] pivot = 1

[3,2] [8,4] [8 4] pivot = 1
\ \ [2 6] pivot = 0
[2,6] [7,5] [7 5] pivot = 0'

"""
if self.root is None:

return "Empty KDT"
nodes, strs = [self.root], []
while nodes:

current = nodes.pop(0)
strs.append("{}\tpivot = {}".format(current.value, current.pivot))
for child in [current.left, current.right]:

if child:
nodes.append(child)

return "KDT(k={})\n".format(self.k) + "\n".join(strs)



3 Breadth-first Search

Lab Objective: Shortest path problems are an important part of graph theory and network
analysis. Applications include finding the fastest way to drive between two points on a map, network
routing, genealogy, automated circuit layout, and a variety of other important problems. In this lab we
represent graphs as adjacency dictionaries, implement a shortest path algorithm based on a breadth-
first search, and use the NetworkX package to solve a shortest path problem on a large network of
movies and actors.

Adjacency Dictionaries
Computers can represent mathematical graphs in various ways. Graphs with very specific structures
are often stored with specialized data structures, such as binary search trees. More general graphs
without structural constraints are usually represented with an adjacency matrix, where each row
and column of the matrix corresponds to a node in the graph, and the entries indicate connections
between nodes. Adjacency matrices are usually implemented in a sparse matrix format since only
the entries corresponding to node connections are nonzero.

Another common graph data structure is an adjacency dictionary, a dictionary with a key for
each node in the graph. The dictionary values are the set of nodes connected to the key node.
Adjacency dictionaries automatically gain the advantages of a sparse matrix format since they only
store information on the actual node connections (the nonzero entries of the adjacency matrix).

A

B C

D

A B C D


A 0 1 0 1

B 1 0 0 1

C 0 0 0 1

D 1 1 1 0

{A : {B, D},
B : {A, D},
C : {D},
D : {A, B, C}}

Figure 3.1: A simple unweighted graph (left), its adjacency matrix (middle), and its adjacency
dictionary (right). The graph is undirected, so the adjacency matrix is symmetric. Note that the
adjacency dictionary also encodes this behavior: since A and B are connected, B is in the set of
values corresponding to the key A, and A is in the set of values corresponding to the key B.

35
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Hash-based Data Structures

A Python set is an unordered data type with no repeated elements. The set class is implemented
as a hash table, meaning it uses hash values—integers that uniquely identify an object—to organize
its elements. Roughly speaking, in order to access, add, or remove an object x to a set, Python
computes the hash value of x, and that value indicates where x is (or should be) in memory. In
other words, there is only one place in memory that x could be; if it isn’t in that place, it isn’t in
the set. This implementation results in O(1) lookup, insertion, and removal operations, an enormous
improvement over the O(n) search time for lists and the O(log n) search time for sorted structures
like binary search trees. It is also why set elements are unique.

Method Description
add() Add an element to the set. This has no effect if the element is already present.

remove() Remove an element from the set, raising
a KeyError if it is not a member of the set.

discard() Remove an element from the set without raising
an exception if it is not a member of the set.

pop() Remove and return an arbitrary set element.
union() Return all elements that are in either set as a new set.

intersection() Return all elements that are in both sets as a new set.
update() Add all elements of another set in-place.

Table 3.1: Basic methods of the set class.

# Initialize a set. Note that repeats are not added.
>>> animals = {"cow", "cat", "dog", "mouse", "cow"}
>>> print(animals)
{'cow', 'dog', 'mouse', 'cat'}

>>> animals.add("horse") # Add an object to the set.
>>> "horse" in animals
True
>>> animals.remove("emu") # Attempt to delete an object from the set,
KeyError: 'emu' # resulting in an exception.
>>> animals.pop() # Delete and return a random object from the set.
'mouse'
>>> print(animals)
{'cat', 'horse', 'dog', 'cow'}

# Add all of the elements of another set to this one.
>>> animals.update({"dog", "velociraptor"})
>>> print(animals)
{'velociraptor', 'cat', 'horse', 'dog', 'cow'}

# Intersect this set with another one.
>>> animals.intersection({"cat", "cow", "cheetah"})
{'cat', 'cow'}
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Sets are extremely fast, but they do not support indexing because the elements are unordered.
A Python dict, on the other hand, is a hash-based data structure that stores key-value pairs: the
keys of a dictionary act like a set (unique and unordered, with O(1) lookup), but each key corresponds
to another object, called its value. The keys index the dictionary and allow O(1) lookup of the values.

Method Description
keys() Return a set-like iterator for the dictionary’s keys.

values() Return a set-like iterator for the dictionary’s values.
items() Return an iterator for the dictionary’s key-value pairs.

pop() Remove a specified key and return the corresponding value,
raising a KeyError if the key is not a member of the dictionary.

update() Add or overwrite key-value pairs in-place with those from another dictionary.

Table 3.2: Basic methods of the dict class.

# Initialize a dictionary.
>>> grades = {"business": "A", "math": "A+", "visual arts": "B"}
>>> grades["math"]
'A+' # The key "math" maps to the value "A+".

# Add a "science" key with corresponding value "A".
>>> grades["science"] = "A"

# Remove the "business" key.
>>> grades.pop("business")
'A'
>>> print(grades)
{'math': 'A+', 'visual arts': 'B', 'science': 'A'}

# Display the keys, values, and items.
>>> list(grades.keys()), list(grades.values())
(['math', 'visual arts', 'science'], ['A+', 'B', 'A'])
>>> for key, value in grades.items():
... print(key, "=>", value)
...
math => A+
visual arts => B
science => A

# Add key-value pairs from another dictionary.
>>> grades.update({"cooking":"A+", "math": "C"})
>>> print(grades)
{'math': 'C', 'visual arts': 'B', 'science': 'A', 'cooking': 'A+'}

Dictionaries are ideal for storing values that need to be accessed often and for representing
one-to-one or one-to-many relationships. Thus, the dict class is a natural choice for implementing
adjacency dictionaries. For example, the following code defines the adjacency dictionary for the
graph in Figure 3.1. Note that the dictionary values are sets.



38 Lab 3. Breadth-first Search

>>> adjacency = {'A': {'B', 'D'},
'B': {'A', 'D'},
'C': {'D'},
'D': {'A', 'B', 'C'}}

# The nodes of the graph are the dictionary keys.
>>> set(adjacency.keys())
{'B', 'D', 'A', 'C'}

# The values are the nodes that the key node is adjacent to.
>>> adjacency['A']
{'B', 'D'} # A is adjacent to B and D.
>>> 'C' in adjacency['B']
False # B and C are not adjacent.
>>> 'C' in adjacency['D']
True # C and D are adjacent.

Achtung!

Elements of a set and keys of a dict must be hashable. Mutable objects—lists, sets and
dictionaries—are not hashable, so they are not allowed as set elements or dictionary keys.
Thus, in order to represent a graph with an adjacency dictionary, each of the node labels
should be a string, a number, or some other hashable type.

Problem 1. Consider the following Graph class.

class Graph:
"""A graph object, stored as an adjacency dictionary. Each node in the
graph is a key in the dictionary. The value of each key is a set of
the corresponding node's neighbors.

Attributes:
d (dict): the adjacency dictionary of the graph.

"""
def __init__(self, adjacency={}):

"""Store the adjacency dictionary as a class attribute"""
self.d = dict(adjacency)

def __str__(self):
"""String representation: a view of the adjacency dictionary."""
return str(self.d)

Add the following methods to this class.
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1. add_node(): Add a node (with no initial edges) if it is not already present.
(Hint: use set() to create an empty set.)

2. add_edge(): Add an edge between two nodes. Add the nodes to the graph if they are
not already present.

3. remove_node(): Remove a node, including all edges adjacent to it. This method should
raise a KeyError if the node is not in the graph.

4. remove_edge(): Remove the edge between two nodes. This method should raise a
KeyError if either node is not in the graph, or if there is no edge between the nodes.

Breadth-first Search
Many common problems that arise in graph theory require finding the shortest path between two
nodes in a graph. For some highly structured graphs, such as binary search trees, this is a fairly
straightforward problem (in the case of a tree, the shortest path is also the only path). Finding a
path between nodes in a graph of arbitrary structure, however, requires a careful and methodical
approach. The two most common graph search algorithms are depth-first search (DFS) and breadth-
first search (BFS). The breadth-first strategy is almost always better at finding shortest paths than
the depth-first strategy,1 though a DFS can be useful for path problems in certain graphs.

To traverse a graph with a BFS, choose a node to start at, called the source node. First, visit
each of the source node’s neighbors. Next, visit each of the source node’s neighbors’ neighbors. Then
visit each of their neighbors, continuing the process until all nodes have been visited. This strategy
explores all of the nodes closest to the source node before incrementally moving “deeper” (further
from the source node) into the tree.

The implementation of a BFS requires the following data structures to keep track of which
nodes have already been visited and the order in which to visit nodes in future steps.

• A list V : The nodes that have been visited, in visitation order.

• A queue Q: The nodes to be visited, in the order that they were discovered. Recall that a
queue is a limited-access list where data is inserted to one end, but removed from the other
(first-in, first-out).

• A set M : The nodes that have been visited, or that are marked to be visited. This is the
union of the nodes in V and Q.

To begin the search, add the source node to Q and M . Then, until Q is empty, repeat the following:

1. Pop a node off of Q; call it the current node.

2. “Visit” the current node by appending it to V .

3. Add the neighbors of the current node that are not in M to Q and M .

The “that are not in M ” clause of step 3 prevents nodes from being added to Q more than once. Note
that step 3 could be replaced with “Add the neighbors of the current node that are not in V ∪Q to
Q.” However, lookup in M (a set) is much faster than lookup in V and Q (arrays or linked lists), so
including M greatly speeds up the algorithm.

1See https://xkcd.com/761/.

https://xkcd.com/761/
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Note

The first-in, first-out (FIFO) structure of Q enforces the “breadth-first” nature of the BFS:
nodes that are marked first are visited first. Using a a last-in, first-out (LIFO) stack for Q
changes the search to a DFS: the next node to visit is the one that was marked last.
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B C

D
V A B C D
Q A
M A

A

B C

D
V A B C D
Q B D
M A B D

A

B C

D
V A B C D
Q D
M A B D

A

B C

D
V A B D
Q C
M A B D C

Figure 3.2: To start a BFS from node A to node C, put A in the visit queue Q and mark it by
adding it to the set M . Pop A off the queue and “visit” it by adding A to the visited list V and
the neighboring nodes B and D to Q. Then visit B, but do not add anything to Q because all of
the neighbors of B are already marked. Finally, visit D, at which point the target node C is located
because it is adjacent to D.
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Problem 2. Write a method for the Graph class that accepts a source node. Traverse the
graph with a breadth-first search until all nodes have been visited. Return the list of nodes in
the order that they were visited. If the source node is not in the graph, raise a KeyError.
(Hint: for Q, use a deque from the collections module, and make sure that nodes are added
to one end but popped off of the other.)

Shortest Paths via BFS

Consider the problem of locating a path between two nodes with a BFS. The nodes that are directly
connected to the source node are all visited before any other nodes; more generally, the nodes that
are n nodes away from the source node are all visited before nodes that are n+1 or more nodes from
the source point. Therefore, the search path taken to discover to the target with a BFS must be the
shortest path from the source node to the target node.

Examine again the graph in Figures 3.1 and 3.2. The shortest path from A to C starts at A,
goes to D, and ends at C. During a BFS originating at A, D is placed on the visit queue because it
is one of A’s neighbors, and C is placed on the queue because it is one of D’s neighbors. Given that
A was the node that visited D, and that D was the node that visited C, the shortest path from A to
C can be constructed by stepping backward along the search path.

To implement this idea, initialize a dictionary before starting the BFS. When a node is marked
and added to the visit queue, add a key-value pair mapping the visited node to the visiting node
(for example, B 7→ A means B was marked while visiting A). When the target node is found, step
through the dictionary until arriving at the source node, recording each step.

A

B C

D

Figure 3.3: In the BFS from Figure 3.2, nodes B and D were marked while visiting node A, and node
C was marked while visiting node D (this is same as reversing the red arrows in Figure 3.2). Thus
the “visit path” from C to A is C→ D→ A, so the shortest path from A to C is [A, D, C].

Problem 3. Add a method to the Graph class that accepts source and target nodes. Begin a
BFS at the source node and proceed until the target is found. Return a list containing the node
values in the shortest path from the source to the target (including the endpoints). If either of
the input nodes are not in the graph, raise a KeyError.

Shortest Paths via NetworkX
NetworkX is a Python package for creating, manipulating, and exploring graphs. Its Graph object
represents a graph with an adjacency dictionary, similar to the class from Problems 1–3, and has
many methods for interpreting information about the graph and its structure. As before, the nodes
must be hashable (a number, string, or another immutable object).
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Method Description
add_node() Add a single node to the graph.

add_nodes_from() Add a list of nodes to the graph.
add_edge() Add an edge between two nodes.

add_edges_from() Add a list of edges to the graph.

Table 3.3: Methods of the nx.Graph class for adding nodes and edges.

>>> import networkx as nx

# Initialize a NetworkX graph from an adjacency dictionary.
>>> G = nx.Graph({'A': {'B', 'D'},

'B': {'A', 'D'},
'C': {'D'},
'D': {'A', 'B', 'C'}})

>>> print(G.nodes()) # Print the nodes.
['A', 'B', 'C', 'D']
>>> print(G.edges()) # Print the edges as tuples.
[('A', 'D'), ('A', 'B'), ('B', 'D'), ('C', 'D')]

>>> G.add_node('E') # Add a new node.
>>> G.add_edge('A', 'F') # Add an edge, which also adds a new node 'F'.
>>> G.add_edges_from([('A', 'C'), ('F', 'G')]) # Add several edges at once.

>>> set(G['A']) # Get the set of nodes neighboring node 'A'.
{'B', 'C', 'D', 'F'}

The Kevin Bacon Problem

The vintage parlor game Six Degrees of Kevin Bacon is played by naming an actor, then trying to
find the shortest chain of actors that have worked with each other leading to Kevin Bacon. For
example, Samuel L. Jackson was in the film Pulp Fiction (1994) with Frank Whaley, who was in
JFK (1991) with Kevin Bacon. In other words, the goal of the game is to solve a shortest path
problem on a graph that connects actors to the movies that they have been in.

Problem 4. The file movie_data.txt contains IMDb data for about 137,000 movies. Each
line of the file represents one movie: the title is listed first, then the cast members, with entries
separated by a / character. For example, the line for The Dark Knight (2008) starts with

The Dark Knight (2008)/Christian Bale/Heath Ledger/Aaron Eckhart/...

Any / characters in movie titles have been replaced with the vertical pipe character | (for
example, Frost|Nixon (2008)).

http://oracleofbacon.org/help.php
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Write a class whose constructor accepts the name of a file to read. Initialize a set for movie
titles, a set for actor names, and an empty NetworkX Graph, and store them as attributes. Read
the file line by line, adding the title to the set of movies and the cast members to the set of
actors. Add an edge to the graph between the movie and each cast member.
(Hint: Use the split() method for strings to parse each line.)

It should take no more than 20 seconds to construct the entire graph. Check that there
are 137,018 movies and 930,717 actors. Compare parts of your graph to Figure 3.4.

Kevin
Bacon

Jim
Cummings

Toby
Jones

Jennifer
Lawrence

James
McAvoy

Balto
(1995)

Christopher
Robin (2018)

Frost/Nixon
(2008)

The Hunger
Games (2012)

X-Men: First
Class (2011)

X-Men:
Apocalypse

(2016)

Footloose
(1984)

Figure 3.4: A subset of the graph in movie_data.txt. Each of these actors have a Bacon number of
1 because they have all been in a movie with Kevin Bacon. Every actor in The Hunger Games has
a Bacon number of at most 2 because of the paths through Jennifer Lawrence or Toby Jones.

Note

The movie/actor graph of Problem 4 and Figure 3.4 has an interesting property: actors are
only directly connected to movies, and movies are only directly connected to actors. This kind
of graph is called bipartite because there are two types of nodes, and no node has an edge
connecting it to another node of its type.

Achtung!

NetworkX Graph objects can be visualized with nx.draw() (followed by plt.show()). However,
this visualization tool is only effective on relatively small graphs. In fact, graph visualization in
general remains a challenging and ongoing area of research. Because of the size of the dataset,
do not attempt to visualize the graph in Problem 4 with nx.draw().
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The Six Degrees of Kevin Bacon game poses an interesting question: can any actor be linked to
Kevin Bacon, and if so, in how many steps? The game hypothesizes, “Yes, within 6 steps” (hence the
title). More precisely, let the Bacon number of an actor be the number of steps from that actor to
Kevin Bacon, only counting actors. For example, since Samuel L. Jackson was in a film with Frank
Whaley, who was in a film with Kevin Bacon, Samuel L. Jackson has a Bacon number of 2. Actors
who have been in a movie with Kevin Bacon have a Bacon number of 1, and actors with no path to
Kevin Bacon have a Bacon number of ∞. The game asserts that the largest Bacon number is 6.

NetworkX is equipped with a variety of graph analysis tools, including a few for computing
paths between nodes (and, therefore, Bacon numbers). To compute a shortest path between nodes u
and v, nx.shortest_path() starts one BFS from u and another from v, switching off between the
two searches until they both discover a common node. This approach is called a bidirectional BFS
and is typically faster than a regular, one-sided BFS.

Function Description
has_path() Return True if there is a path between two specified nodes.

shortest_path() Return one shortest path between nodes.
shortest_path_length() Return the length of the shortest path between nodes.

all_shortest_paths() Yield all shortest paths between nodes.

Table 3.4: NetworkX functions for path problems. Each accepts a Graph, then a pair of nodes.

>>> G = nx.Graph({'A': {'B', 'D'},
'B': {'A', 'D'},
'C': {'D'},
'D': {'A', 'B', 'C'}})

# Compute the shortest path between 'A' and 'D'.
>>> nx.has_path(G, 'A', 'C')
True
>>> nx.shortest_path(G, 'A', 'C')
['A', 'D', 'C']
>>> nx.shortest_path_length(G, 'A', 'C')
2

# Compute all possible shortest paths between two nodes.
>>> G.add_edge('B', 'C')
>>> list(nx.all_shortest_paths(G, 'A', 'C'))
[['A', 'D', 'C'], ['A', 'B', 'C']]

# When the second node is omitted from these functions, the shortest paths
# from the given node to EVERY node are computed and returned as a dictionary.
>>> nx.shortest_path(G, 'A')
{'A': ['A'], 'D': ['A', 'D'], 'B': ['A', 'B'], 'C': ['A', 'D', 'C']}
>>> nx.shortest_path_length(G, 'A') # Path lengths are defined by the
{'A': 0, 'D': 1, 'B': 1, 'C': 2} # number of edges, not nodes.
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Problem 5. Write a method for your class from Problem 4 that accepts two actors’ names.
Use NetworkX to compute the shortest path between the actors and the degrees of separation
between the two actors (if one of the actors is "Kevin Bacon", this is the Bacon number of the
other actor). Note that this number is different than the number of entries in the actual shortest
path list, since the movies are just intermediate steps between actors and are not counted when
calculating the degress of separation.

The idea of a Bacon number provides a few ways to analyze the connectivity of the Hollywood
network. For example, the distribution of all Bacon numbers describes how close Kevin Bacon
is to actually knowing all of the actors in Hollywood Someone with a lower average number—for
instance, the average Jackson number, for Samuel L. Jackson—is, on average, “more connected with
Hollywood” than Kevin Bacon. The actor with the lowest average number is sometimes called the
center of the Hollywood universe.

Problem 6. Write a method for your class from Problem 4 that accepts one actor’s name.
Calculate the shortest path lengths of every actor in the collection to the specified actor (not
including movies). Use plt.hist() to plot the distribution of path lengths and return the
average path length.
(Hint: Use a NetworkX function to compute all path lengths simultaneously; this is significantly
faster than calling your method from Problem 5 repeatedly. Also, use the keyword argument
bins=[i-.5 for i in range(8)] in plt.hist() to get the histogram bins to correspond to
integers nicely.)

As an aside, the prolific Paul Erdős is the Kevin Bacon equivalent in the mathematical com-
munity. Someone with an Erdős number of 2 co-authored a paper with someone who co-authored a
paper with Paul Erdős. Having an Erdős number of 1 or 2 is considered quite an achievement (see
https://xkcd.com/599/).

https://en.wikipedia.org/wiki/Erd%C5%91s_number
https://xkcd.com/599/
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Additional Material
Other Hash-based Structures

The standard library has a few specialized alternatives to regular sets and dictionaries.

• frozenset: an immutable version of the usual set class. Frozen sets cannot be altered after
creation and therefore lack methods like add(), pop(), and remove(), but they can be placed
in other sets and used as dictionary keys.

• collections.defaultdict: a dictionary with default values. For instance, defaultdict(set)
creates a dictionary that automatically uses an empty set as the value whenever a non-present
key is used for indexing. See https://docs.python.org/3/library/collections.html for
examples.

• collections.OrderedDict: a dictionary that remembers insertion order. For example, the
popitem() method returns the most recently added key-value pair.

Depth-first Search

A depth-first search (DFS) takes the opposite approach of a BFS. Instead of checking all neighbors
of a single node before moving on, it checks the first neighbor, then their first neighbor, then their
first neighbor, and so on until reaching a leaf node. The algorithm then backtracks to the previous
node and checks its second neighbor. While a DFS is rarely useful for finding shortest paths, it is a
common strategy for solving recursively structured problems, such as mazes or Sudoku puzzles.

Consider adding a keyword argument to your method from Problem 2 that specifies whether
to use a BFS (the default) or a DFS. To change from a BFS to a DFS, change the visit queue Q to
a stack. You may be able to implement the change in a single line of code.

The Center of the Hollywood Universe

Computing the center of the universe in a graph amounts to solving Problem 6 for every node in
the graph. This is computationally expensive, but since each average number is independent of the
others, the problem is a good candidate for parallel programming, which divides the computational
workload between multiple processes. Even with parallelism, however, computing the center of the
Hollywood universe may require significant computational time and resources.

Shortest Paths on Weighted Graphs

The graphs presented in this lab are unweighted, meaning all edges have the same importance. A
weighted graph assigns a weight to each edge, which can usually be thought of as the distance between
the two adjacent nodes. The shortest path problem becomes much more complicated on weighted
graphs, and requires additions to the plain BFS. The standard approach is Dijkstra’s algorithm,
which is implemented as nx.dijkstra_path(). Another approach, the Bellman-Ford algorithm, is
implemented as nx.bellman_ford_path().

https://docs.python.org/3/library/collections.html#defaultdict-examples


4 Dijkstra’s Algorithm

Lab Objective: We’ve previously seen the power of shortest path algorithms for solving network
problems (e.g. Breadth-First Search). However, many real-world problems incorporate more than just
connections between nodes. Networks will often incorporate weights between nodes, which can encode
data such as distance, cost, or time. When this is the case, BFS algorithms are often insufficient to
find the most effective (least weighted) path between nodes. In this lab, we introduce weighted graphs,
building on the Graph class from the BFS lab, discuss how Dijkstra’s algorithm can find the shortest
path on weighted graphs, and apply Dijkstra’s algorithm to a real-world dataset of bathymetry (ocean
depth) data.

Weighted Graphs
Many networks are stored as weighted graphs, which not only encode edges between nodes, but
weights on those edges. These weights can be thought of as the “cost of travel” between node X and
node Y. Weighted graphs work very similarly to unweighted graphs, and can be stored in much the
same way by using an adjacency matrix or adjacency dictionary.

The key differences between unweighted graphs and weighted graphs are that the adjacency
matrices of weighted graphs can contain values other than 1 or 0, and adjacency dictionaries encode
edges using a pair of values. This pair contains the destination node and the weight of the edge, as
shown in 4.1.

A

B C

D

1

2

3
4

A B C D


A 0 1 0 2

B 1 0 0 3

C 0 0 0 4

D 2 3 4 0

{A : {(B, 1), (D, 2)},
B : {(A, 1), (D, 3)},
C : {(D, 4)},
D : {(A, 2), (B, 3), (C, 4)}}

Figure 4.1: A simple weighted graph (left), its adjacency matrix (middle), and its adjacency dictio-
nary (right). The graph is undirected, so the adjacency matrix is symmetric. Note that the adjacency
dictionary contains node labels as keys and a set of tuples as values, which encode both edge location
and weight.
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Note

In this lab, all edge weights will be strictly positive. However, it is very possible to have
edges with negative or zero weight. In these cases, Dijkstra’s algorithm cannot generally find
the cheapest path between nodes, but other algorithms exist which can (see the Additional
Material section for more).

Directed Graphs

In addition to weighted graphs, some graphs are also directed graphs. These graphs can be weighted
or unweighted, and edges represent a one-way connection between nodes. As a result, the graph’s
adjacency matrix may not be symmetric. In these graphs, edges heading away from a node are called
outgoing edges, and edges coming into a node are called incoming edges.

A

B C

D

1

2

3
4

A B C D


A 0 1 0 2

B 0 0 0 0

C 0 0 0 4

D 0 3 0 0

{A : {(B, 1), (D, 2)},
B : {},
C : {(D, 4)},
D : {(B, 3)}}

Figure 4.2: A weighted, directed graph (left), its adjacency matrix (middle), and its adjacency
dictionary (right). Note that the adjacency matrix is not symmetric.

Problem 1. Consider the following Edge class which wraps node and weight attributes into a
single object

class Edge:
"""An edge object, which wraps the node and weight attributes into one
object, allowing for insertion/deletion from a set using just
the node attribute

Attributes:
node (str): the value for the node the edge is pointing to
weight (int): the weight of the edge

"""
def __init__(self, node, weight):

self.node = node
self.weight = weight

def __hash__(self):
"""Use only node attribute for hashing"""
return hash(self.node)
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def __eq__(self, other):
"""Use only node attribute for equality"""
if isinstance(other, Edge):

return self.node == other.node
return self.node == other

def __str__(self):
"""String representation: a tuple-like view of the node and weight←↩

"""
return f"({str(self.node)}, {str(self.weight)})"

def __repr__(self):
"""Repr is used when edges are displayed in a set"""
return f"Edge({repr(self.node)}, {repr(self.weight)})"

This allows edges to be accessed in a set with only their node attribute while still encoding
each edge’s weight.

# Create a set with an Edge object inside
>>> my_set = {Edge('A', 1)}

# Check if the edge is in the set
>>> 'A' in my_set
True

# Remove edge and check again
>>> my_set.remove('A')
>>> 'A' in my_set:
False

In the file dijkstra.py, you will be filling out the Graph class to represent weighted/directed
graphs. To do this, you will implement the following methods.

1. The constructor __init__() will take arguments adjacency and directed and store
these as attributes (self.d and self.directed, respectively). self.d is a dictionary
with node labels pointing to a set of edges originating from that node.

2. The add_node() method will take a node label n and add a node with that label (and no
initial edges) to the graph if it is not already present.

3. The add_edge() method will add a weighted edge between two nodes. If an edge is
already present, simply update the weight of that edge. Additionally, the method should
add both nodes to the graph if they are not already present.

4. The remove_node() method will remove a node along with all adjacent edges from the
graph. The method should raise a KeyError if the node is not in the graph.
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5. The remove_edge method should remove the edge between two nodes. This method
should raise a KeyError if either node is not in the graph or if there is no edge between
the nodes.

Hint: Make sure you add/remove edges only in the direction specified (from the first node to
the second) if the graph is directed.

Unit Test

In dijkstra_test.py, you will find a unit test test_graph() where you will write unit tests
for your Graph class. Be sure to add and remove nodes and edges and test both directed and
undirected graphs.

One good way to test these methods is to simply check for the presence of a node or edge
in the self.d attribute of the Graph class rather than checking for a specific ordering of items
(as dictionaries and sets are unordered).

Dijkstra’s Algorithm
When working with weighted graphs, it is common to look for the path of least weight (or cost)
between nodes. This corresponds to finding the minimum sum of weights on a path between the two
nodes. For example, when driving you often want to reach your destination as soon as possible, but
certain roads may take longer to traverse than others. Therefore, the minimum traversal may not
necessarily include the fewest number edges.

Dijkstra’s algorithm is a modification of the breadth-first search (BFS) algorithm which allows
us to find paths of minimum cost on weighted graphs. While the BFS assumes all edges are the same
weight, Dijkstra’s algorithm accounts for different edge weights.

Dijkstra’s algorithm is structured almost identically to BFS, but it keeps track of total edge
weight on the current path, updating the shortest path to any visited nodes as it progresses. Addi-
tionally, instead of a normal queue (or deque), Dijkstra’s implements a PriorityQueue to determine
node traversal order.

Priority Queue

A Priority Queue, which is the subclass of the Queue class, is a special type of data structure
that prioritizes the value of each entry when determining the next item to remove. By default, a
Priority Queue will return the smallest value next when the .get() method is called. Items are
sorted using a special data structure called a min heap which allows for item insertion in logarithmic
time, and retrieval of the smallest item in constant time.

Method Description
PriorityQueue() Constructs an empty PriorityQueue object.

empty() Returns True if there are no items in the PriorityQueue.
put(item) Places item into the PriorityQueue.

get_nowait() Returns the next item immediately (smallest by default).

Table 4.1: Essential methods of the PriorityQueue class.
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# Import PriorityQueue
>>> from queue import PriorityQueue

# Create a new PriorityQueue object
>>> Q = PriorityQueue()

# Add some items to the PriorityQueue
>>> for item in [5, 4, 2, 1, 3]:
... Q.put(item)
...

# Remove and print each item
>>> while not Q.empty():
... print(Q.get_nowait(), end=' ')
...
1 2 3 4 5

For more information on PriorityQueue, see https://docs.python.org/3/library/queue.
html.

Dijkstra’s Algorithm Flow

We’ll now go over the flow of Dijkstra’s Algorithm. To traverse a graph with Dijkstra’s, choose a
node to start at, called the source node. Djikstra’s keeps track of the shortest discovered path from
the source node to each node, so each node starts with a path length of infinity, except the source
node which has a path length of 0.

• First, update the path length of each node neighboring the source node to the weight of the
edge going to that neighbor plus the weight of the source node (which is 0).

• Add these visited nodes to the priority queue along with the length of the current shortest path
to these nodes.

• Next, select the node in the queue with the shortest path length and visit all of its neighboring
nodes, updating their shortest path lengths as necessary.

• Add these visited nodes to the priority queue.

• Repeat this process until the destination node is selected from the queue.

The shortest path stored for the destination node is now the shortest path from the source node to
the destination node.

The implementation of Dijkstra’s requires the following data structures to keep track of which
nodes have already been visited, path lengths, and the order in which to visit nodes in future steps.

• A PriorityQueue Q: The nodes to be visited, in order of which has the shortest path length.
This is accomplished by storing in Q tuples containing first the distance to that node, then the
node label.

https://docs.python.org/3/library/queue.html
https://docs.python.org/3/library/queue.html
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• A set V : The nodes that have been finished (they are finished when they are popped off the
queue). This structure is not necessary for Dijkstra’s algorithm to function, but we will be
using it to keep track of which nodes we have finished processing.

• A dictionary d: The shortest distance to each node

• A dictionary pred: Maps each node to its predecessor when traveling the shortest path to that
node.

To begin the search, add the source node to Q and initialize d such that each node has value infinity
except for the source node, which has value 0. Also, initialize pred so that the source node has a
predecessor of None. Then, until the destination is found, repeat the following:

1. Pop a node off of Q; call it the current node.

2. If the current node is the destination, finish the loop.

3. “Visit” the current node by appending it to V .

4. Loop through all the neighbors of current.

5. For each neighbor, if the current path to that neighbors is the new shortest path for that
neighbor, perform the following:

• Update the neighbor’s shortest distance value in d.

• Add the neighbor and the distance to that neighbor to Q.

• Include the current node as its predecessor by updating its value in pred.

Once finished, reconstruct the optimal path by starting at the destination and looking at predecessor
nodes in pred until the source node is reached (the node with predecessor None). Return the shortest
path and that path length, which is stored in d.

Note

Dijkstra’s is known as a greedy algorithm, because the node with the shortest current path is
always chosen next. The Bellman Optimality Principle guarantees that any part of the shortest
path is itself the shortest path from the source node to that particular point. Because of this,
every time a node is removed from the queue for the first time, we know that it’s corresponding
path value in d is the shortest path from the source to that node.



53

A, 0

B, ∞ C, ∞

D, ∞

1

2

3
4

V A B C D
Q (0,A)

pred A

A, 0

B, 1 C, ∞

D, 2

1

2

3
4

V A B C D
Q (1,B) (2,D)

pred B:A D:A

A, 0

B, 1 C, ∞

D, 2

1

2

3
4

V A B C D
Q (2,D)

pred B:A D:A

A, 0

B, 1 C, 6

D, 2

1

2

3
4

V A B D
Q (6,C)

pred B:A C:D D:A

Figure 4.3: To start Dijkstra’s from node A to node C, put A in the priority queue Q. Pop A off
the queue and “visit” it by adding A to the visited list V and the neighboring nodes B and D to Q.
Then visit B (since it has the shortest path). Do not update Q because the path from A to B to D is
longer than the path from A to D, which is already in Q. Finally, visit D, at which point the target
node C is located because it is adjacent to D. The values of pred give the predecessors, which can be
used to reconstruct the shortest path (which, in this case, is A,D,C).
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Problem 2. Write the shortest_path() method in the Graph class to implement Dijkstra’s
Algorithm, which will find the shortest path between the source and target nodes. The method
should return the sum of weights along the shortest path, along with the shortest path itself,
including endpoints. The method should raise a KeyError if the input nodes are not in the
graph. Be sure that your method works on both directed and undirected graphs.

Hint: In order for the PriorityQueue to store both the node and the current path length,
consider passing in a tuple where the first value is the current path length and the second value
is the node label.

Unit Test

Test your code with the pre-written unit test found in dijkstra_test.py.

Bathymetry Dataset

Bathymetric Data and Tsunami Prediction

Bathymetry is the measurement of water depth to the sea floor. Bathymetric data provides ocean
depth measurements in meters at specific latitude and longitude points. Bathymetric data is crucial
in predicting the travel paths and speeds of tsunamis. In particular, the speed of a tsunami is directly
impacted by the depth of the ocean floor below it. As such, bathymetric data provides a way to
predict the speeds and arrival times of tsunamis at particular locations, allowing for sufficient warning
to be given to those in the tsunami path. We will be using Dijkstra’s Algorithm to predict the travel
time of a tsunami between starting and ending locations.

The TsunamiModel Class

The file dijkstra.py contains a class for tsunami travel prediction using bathymetric data called
TsunamiModel.1 This class inherits from the Graph class, and constructs a graph where each depth
measurement in the rectangular grid is represented as a node. In this graph, the travel time of the
tsunami, which is a function of average depth between two points, serves as the weight between
nodes. Once the graph is constructed, we can run Dijkstra’s algorithm to determine the shortest
time path of a tsunami from its origin to a given location.

The file bathymetry.tt3 contains bathymetric data which covers a rectangular section of the
ocean in the Banda Region. Each data point indicates the ocean depth at a particular location.
For example, the value in the lower left corner of the dataset (82 meters) corresponds to a latitude
of -9.50833 and a longitude of 124.99167. In this context: zero depths represent sea level, positive
values indicate elevations above sea level, and negative values denote depths below sea level. The
distance between each data point in this particular file represents 1/60 degrees (or one arcminute)
in both latitude and longitude.

The file, bathymetry.tt3 is structured as follows:

• The first and second lines contain the number of columns and rows of bathymetry data.
1Thanks to Dr. Jared Whitehead and Ashley Spencer, a professor and student at BYU, for the bathymetry data

and TsunamiModel class.
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• The third and fourth lines contain the longitude and latitude coordinates of the lower-left corner
of the bathymetry data.

• The fifth line contains the geographic distance between any two values in the grid of bathymetry
data (given in arc-degrees).

• The remaining lines contain the grid of bathymetric data collected at each location.

Problem 3. In the TsunamiModel class, complete the following methods:

1. _read_file(): reads in the bathymetric data given in filename. This method should store
the attributes ncols, nrows, long_llcorner, lat_llcorner, cellsize, and depths_grid
(these attributes are described in greater detail in the docstring of the TsunamiModel
class).

2. _generate_long_lat_grid(): generates a grid of longitude and latitude coordinates
corresponding to the locations where each bathymetric measurement in depths_grid was
taken.

Call the Graph class constructor (using super()) as well as the _read_file() method in the
TimeModel constructor. We will finish the constructor in the next problem. You are welcome
to make the graph directed or undirected.

Test your code by comparing the read in attributes to the values found in bathymetry.tt3. When
using the provided constants in dijsktra.py, the value of long_lat_grid[0][0] should be about
(124.991667,−2.508333).

Note

Several methods of the TsunamiModel class begin with an underscore character. These methods
are meant to be used internally for use by the class itself and should not be called outside the
class declaration.

Achtung!

The attribute variables of the TsunamiModel class are provided for you and set to a default
value of None. Do not change these variable names, as they will cause the autograder for this
lab to mark your code as incorrect. The original names for each attribute are provided in the
docstring of the TsunamiModel class in case they’ve been modified.
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In order to accurately model the time and path of a tsunami, we need to know the longitude and
latitude coordinates of the tsunami’s origin and our target location. Additionally, since tsunamis form
over undersea earthquakes which occur over a fault plane with a certain radius, the exact position
of the tsunami wave may not be at the epicenter of the earthquake which formed it. To account for
this, we shift the starting point to the edge of the fault plane in the direction of our destination point.
These values are passed in to the constructor of TimeModel, and some example values are given as
constants in dijkstra.py.

Given the longitude and latitude coordinates of the starting and target points for a tsunami
as well as the radius of the fault plane, we must shift the starting point in the direction of the
target location by that radius. This will ensure that the calculated time is when the front of the
tsunami reaches the target rather than the back which can vary the time calculation by several
minutes. Additionally, since bathymetric data is given in only discrete intervals, we must find the
closest grid points to our starting and ending coordinates in order to run Dijkstra’s algorithm. The
_get_nearest_point() method of the TimeModel class will perform this calculation for us.

Problem 4. In the constructor of the TsunamiModel class, store the value given by
fault_plane_radius as an attribute. Next, complete the following methods:

1. _shifted_start(): Shifts the starting point for the tsunami path away from the epicenter
and toward the end point according to fault_plane_radius and returns this point as a
tuple of longitude, latitude coordinates.

2. _long_and_lat(): Generates instance attributes associated with longitude and latitude
coordinates. Specifically, it should call _generate_lat_long_grid() from Problem 3 and
store the resulting grid as an attribute as well as find the starting and ending points for the
tsunami path prediction using the provides _get_nearest_point() method (remember
to shift the starting point).

Call _long_and_lat() in the TsunamiModel constructor. The constructor should now be fin-
ished as well.

Test your code using the provided constants in dijkstra.py. The value of start_point should be
(166, 382), and the value of end_point should be (65, 220).

Modeling Graphs With a Grid

Many graphs, including this one, are modeled using a 2D grid, where neighboring nodes are adjacent
locations in the grid. In the case of our bathymetry data, neighboring nodes are those which are
orthogonally adjacent (don’t include diagonals). In order to utilize the functionality of the Graph
class, we store the values of each node as a tuple of their coordinates in the grid (row and column
values, zero indexed). Additionally, we do not form edges with nodes which have a non-negative
elevation as we assume that tsunamis cannot cross these locations. Because we are modeling the
shortest time for a Tsunami to reach out target location, we model weights as the time taken for a
tsunami to travel between grid points.

The speed of a tsunami given a depth d is given by

s =
√
d ∗ g
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where g is the gravitational constant (in the desired units). From this formula we can then derive
the travel time between locations of depths d1 and d2 of distance dist apart. To do this, we average
out the speed of the tsunami between both locations by taking the speed at the average depth of the
two points,

savg =
√
g ∗ (d1 + d2)/2.

The travel time of the tsunami between these points is then closely estimated by the distance between
these points divided by the average speed,

t =
dist

savg
.

This equation is how we determine the tsunami travel time between grid points and thus the weights
of our graph.

Problem 5. Implement the following methods of the TimeModel class which help generate the
graph for Dijkstra’s algorithm.

1. _get_neighbors(): returns a list of valid neighbors to the given node. Each neighbor
should be represented by a tuple of indices which represent its location in depths_grid.

2. _get_time(): returns the estimated travel time (in seconds) of a tsunami between two
adjacent grid points at the given depths. Use 9.8 as the gravitational constant, and be
sure to get the distance between the two points in meters (a helpful constant is provided
above the TimeModel class).

3. _convert_path_to_long_lat(): given a list of indices representing grid coordinates,
returns a list of corresponding longitude and latitude coordinates.
(Hint: use the long_lat_grid attribute.)

Problem 6. Implement the following methods of the TimeModel class:

1. _generate_graph(): adds nodes and edges to the graph between grid point neighbors
with weights corresponding to tsunami travel time along each edge. Edges should only be
created between points that are both below sea level. Node labels should be tuples of the
indices corresponding to each point in grid (you may ignore points that are at or above
sea level).

2. calculate_tsunami_path(): calls _generate_graph() and uses the shortest_path()
method of the Graph class to find the time (in minutes) and path for a tsunami between
start_point and end_point. The returned path should be a list of longitude and latitude
coordinates.

Achtung!
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To ensure that your code is graded correctly, be sure that every attribute described in the
constructor of the TimeModel class is present with the name spelled exactly as given.

Test you algorithm with the constants given above the TimeModel class. Your algorithm should
return a time of around 48.2310 minutes. Also ensure that the returned path starts and ends at the
expected coordinate points (remember the point wills be shifted and approximated to points on the
grid of bathymetric readings).
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Additional Material
Run Time Complexity of Dijkstra’s Algorithm

The main component of the temporal complexity of Dijkstra’s Algorithm is priority queue operations.
If a graph has E edges and V nodes (or vertices), then there must be at most E + 1 inserts into
the priority queue. Each insert has complexity O(log(E)), so the runtime complexity of the entire
algorithm is O(E log(E)). Because the number of edges and vertices are often comparable, especially
in connected graphs, this complexity is sometimes written as O(E log(V )). Additionally, priority
queues can be implemented with a specialized heap called a Fibonacci heap which alters the overall
complexity to O(E + V log(V )).

Shortest Path With Negative Weights

Sometimes, graphs can be represented with negative weights. This can represent recouped costs
or saved time, among other things. However, Dijkstra’s Algorithm often fails when working with
negative weights, as the Bellman Optimality Principle no longer applies. This is because negative
weights allow for a visit other than the first to a node to obtain an overall lower path sum to that
node.

The Bellman-Ford Algorithm2 addresses this issue by scanning through and relaxing each of
the edges in the graph. This relaxation is effectively the act of doubling back to previously visited
nodes to check for improved paths to that node. If a negative cycle (a cycle in which the sum of
weights is negative) exists, then the algorithm will either return negative infinity, or throw an error.
Because of the relaxation step, this algorithm has a runtime of O(V E) where V is the number of
nodes (vertices) and E is the number of edges in the graph.

2See: https://cp-algorithms.com/graph/bellman_ford.html

https://cp-algorithms.com/graph/bellman_ford.html
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5 Markov Chains

Lab Objective: A Markov chain is a collection of states with specified probabilities for transi-
tioning from one state to another. They are characterized by the fact that the future behavior of the
system depends only on its current state. In this lab we learn to construct, analyze, and interact with
Markov chains, then use a Markov-based approach to simulate natural language.

State Space Models

Many systems can be described by a finite number of states. For example, a board game where
players move around the board based on dice rolls can be modeled by a Markov chain. Each space
represents a state, and a player is said to be in a state if their piece is currently on the corresponding
space. In this case, the probability of moving from one space to another only depends on the player’s
current location; where the player was on a previous turn does not affect their current turn.

Markov chains with a finite number of states have an associated transition matrix that stores
the information about the possible transitions between the states in the chain. The (i, j)th entry of
the matrix gives the probability of moving from state j to state i. Thus, each of the columns of
the transition matrix sum to 1.

Note

A transition matrix where the columns sum to 1 is called column stochastic (or left stochastic).
The rows of a row stochastic (or right stochastic) transition matrix each sum to 1 and the (i, j)th
entry of the matrix is the probability of moving from state i to state j. Both representations are
common, but in this lab we exclusively use column stochastic transition matrices for consistency.

Consider a very simple weather model in which the weather tomorrow depends only on the
weather today. For now, we consider only two possible weather states: hot and cold. Suppose that
if today is hot, then the probability that tomorrow is also hot is 0.7, and that if today is cold, the
probability that tomorrow is also cold is 0.4. By assigning “hot” to the 0th row and column, and
“cold” to the 1st row and column, this Markov chain has the following transition matrix.
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hot today cold today[ ]
hot tomorrow 0.7 0.6

cold tomorrow 0.3 0.4

The 0th column of the matrix says that if it is hot today, there is a 70% chance that tomorrow will
be hot (0th row) and a 30% chance that tomorrow will be cold (1st row). The 1st column says if it
is cold today, then there is a 60% chance of heat and a 40% chance of cold tomorrow.

Markov chains can be represented by a state diagram, a type of directed graph. The nodes in
the graph are the states, and the edges indicate the state transition probabilities. The Markov chain
described above has the following state diagram.

hot cold0.7

0.3

0.4

0.6

Problem 1. Define a MarkovChain class whose constructor accepts an n×n transition matrix
A and, optionally, a list of state labels. If A is not column stochastic, raise a ValueError.
Construct a dictionary mapping the state labels to the row/column index that they correspond
to in A (given by order of the labels in the list), and save A, the list of labels, and this dictionary
as attributes. If there are no state labels given, use the labels

[
0 1 . . . n− 1

]
.

For example, for the weather model described above, the transition matrix is

A =

[
0.7 0.6

0.3 0.4

]
,

the list of state labels is ["hot", "cold"], and the dictionary mapping labels to indices is
{"hot":0, "cold":1}. This Markov chain could be also represented by the transition matrix

Ã =

[
0.4 0.3

0.6 0.7

]
,

the labels ["cold", "hot"], and the resulting dictionary {"cold":0, "hot":1}.

Simulating State Transitions

Simulating the weather model described above requires a programmatic way of choosing between
the outgoing transition probabilities of each state. For example, if it is cold today, we could flip a
weighted coin that lands on tails 60% of the time (guess tomorrow is hot) and heads 40% of the
time (guess tomorrow is cold) to predict the weather tomorrow. The Bernoulli distribution with
parameter p = 0.4 simulates this behavior: 60% of draws are 0, and 40% of draws are a 1.

A binomial distribution is the sum several Bernoulli draws: one binomial draw with parameters
n and p indicates the number of successes out of n independent experiments, each with probability
p of success. In other words, n is the number of times to flip the coin, and p is the probability that
the coin lands on heads. Thus, a binomial draw with n = 1 is a Bernoulli draw.
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NumPy does not have a function dedicated to drawing from a Bernoulli distribution; instead,
use the more general np.random.binomial() with n = 1 to make a Bernoulli draw.

>>> import numpy as np

# Draw from the Bernoulli distribution with p = .5 (flip one fair coin).
>>> np.random.binomial(n=1, p=.5)
0 # The coin flip resulted in tails.

# Draw from the Bernoulli distribution with p = .3 (flip one weighted coin).
>>> np.random.binomial(n=1, p=.3)
0 # Also tails.

For the weather model, if the “cold” state corresponds to row and column 1 in the transition
matrix, p should be the probability that tomorrow is cold. So, if today is cold, select p = 0.4; if
today is hot, set p = 0.3. Then draw from the binomial distribution with n = 1 and the selected p.
If the result is 0, transition to the “hot” state; if the result is 1, stay in the “cold” state.

Using Bernoulli draws to determine state transitions works for Markov chains with two states,
but larger Markov chains require draws from a categorical distribution, a multivariate generalization
of the Bernoulli distribution. A draw from a categorical distribution with parameters (p1, p2, . . . , pk)
satisfying

∑k
i=1 pi = 1 indicates which of k outcomes occurs. If k = 2, a draw simulates a coin

flip (a Bernoulli draw); if k = 6, a draw simulates rolling a six-sided die. Just as the Bernoulli
distribution is a special case of the binomial distribution, the categorical distribution is a special case
of the multinomial distribution which indicates how many times each of the k outcomes occurs in n
repeated experiments. Use np.random.multinomial() with n = 1 to make a categorical draw.

# Draw from the categorical distribution (roll a fair four-sided die).
>>> np.random.multinomial(1, np.array([1./4, 1./4, 1./4, 1./4]))
array([0, 0, 0, 1]) # The roll resulted in a 3.

# Draw from another categorical distribution (roll a weighted four-sided die).
>>> np.random.multinomial(1, np.array([.5, .3, .2, 0]))
array([0, 1, 0, 0]) # The roll resulted in a 1.

Consider a four-state weather model with the transition matrix

hot mild cold freezing


hot 0.5 0.3 0.1 0

mild 0.3 0.3 0.3 0.3

cold 0.2 0.3 0.4 0.5

freezing 0 0.1 0.2 0.2

.

If today is hot, the probabilities of transitioning to each state are given by the “hot” column of
the transition matrix. Therefore, to choose a new state, draw from the categorical distribution with
parameters (0.5, 0.3, 0.2, 0). The result

[
0 1 0 0

]
indicates a transition to the state corresponding

to the 1st row and column (tomorrow is mild), while the result
[
0 0 1 0

]
indicates a transition to

the state corresponding to the 2nd row and column (tomorrow is cold). In other words, the position
of the 1 tells which column of the matrix to use as the parameters for the next categorical draw.
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Problem 2. Write a method for the MarkovChain class that accepts a single state label. Use
the label-to-index dictionary to determine the column of A that corresponds to the provided
state label, then draw from the corresponding categorical distribution to choose a state to
transition to. Return the corresponding label of the new state (not its index) as a string.
(Hint: np.argmax() may be useful.)

Problem 3. Add the following methods to the MarkovChain class.

• walk(): Accept a state label and an integer N . Starting at the specified state, use your
method from Problem 2 to transition from state to state N − 1 times, recording the state
label at each step. Return the list of N state labels (as strings), including the initial state.

• path(): Accept labels for an initial state and an end state. Beginning at the initial state,
transition from state to state until arriving at the specified end state, recording the state
label at each step. Return the list of state labels (as strings), including the initial and
final states.

Test your methods on the two-state and four-state weather models described previously.

General State Distributions
For a Markov chain with n states, the probability of being in each state can be encoded by a n-vector
x, called a state distribution vector. The entries of x must be nonnegative and sum to 1, and the
ith entry xi of x is the probability of being in state i. For example, the state distribution vector
x =

[
0.8 0.2

]T
corresponding to the 2-state weather model indicates an 80% chance that today is

hot and a 20% chance that today is cold. On the other hand, the vector x =
[
0 1

]T
implies that

today is, with 100% certainty, cold.

If A is a transition matrix for a Markov chain with n states and x is a corresponding state
distribution vector, then Ax is also a state distribution vector. In fact, if xk is the state distribution
vector corresponding to a certain time k, then xk+1 = Axk contains the probabilities of being in each
state after allowing the system to transition again. For the weather model, this means that if there
is an 80% chance that it will be hot 5 days from now, written x5 =

[
0.8 0.2

]T
, then since

x6 = Ax5 =

[
0.7 0.6

0.3 0.4

] [
0.8

0.2

]
=

[
0.68

0.32

]
,

there is a 68% chance that 6 days from now will be a hot day.

Convergent Transition Matrices

Given an initial state distribution vector x0, defining xk+1 = Axk yields the significant relation

xk = Axk−1 = A(Axk−2) = A(A(Axx−3)) = · · · = Akx0.
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This indicates that the (i, j)th entry of Ak is the probability of transition from state j to state
i in k steps. For the transition matrix of the 2-state weather model, a pattern emerges in Ak for even
small values of k:

A =

[
0.7 0.6

0.3 0.4

]
, A2 =

[
0.67 0.66

0.33 0.34

]
, A3 =

[
0.667 0.666

0.333 0.334

]
.

As k →∞, the entries of Ak converge, written

lim
k→∞

Ak =

[
2/3 2/3

1/3 1/3

]
. (5.1)

In addition, for any initial state distribution vector x0 = [a, b]T (meaning a, b ≥ 0 and a+ b = 1),

lim
k→∞

xk = lim
k→∞

Akx0 =

[
2/3 2/3

1/3 1/3

] [
a

b

]
=

[
2(a+ b)/3

(a+ b)/3

]
=

[
2/3

1/3

]
.

Thus, xk → x =
[
2/3 1/3

]T
as k → ∞, regardless of the initial state distribution x0. So,

according to this model, no matter the weather today, the probability that it is hot a week from now
is approximately 66.67%. In fact, approximately 2 out of 3 days in the year should be hot.

Steady State Distributions

The state distribution x =
[
2/3 1/3

]T
has another important property:

Ax =

[
7/10 3/5

3/10 2/5

] [
2/3

1/3

]
=

[
14/30 + 3/15

6/30 + 2/15

]
=

[
2/3

1/3

]
= x.

Any x satisfying Ax = x is called a steady state distribution or a stable fixed point of A. In other
words, a steady state distribution is an eigenvector of A corresponding to the eigenvalue λ = 1.

Every finite Markov chain has at least one steady state distribution. If some power Ak of
A has all positive (nonzero) entries, then the steady state distribution is unique.1 In this case,
limk→∞Ak is the matrix whose columns are all equal to the unique steady state distribution, as
in (5.1). Under these circumstances, the steady state distribution x can be found by iteratively
calculating xk+1 = Axk, as long as the initial vector x0 is a state distribution vector.

Achtung!

Though every Markov chain has at least one steady state distribution, the procedure described
above fails if Ak fails to converge. For instance, consider the transition matrix

A =

 0 0 1

0 1 0

1 0 0

 , Ak =

{
A if k is odd
I if k is even.

In this case as k →∞, Ak oscillates between two different matrices.
Furthermore, the steady state distribution is not always unique; the transition matrix

defined above, for example, has infinitely many.

1This is a consequence of the Perron-Frobenius theorem, which is presented in detail in Volume 1.
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Problem 4. Write a method for the MarkovChain class that accepts a convergence tolerance
tol and a maximum number of iterations maxiter. Generate a random state distribution
vector x0 and calculate xk+1 = Axk until ∥xk+1−xk∥1 < tol, where A is the transition matrix
saved in the constructor. If k exceeds maxiter, raise a ValueError to indicate that Ak does
not converge. Return the approximate steady state distribution x of A.

To test your function, generate a random transition matrix A. Verify that Ax = x and
that the columns of Ak approach x as k → ∞. To compute Ak, use NumPy’s (very efficient)
algorithm for computing matrix powers.

>>> A = np.array([[.7, .6],[.3, .4]])
>>> np.linalg.matrix_power(A, 10) # Compute A^10.
array([[ 0.66666667, 0.66666667],

[ 0.33333333, 0.33333333]])

Finally, use your method to validate the results of Problem 3: for the two-state and four-state
weather models,

1. Calculate the steady state distribution corresponding to the transition matrix.

2. Run a weather simulation for a large number of days using walk() and verify that the
results match the steady state distribution (for example, approximately 2/3 of the days
should be hot for the two-state model).

Note

Problem 4 is a special case of the power method, an algorithm for calculating an eigenvector
of a matrix corresponding to the eigenvalue of largest magnitude. The general power method,
together with a discussion of its convergence conditions, is discussed in Volume 1.

Using Markov Chains to Simulate English

One of the original applications of Markov chains was to study natural languages, meaning spoken
or written languages like English or Russian [VHL06]. In the early 20th century, Markov used his
chains to model how Russian switched from vowels to consonants. By mid-century, they had been
used as an attempt to model English. It turns out that plain Markov chains are, by themselves,
insufficient to model or produce very good English. However, they can approach a fairly good model
of bad English, with sometimes amusing results.
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By nature, a Markov chain is only concerned with its current state, not with previous states.
A Markov chain simulating transitions between English words is therefore completely unaware of
context or even of previous words in a sentence. For example, if a chain’s current state is the word
“continuous,” the chain may say that the next word in a sentence is more likely to be “function”
rather than “raccoon.” However the phrase “continuous function” may be gibberish in the context of
the rest of the sentence.

Generating Random Sentences

Consider the problem of generating English sentences that are similar to the text contained in a
specific file, called the training set. The goal is to construct a Markov chain whose states and
transition probabilities represent the vocabulary and—hopefully—the style of the source material.
There are several ways to approach this problem, but one simple strategy is to assign each unique
word in the training set to a state, then construct the transition probabilities between the states
based on the ordering of the words in the training set. To indicate the beginning and end of a
sentence requires two extra states: a start state, $tart, marking the beginning of a sentence; and a
stop state, $top, marking the end. The start state should only transition to words that appear at the
beginning of a sentence in the training set, and only words that appear at the end a sentence in the
training set should transition to the stop state.

Consider the following small training set, paraphrased from Dr. Seuss [Gei60].

I am Sam Sam I am.
Do you like green eggs and ham?
I do not like them, Sam I am.
I do not like green eggs and ham.

There are 15 unique words in this training set, including punctuation (so “ham?” and “ham.”
are counted as distinct words) and capitalization (so “Do” and “do” are also different):

I am Sam am. Do you like green
eggs and ham? do not them, ham.

With start and stop states, the transition matrix should be 17× 17. Each state must be assigned a
row and column index in the transition matrix, for example,

$tart I am Sam . . . ham. $top
0 1 2 3 . . . 15 16

The (i, j)th entry of the transition matrix A should be the probability that word j is followed by
word i. For instance, the word “Sam” is followed by the words “Sam” once and “I” twice in the
training set, so the state corresponding to “Sam” (index 3) should transition to the state for “Sam”
with probability 1/3, and to the state for “I” (index 1) with probability 2/3. That is, A3,3 = 1/3,
A1,3 = 2/3, and Ai,3 = 0 for i /∈ {1, 3}. Similarly, the start state should transition to the state for
“I” with probability 3/4, and to the state for “Do” with probability 1/4; the states for “am.”, “ham?”,
and “ham.” should each transition to the stop state.
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To construct the transition matrix, parse the training set and add 1 to Ai,j every time word j
is followed by word i, in this case arriving at the matrix

$tart I am Sam ham. $top



$tart 0 0 0 0 . . . 0 0

I 3 0 0 2 . . . 0 0

am 0 1 0 0 . . . 0 0

Sam 0 0 1 1 . . . 0 0
...

...
...

...
. . .

...
...

ham. 0 0 0 0 . . . 0 0

$top 0 0 0 0 . . . 1 0

.

To avoid a column of zeros, set Aj,j = 1 where j is the index of the stop state (so the stop state
always transitions to itself). Next, divide each column by its sum so that each column sums to 1:

$tart I am Sam ham. $top



$tart 0 0 0 0 . . . 0 0

I 3/4 0 0 2/3 . . . 0 0

am 0 1/5 0 0 . . . 0 0

Sam 0 0 1 1/3 . . . 0 0
...

...
...

...
. . .

...
...

ham. 0 0 0 0 . . . 0 0

$top 0 0 0 0 . . . 1 1

.

The 3/4 indicates that 3 out of 4 times, the sentences in the training set start with the word
“I”. Similarly, the 2/3 and 1/3 says that “Sam” is followed by “I” twice and by “Sam” once in the
training set. Note that “am” (without a period) always transitions to “Sam” and that “ham.” (with
a period) always transitions the stop state.

The entire procedure of creating the transition matrix for the Markov chain with words from a
file as states is summarized below.

Algorithm 1 Convert a training set of sentences into a Markov chain.
1: procedure MakeTransitionMatrix(filename)
2: Read the training set from the file filename.
3: Get the set of unique words in the training set (the state labels).
4: Add labels "$tart" and "$top" to the set of states labels.
5: Initialize an appropriately sized square array of zeros to be the transition matrix.
6: for each sentence in the training set do
7: Split the sentence into a list of words.
8: Prepend "$tart" and append "$top" to the list of words.
9: for each consecutive pair (x, y) of words in the list of words do

10: Add 1 to the entry of the transition matrix that corresponds to
transitioning from state x to state y.

11: Make sure the stop state transitions to itself.
12: Normalize each column by dividing by the column sums.
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Problem 5. Write a class called SentenceGenerator that inherits from the MarkovChain
class. The constructor should accept a filename (the training set). Read the file and build
a transition matrix from its contents as described in Algorithm 1. Save the same attributes as
the constructor of MarkovChain does so that inherited methods work correctly. Assume that
the training set has one complete sentence written on each line.
(Hint: if the contents of the file are in the string s, then s.split() is the list of words and
s.split('n') is the list of sentences.)

Note

The Markov chains that result from the procedure in Problem 5 have a few interesting structural
characteristics. The stop state is a sink, meaning it only transitions to itself. Because of this,
and since every node has a path to the stop state, any traversal of the chain will end up in
the stop state forever. The stop state is therefore called an absorbing state, and the chain as a
whole is called an absorbing Markov chain. Furthermore, the steady state is the vector with a
1 in the entry corresponding to the stop state and 0s everywhere else.

Problem 6. Add a method to the SentenceGenerator class called babble(). Use the path()
method from Problem 3 to generate a random sentence based on the training document. That
is, generate a path from the start state to the stop state, remove the "$tart" and "$top" labels
from the path, and join the resulting list together into a single, space-separated string. Return
this string.

For example, your SentenceGenerator class should be able to create random sentences
that sound somewhat like Yoda speaking.

>>> yoda = SentenceGenerator("yoda.txt")
>>> for _ in range(3):
... print(yoda.babble())
...
Impossible to my size, do not!
For eight hundred years old to enter the dark side of Congress there is.
But beware of the Wookiees, I have.
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Additional Material

Other Applications of Markov Chains

Markov chains are a useful way to study many probabilistic phenomena, so they have a wide variety
of applications. The following are just a few that are covered in other parts of this lab manual series.

• PageRank: Google’s PageRank algorithm uses a Markov chain-based approach to rank web
pages. The main idea is to use the entries of the steady state vector as a measure of importance
for the corresponding states. For example, the steady state x =

[
2/3 1/3

]T
for the two-state

weather model means that the hot state is “more important” (occurs more frequently) than the
cold state. See the PageRank lab in Volume 1.

• MCMC Sampling: A Monte Carlo Markov Chain (MCMC) method constructs a Markov
chain whose steady state is a probability distribution that is difficult to sample from directly.
This provides a way to sample from nontrivial or abstract distributions. Many MCMC methods
are used in various fields, from machine learning to physics. See the Volume 3 lab on the
Metropolis-Hastings algorithm.

• Hidden Markov Models: The Markov chain simulations in this lab use an initial condition
(a state distribution vector x0) and known transition probabilities to make predictions forward
in time. Conversely, a hidden Markov model (HMM) assumes that a given set of observations
are the result of a Markov process, then uses those observations to infer the corresponding tran-
sition probabilities. Hidden Markov models are used extensively in modern machine learning,
especially for speech and language processing. See the Volume 3 lab on Speech Recognition.

Large Training Sets

The approach in Problems 5 and 6 begins to fail as the training set grows larger. For example, a
single Shakespearean play may not be large enough to cause memory problems, but The Complete
Works of William Shakespeare certainly will.

To accommodate larger data sets, consider use a sparse matrix from scipy.sparse for the
transition matrix instead of a regular NumPy array. Specifically, construct the transition matrix as
a lil_array (which is easy to build incrementally), then convert it to the csc_array format (which
supports fast column operations). Ensure that the process still works on small training sets, then
proceed to larger training sets. How are the resulting sentences different if a very large training set
is used instead of a small training set?

Variations on the English Model

Choosing a different state space for the English Markov model produces different results. Consider
modifying the SentenceGenerator class so that it can determine the state space in a few different
ways. The following ideas are just a few possibilities.

• Let each punctuation mark have its own state. In the Dr. Seuss training set, instead of having
two states for the words “ham?” and “ham.”, there would be three states: “ham”, “?”, and “.”,
with “ham” transitioning to both punctuation states.

• Model paragraphs instead of sentences. Add a $tartParagraph state that always transitions to
$tartSentence and a $topParagraph state that is sometimes transitioned to by $topSentence.
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• Let the states be individual letters instead of individual words. Be sure to include a state for
the spaces between words.

• Construct the state space so that the next state depends on both the current and previous
states. This kind of Markov chain is called a Markov chain of order 2. This way, every set of
three consecutive words in a randomly generated sentence should be part of the training set,
as opposed to only every consecutive pair of words coming from the set.

• Instead of generating random sentences from a single source, simulate a random conversation
between n people. Construct a Markov chain Mi, for each person, i = 1, . . . , n, then create a
Markov chain C describing the conversation transitions from person to person; in other words,
the states of C are the Mi. To create the conversation, generate a random sentence from the
first person using M1. Then use C to determine the next speaker, generate a random sentence
using their Markov chain, and so on.

Natural Language Processing Tools

The Markov model of Problems 5 and 6 is a natural language processing application. Python’s nltk
module (natural language toolkit) has many tools for parsing and analyzing text for these kinds of
problems [BL04]. For example, nltk.sent_tokenize() reads a single string and splits it up into
sentences. This could be useful, for example, in making the SentenceGenerator class compatible
with files that do not have one sentence per line.

>>> from nltk import sent_tokenize
>>> with open("yoda.txt", 'r') as yoda:
... sentences = sent_tokenize(yoda.read())
...
>>> print(sentences)
['Away with your weapon!',
'I mean you no harm.',
'I am wondering - why are you here?',
...

The nltk module is not part of the Python standard library. For instructions on downloading,
installing, and using nltk, visit http://www.nltk.org/.

http://www.nltk.org/
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6 Sampling

Lab Objective: Sampling is an important and fundamental tool in statistical modeling. In this
lab we will learn to use PyMC for Bayesian modeling and statistical sampling. This lab will focus on
material from chapters 5 and 6 of Volume 2.

Sampling
In Statistics, a population is the collection of all items, groups, or phenomenon we are seeking to
study or understand in an experiment. It is all the data we could possibly have or we wish we
had (e.g. all Americans, all NCAA football games). However, in practice, we rarely have access
to the entire population. As such, we must then obtain a finite data set. Sampling is the process
where researchers take a predetermined number of draws from a population, called a sample (e.g.
750 Americans, 300 NCAA football games). A good sample can tell us a lot, and while we will not
examine what makes a good sample in this lab, we will examine how much a good sample can tell us.
One goal of Bayesian statistics is to be able to quantify, with degrees of certainty, how much we can
learn from a sample, given what we already know about its source. This quantification of certainty
allows us to extract more information and nuance from a sample than would otherwise be possible,
and in turn allow us to better predict and describe events.

Parameter Estimation
Given a sample x = x1, x2, . . . , xn, we often think of this data as draws or realizations from an
independent and identically distributed (i.i.d) sequence of random variables X1, X2, ..., Xn having the
same distribution as some unknown random variable X. This random variable has some distribution
(i.e. the pdf/pmf) determined by some parameters that allows us to determine certain measurements
about the population like the mean or variance.

A parameter, in Statistics, is any measurement that describes a distribution. Thus, we normally
apply some function or formula to the sample in order to obtain information about the distribution
that generated the sample. This function is called a statistic. Specifically, a statistic that is used
to estimate a parameter is called an estimator, and the result that is obtained when replacing each
random variable Xi by each datum xi is called the estimate.

We will examine two methods of parameter estimation: the Frequentist/Classical approach and
the Bayesian approach.

73
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Frequentist/Classical Approach: Maximum Likelihood Estimation

The Frequentist approach views probability as the long-term frequency of an event occurring. In this
approach, we view the parameter as a fixed value that we are trying to estimate. The estimates we
make are known as point estimates because they are single values. Maximum Likelihood Estimation
(MLE) is a frequentist approach to parameter estimation, viewing probability as the limit of the
frequency of success generated by several repeated trials. The MLE is a method that chooses the
parameter for which the sample is most likely to have occurred.

Likelihood

Finding the maximum likelihood involves, unsurprisingly, maximizing the likelihood function, which
is defined as follows

L(θ) = L(θ|x) = f(x|θ) =
n∏

i=1

f(xi|θ),

where x = x1, x2, . . . , xn is a sample, θ is the parameter we are estimating and f is the pdf/pmf.
Thus, a MLE of a parameter θ is the value of θ̂ that maximizes the likelihood function L. This value
is known as the maximum likelihood estimate. Determining the MLE θ̂ is then as simple as finding
the argmax of L

θ̂ = argmaxθ∈ΘL(θ|x).

Bayesian Approach: Maximum A Posteriori Estimate

The Bayesian approach views probability as a measure of belief and updates that belief as more
evidence is gathered. We treat the unknown parameter as a random variable and try to compute the
distribution of it conditioned on the sample and using some initial belief for the parameter. If we
examine closely, we can see a similarity between the likelihood function and Bayes’ rule. Bayes’ rule
gives the following relation

P (A|B) =
P (B|A)P (A)

P (B)
.

In some simple terms, Bayes’ rule is framework for updating our “beliefs" about the hypothesis A
given some evidence B. To apply this rule to the problem of parameter estimation we get the following
relation (note f is a pdf/pmf)

f(θ|x) = f(x|θ)g(θ)∫
Θ
f(x|ϑ)g(ϑ)dϑ

. (6.1)

We call f(θ|x) the posterior distribution, f(x|θ) the likelihood function, and g(θ) the prior
distribution. The posterior f(θ|x) represents the updated distribution for θ that takes into account
the sample x. The prior g(θ) is the initial assumed distribution for θ that represents our beliefs about
θ before we see the sample, and the likelihood f(x|θ) is the function that represents the probability
of the sample holding true given the parameter θ. The denominator is normally called the marginal
likelihood and is a constant for normalization that represents the probability of generating the sample
under any possible value of θ ∈ Θ. As such, the marginal likelikhood is independent of θ.
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This approach is in contrast to the Frequentist approach where the parameter is fixed, the
sample is a result of various attempts, and we consider no prior knowledge for the parameter. The
Bayesian approach allows us to incorporate prior knowledge into our model, so that we can update
our knowledge as we gather more evidence. But, the result we get is just a probability distribution,
not a single value, that tells us which values of θ are most likely to have produced our sample.

The MAP estimate is then the argmax of the posterior

θMAP = argmaxθ∈Θf(θ|x). (6.2)

When finding the MAP estimate, the exact posterior is often left uncalculated because it is difficult to
compute. Instead, we approximate it by finding its value at grid points of θ. Similarly, because of the
complexity of the denominator, we often don’t find it until the end of the process. After we calculate
f(x|θ)g(θ) for each relevant θ we can then approximate the integral in the denominator with a finite
sum. First we find f(x|θi)g(θi) for a grid of θ values. Then, we can approximate the integral in
denominator with the following sum 1

n

∑n
i=1 f(x|θi)g(θi) (i.e. using finite sums like Riemann Sums)

or using Monte Carlo Methods like MCMC.

Here we can see that the likelihood function is similar to Bayes’ rule as long as we take g(θ)
to be a constant, i.e. θ ∼ U(a, b). This means that the MAP estimate is the MLE if we assume a
uniform prior distribution.

Example 1: Estimating the Lifespan of a Projector Bulb with a Uniform Prior

Assume that the lifespan of a projector bulb can be modeled as a random variable X with an
exponential distribution of unknown parameter λ. Suppose that you have a sample of 7 bulbs which
lasted 2, 3.3, 4.5, 1.8, 3.1, 2.7, and 2.2 months, respectively. Moreover, assume we have no reason to
believe that the lifespan of a bulb is any more likely to be any particular value than any other. That
is,the lifespan can take on any value equally. Find the posterior pdf for λ, compute the MAP for λ,
and plot the prior and posterior.

Achtung!

Note that just like NumPy, the stats module of SciPy allows for array broadcasting or vector-
ization. Most, if not all, of the parameters for all of the distributions in the stats module can
be ndarrays, and the functions will return an ndarray of the same shape. Thus, keep track of
shapes so you do not run into errors. Lastly, it is important to look at the documentation for
each statistical module to understand what parameters are used and if they are different from
the ones we or books have described.

SinceX is distributed as an exponential distribution, the likelihood pdf is given by Gamma(1, λ).
Moreover, recall that Gamma(a, b) distribution describes the waiting time for a > 0 events to occur
in a Poisson process with rate b > 0 (i.e. the time between events). Some books, modules, and
equations, use the parameter scale, ϑ = 1

b , instead of the rate in the Gamma distribution. scipy
.stats is one such module, so we will work ϑ = 1

λ as the scale, and then compute the inverse to
obtain λ.
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For our example, the event a is the number of bulbs that have failed, and the rate b represents
the number of bulb-months at which they fail (i.e. bulb-months/bulb-failure). In our case, we are
trying to estimate the rate λ at which 1 bulb fails, so a = 1. Then, the scale ϑ represents bulb-failures
per bulb-month. Though a ∈ (0,∞] (i.e. we can have any number of bulb failures), we will assume
that there are no more than 2 bulb failures per month because the inverse of the sample at least
shows that there are no more than 2. Hence, a ∈ (0, 2]. Though this is a continuous interval and a

can take on any value between 0 and 2, we have to discretize the interval for computational purposes
since we do not have infinite computational power or memory. Thus, we assume that there are only
100 possible events. This implies that there are only 100 possible values for ϑ.

Since the likelihood f(x|θ) =
∏n

i=1 f(xi|θ), we can use np.prod() to calculate the likelihood for
each value of ϑ. Lastly, scipy.stats.uniform uses the parameter loc and scale to create a uniform
distribution on the interval [loc, loc+scale]. The normal default values are 1 and 0, respectively.

from scipy.stats import uniform, gamma
import matplotlib.pyplot as plt
import numpy as np
>>> sample = 1/np.array([2, 3.3, 4.5, 1.8, 3.1, 2.7, 2.2]) # Sample scale ←↩

values
>>> fails = np.linspace(0, 2, 100)[1:] # Scale values, not including 0
>>> prior = uniform.pdf(x=fails, loc=0, scale=2)
# List comprehension to prevent broadcasting error
# Compute the product f(x_i|scale) for i=1 to 7 for each value of the scale
>>> likelihood = np.array([(gamma.pdf(x=sample, a=1, scale=fail)).prod() for ←↩

fail in fails])
>>> integral = (likelihood*prior).sum()*(2/100) # Riemann sums on [0, 2]
>>> posterior = (likelihood*prior)/integral
>>> 1/fails[posterior.argmax()] # MAP estimate
2.6052631578947367

>>> plt.plot(fails, prior, color='orange', label='Prior')
>>> plt.plot(fails, posterior, color='blue', label='Posterior')
>>> plt.ylabel("Probability Density")
>>> plt.xlabel("Scale (bulb-failures/bulb-month)")
>>> plt.legend()
>>> plt.show()
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Figure 6.1: The plot of the uniform prior and Gamma posterior distributions for the lifespan of a
projector bulb.

Problem 1. Write a function called bernoulli_sampling() that takes the following param-
eters: p a float that is the “fairness" of a coin and n the number of the Bernoulli trials. In this
function simulate n tosses of a coin which gives heads with probability p. Then use that sample
to calculate the posterior distribution on p given a uniform prior using Equation 6.2. Remember
that p is the probability parameter, so this is the parameter θ we are trying to estimate.

For p=.2 and n=100 plot the posterior distribution and return the MAP estimate of p,
which is also the MLE in this case. Be sure to give your plot a relevant title and axis labels.

Hint: In this case, f is the Binomial pmf f(x) = pnx̄(1 − p)n(1−x̄). You do not need to
calculate the integral in the denominator exactly; since you are using a finite approximation
of the distributions, you may use a finite approximation of the integral. You may simulate
the tosses of a coin by using np.random.binomial() or scipy.stats.binom(). Moreover, you
may use scipy.stats.uniform() to generate the prior distribution, but for this problem it is
not necessary given the definition of U(a, b). All of these functions accept a size parameter,
defaulted to 1, that allows you to generate multiple samples at once. We will only be using
a single sample in this problem so the returned value should be a single integer. Refer to
scipy.stats for more documentation on discrete and continuous distributions info.

https://docs.scipy.org/doc/scipy/tutorial/stats.html
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Non-Uniform Priors

While we are able to get good estimates, we leave a lot of the power of Bayesian statistics on the
table when we only use a uniform prior. While the uniform prior is free from any preconceptions
or biases, it also imparts the least amount of information. Using a non-uniform prior allows us to
actually incorporate prior knowledge or assumptions into our model. If we have good reason to
believe something about a parameter we are exploring before we even draw a sample, we can learn
a lot more by accounting for those beliefs.

Example 2: Lifespan of a Projector Bulb with a Non-Uniform Prior

Consider the same initial set up as Example 1 (i.e. X ∼ Gamma(1, λ) and the sample of 7 bulb
lives). But now, we have reason to believe that the lifespan sample originated from a distribution of
Gamma(2, 6). Using the prior Gamma(2, 6), find the posterior pdf for λ, compute the MAP for λ,
and plot the prior and posterior. The code is very similar with the only difference being the prior
distribution.

>>> prior = gamma.pdf(x=fails, a=2, scale=1/6) # 2 failures in 6 months
>>> likelihood = np.array([(gamma.pdf(x=sample, a=1, scale=fail)).prod() for ←↩

fail in fails])
>>> integral = (likelihood*prior).sum()*(2/100)
>>> posterior = (likelihood*prior)/integral
>>> 1/fails[posterior.argmax()]
2.9117647058823524

>>> plt.plot(fails, prior, color="orange", label="Prior")
>>> plt.plot(fails, posterior, color="blue", label="Posterior")
>>> plt.ylabel("Probability Density")
>>> plt.xlabel("Scale (bulb-failures/bulb-month)")
>>> plt.legend()
>>> plt.show()
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Figure 6.2: The plot of the uniform prior and Gamma posterior distributions for the lifespan of a
projector bulb. Note that the initial missing piece of the prior is due to the fact we only selected 100
grid points for the scale. The graph becomes better with more grid points.

Notice how the posterior distribution for the non-uniform prior has a higher probability density
and much narrower shape than one given by using a uniform prior. The MAP estimate is also
higher than the uniform prior. Furthermore, notice how the prior distribution has a similar shape
to the posterior distribution. This is due to conjugacy. Conjugacy is a special case where for
certain likelihood functions, selecting a specific prior distribution results in the prior and posterior
distributions having the same type of distribution. The prior distribution is then said to be a
conjugate prior for the likelihood function. This is not normally seen in most distributions. But
when it does appear, this is a very useful property as it allows us to easily calculate the posterior
distribution and prevents us from having to calculate the marginal likelihood or the product of the
likelihood and prior.

Overall, remember that the prior distributions represents our initial beliefs about the parameter.
It is important to choose a prior that is consistent with the problem at hand as choosing a poor prior
could require you to get more samples and lead to slower calculations and processes.

Problem 2. Suppose you choose a coin from a bag that produces coins of many weights.
However, the bag seems to be more likely to produce coins that are strongly biased in favor of
heads. You’re unsure of which kind of coin you’ve drawn so in order to find out you perform
20 flips.

Write a function called non_uniform_prior() that takes the following parameters: p a
float that is the "fairness" of a coin, n the size of the sample to be generated, and prior a
SciPy distribution object which will act as the prior on p.

Similar to Problem 1, simulate n flips and calculate and plot the posterior distribution
(with a title and axis labels).
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Return the MAP estimate.
Examine the difference in confidence we can have in estimating the bias of the coin if the

coin we draw gives heads 90% of the time as opposed to 40% of the time.
Because we think that coins biased in favor of heads are likely, we can choose a prior

distribution that matches that assumption. In this case we will choose Beta(5, 1.5) as the prior
distribution because it gives much more weight to parameters larger than .5. This is most easily
achieved with scipy.stats.beta(5,1.5) and using the pdf() method to calculate g(θ)

Sampling from a Markov Chain

A Markov chain is a way to model sequences of states or events. Markov chains make a few assump-
tions, one of those being that the probability of each state occurring is dependent only on the previous
state. The relationship between the states are described by what is called a transition matrix.

Markov chains and sampling are like peanut butter and jelly: neither one really lives up to their
full potential without the other. Given the transition matrix of a Markov chain, we can use sampling
to better understand what that chain looks and acts like or to get a well-informed idea of what the
future may hold.

Sampling from a simple (row stochastic) transition matrix like the one below is as simple as
picking a starting state s0, and then using the corresponding row to sample randomly using the
probabilities in the row.

a b c
a 0.7 0.1 0.2
b 0.5 0.4 0.1
c 0.1 0.8 0.1

For example, using the above transition matrix, let s0 = a, so we will randomly sample from the
array [a, b, c] using the respective probabilities [0.7, 0.1, 0.2]. If the sample gives us c, we can set
s1 = c and can continue the process to find s2, ...., sn.

Problem 3. Given the transition matrix below and assuming the 0th day is sunny, sample
from the markov chain to give a possible forecast of the 10 following days. Return a list of
strings, not including the 0th day.

sun rain wind
sun 0.6 0.1 0.3
rain 0.2 0.6 0.2
wind 0.3 0.4 0.3

Hint: np.random.choice() may be helpful here.
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PyMC

Python has many powerful sampling tools including PyMC, an efficient implementation of a method
known as Monte Carlo Markov Chain (MCMC) Sampling. This is a useful technique as it constructs a
Markov Chain whose steady state is a probability distribution that is difficult to sample from directly.
Unlike our simple Markov Chain from the last problem, certain Markov Chains are abstract. PyMC
gives us a way to work with these more complex scenarios.

Single Variable PyMC

Consider the following: owners of a restaurant are trying to decide if they should keep selling nachos.
They gather the data for several months about how many people order nachos each day. One of the
owners happened to take a class in Bayesian statistics in college, so she decides test her knowledge.
She assumes the data are distributed as Poisson(λ) for some unknown value of λ, where λ has a prior
of Gamma(2,2). She wishes to solve for λ and sets up a PyMC Model for the situation as follows:

import numpy as np
import pymc as pm
import arviz as az # visualization package

with pm.Model() as model:
# define the prior of lambda as a Gamma(2, 2) distribution
lam = pm.Gamma('lambda', alpha=2, beta=2)

# define the likelihood of the data (called nacho_data) to be distributed
# as Poisson where the expected value of the outcome (mu) is lam
y = pm.Poisson('y', mu=lam, observed=nacho_data)

# sample from the posterior
trace = pm.sample(n) # n is the desired number of samples
az.plot_trace(trace) # plot the posterior and trace plot for lambda

new_lambda = trace.posterior['lambda'] # trace values of lambda as a list
mean = float(new_lambda.mean()) # expected value of lambda

This code generates a model for the prior distribution of λ, and then incorporates that prior
into a model for the Poisson likelihood. It then samples from the posterior of λ n times, from which
we can estimate its expected value. The function az.plot_trace() plots both the posterior (on the
left) as well as a trace plot (on the right), In each panel, you should see different lines with different
colors or linestyles. These lines represent the different independent chains that were sample, and if
the results are significantly different, it may indicate that there is something wrong with the model.
This trace plots indicates how well the sampling converged. The rule of thumb is: the closer the
trace plot resembles a fuzzy caterpillar, the better the Markov Chain converged to the posterior.
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(a) The posterior distribution and trace plot using U(0, 2) for the prior.
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(b) The posterior distribution and trace plot using Gamma(2,6) for the prior.

Figure 6.3: A comparison of the posterior and trace plots for the lifespan of a projector bulb using a
uniform and non-uniform prior, as given in Examples 1 and 2, using PyMC and n = 500. Compare
to the plots in Figures 1 and 2.

We will now reconsider the initial problem of the coin flip.

Problem 4. Write a function that accepts the coin flip data in array form and an integer n
for the desired number of samples. Given data that flips a coin 100 times, assume the data are
distributed as Bernoulli(p) for some unknown value of p, where p has a prior of Beta(1,1). Set
up a PyMC model for this situation and sample from the posterior n times. Plot the trace plot
and return the expected value of the posterior as a float, not an array.

Run the function with data generated by the following code

from scipy.stats import bernoulli
data = bernoulli.rvs(0.2, size=100)

Multivariate PyMC

Unlike the Poisson and Bernoulli distributions, many other distributions (including the Normal,
Beta, Gamma, and Binomial distributions) have two or more parameters. These problems can really
showcase the usefulness and ease of PyMC. Multivariate PyMC problems are coded up exactly the
same way as the single variable example above, except that now there will be multiple priors defined
separately, all of which will be called by the likelihood.
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Problem 5. Write a function the accepts height data in array form and an integer n for the
desired number of samples. Given a dataset of the measured heights of 100 men, assume the
data are distributed as Normal(µ, 1/τ) where µ has a prior of Normal(m, s), and τ has a
prior of Gamma(α, β). Your function should have default values m=180, s=10, alpha=2, and
beta=10. Set up a PyMC model for this situation and sample from the posterior n times. Plot
the trace plots for µ and τ , and return the expected value of the posterior of µ as a float, not
as an array.

Run the function with data generated by the following code

heights = np.random.normal(180, 10, 100)

Hint: pm.Normal() uses parameters mu and either sigma or tau, where the variance of the
distribution is given by sigma2 or 1/tau respectively.
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Additional Materials
We will describe some of the most common distributions and what they model. Note X is a random
variable and the support is the domain where the pdf/pmf is nonzero.

• Discrete Distributions:

– Bernoulli: This is normally used to model the probability of success in a single trial when
the outcome can be categorized into exactly one of two categories. The support is {0, 1}.
We normally write X ∼ Bernouilli(p), p is the probability of success and is the parameter.

– Binomial: This distribution is used to model the number of successes in a fixed number
of Bernoulli trials. The support is {0, 1, . . . , n} for n trials. We write X ∼ B(n, p) or
X ∼ Binomial(n, p). n and p are the parameters.

– Poisson: We use this distribution to model the number of occurrences that occur in a fixed
interval of time or space. The support is {1, 2, 3, . . .}. We denote this as X ∼ Poisson(λ)
where λ is the parameter and is an average rate of occurrence.

• Continuous Distributions:

– Uniform: This distribution is best used when the every outcome in the sample space ω is
equally likely. The support is [a, b], and we denote this as X ∼ U(a, b) where a and b are
the parameters.

– Normal/Gaussian: This distribution is used to analyze and show data near the mean, and
how that is more frequent than data far from the mean. The support is (−∞,∞). We
write X ∼ N (µ, σ2) where µ is the mean and σ2 is the variance. Some books use σ as the
standard deviation (i.e. the square root of the variance).

– Gamma: This describes the waiting time for a > 0 events to occur in a homogeneous
Poisson process with rate b > 0 (i.e. the time between events). The support is [0,∞). We
write X ∼ Gamma(a, b) where a is the shape and b, the rate, are the parameters. The
scale is 1

b , and note sometimes the rate is denoted by λ. The Exponential distribution is
a special case of the Gamma distribution where a = 1.

– Chi-Squared is another special case of the Gamma distribution where a = n
2 and b = 1

2

where n is the degrees of freedom.

– Beta: This is best used to describe random variables with a range between 0 and 1 since
the support is [0, 1]. We write X ∼ Beta(a, b) where a and b are the parameters.

Here is an article that gives a brief overview of what phenomenon some of the common distri-
butions describe (including the ones we have here). This other article gives a good overview of how
to choose a prior distribution for a Bayesian model.

https://medium.com/@ciortanmadalina/overview-of-data-distributions-87d95a5cbf0a
https://towardsdatascience.com/bayesian-ab-testing-part-iv-choosing-a-prior-5a4fe3223bfd


7 The Discrete Fourier
Transform

Lab Objective: The analysis of periodic functions has many applications in pure and applied
mathematics, especially in settings dealing with sound waves. The Fourier transform provides a way
to analyze such periodic functions. In this lab, we introduce how to work with digital audio signals
in Python, implement the discrete Fourier transform, and use the Fourier transform to detect the
frequencies present in a given sound wave.

Achtung!

Completing the implementation of the SoundWave class in this lab is strongly recommended, as
it will also be used in the Convolution and Filtering lab.

Digital Audio Signals

Sound waves have two important characteristics: frequency, which determines the pitch of the sound,
and intensity or amplitude, which determines the volume of the sound. Computers use digital audio
signals to approximate sound waves. These signals have two key components: sample rate, which
relates to the frequency of sound waves, and samples, which measure the amplitude of sound waves
at a specific instant in time.

To see why the sample rate is necessary, consider an array with samples from a sound wave. The
sound wave can be arbitrarily stretched or compressed to make a variety of sounds. If compressed,
the sound becomes shorter and has a higher pitch. Similarly, the same set of samples with a lower
sample rate becomes stretched and has a lower pitch.

Given the rate at which a set of samples is taken, the wave can be reconstructed exactly as
it was recorded. In most applications, this sample rate is measured in Hertz (Hz), the number of
samples taken per second. The standard rate for high quality audio is 44100 equally spaced samples
per second, or 44.1 kHz.
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(a) The plot of tada.wav.
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(b) Compressed plot of tada.wav.

Figure 7.1: Plots of the same set of samples from a sound wave with varying sample rates. The plot
on the left is the plot of the samples with the original sample rate. The sample rate of the plot on
the right has been doubled, resulting in a compression of the actual sound when played back.

Wave File Format

One of the most common audio file formats across operating systems is the wave format, also called
wav after its file extension. SciPy has built-in tools to read and create wav files. To read a wav file,
use scipy.io.wavfile.read(). This function returns the signal’s sample rate and its samples.

# Read from the sound file.
>>> from scipy.io import wavfile
>>> rate, samples = wavfile.read("tada.wav")

Sound waves can be visualized by plotting time against the amplitude of the sound, as in Figure
7.1. The amplitude of the sound at a given time is just the value of the sample at that time. Since
the sample rate is given in samples per second, the length of the sound wave in seconds is found by
dividing the number of samples by the sample rate:

num samples
sample rate

=
num samples

num samples/second
= second. (7.1)

Problem 1. Write a SoundWave class for storing digital audio signals.

1. The constructor should accept an integer sample rate and an array of samples. Store each
input as an attribute.

2. Write a method that plots the stored sound wave. Use (7.1) to correctly label the x-axis
in terms of seconds, and set the y-axis limits to [−32768, 32767] (the reason for this is
discussed in the next section).

Use SciPy to read tada.wav, then instantiate a corresponding SoundWave object and display
its plot. Compare your plot to Figure 7.1a.

Scaling

To write to a wav file, use scipy.io.wavfile.write(). This function accepts the name of the file
to write to, the sample rate, and the array of samples as parameters.
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>>> import numpy as np

# Write a 2-second random sound wave sampled at a rate of 44100 Hz.
>>> samples = np.random.randint(-32768, 32767, 88200, dtype=np.int16)
>>> wavfile.write("white_noise.wav", 44100, samples)

For scipy.io.wavfile.write() to correctly create a wav file, the samples must be one of four
numerical datatypes: 32-bit floating point (np.float32), 32-bit integers (np.int32), 16-bit integers
(np.int16), or 8-bit unsigned integers (np.uint8). If samples of a different type are passed into the
function, it may still write a file, but the sound will likely be distorted in some way. In this lab, we
only work with 16-bit integer samples, unless otherwise specified.

A 16-bit integer is an integer between −32768 and 32767, inclusive. If the elements of an array
of samples are not all within this range, the samples must be scaled before writing to a file: multiply
the samples by 32767 (the largest number in the 16-bit range) and divide by the largest sample
magnitude. This ensures the most accurate representation of the sound and sets it to full volume.

np.int16
((

original samples
max(|original samples|)

)
× 32767

)
= scaled samples (7.2)

Because 16-bit integers can only store numbers within a certain range, it is important to multiply
the original samples by the largest number in the 16-bit range after dividing by the largest sample
magnitude. Otherwise, the results of the multiplication may be outside the range of integers that
can be represented, causing overflow errors. Also, samples may sometimes contain complex values,
especially after some processing. Make sure to scale and export only the real part (use the real
attribute of the array).

Note

The IPython API includes a tool for embedding sounds in a Jupyter Notebook. The function
IPython.display.Audio() accepts either a file name or a sample rate (rate) and an array of
samples (data); calling the function generates an interactive music player in the Notebook.
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Achtung!

Turn the volume down before listening to any of the sounds in this lab.

Problem 2. Add a method to the SoundWave class that accepts a file name and a boolean
force. Write to the specified file using the stored sample rate and the array of samples. If the
array of samples does not have np.int16 as its data type, or if force is True, scale the samples
as in (7.2) before writing the file.

Use your method to create two new files that contains the same sound as tada.wav: one
without scaling, and one with scaling (use force=True). Use IPython.display.Audio() to
display tada.wav and the new files. All three files should sound identical, except the scaled file
should be louder than the other two.

Generating Sounds
Sinusoidal waves correspond to pure frequencies, like a single note on the piano. Recall that the
function sin(x) has a period of 2π. To create a specific tone for 1 second, we sample from the
sinusoid with period 1,

f(x) = sin(2πxk),

where k is the desired frequency. According to (7.1), generating a sound that lasts for s seconds at
a sample rate r requires rs equally spaced samples in the interval [0, s].

Problem 3. Write a function that accepts floats k and s. Create a SoundWave instance con-
taining a tone with frequency k that lasts for s seconds. Use a sample rate of r = 44100.

The following table shows some frequencies that correspond to common notes. Octaves
of these notes are obtained by doubling or halving these frequencies.

Note Frequency (Hz)
A 440

B 493.88

C 523.25

D 587.33

E 659.25

F 698.46

G 783.99

A 880

Use your function to generate an A tone lasting for 2 seconds.

Problem 4. Digital audio signals can be combined by addition or concatenation. Adding
samples overlays tones so they play simultaneously; concatenated samples plays one set of
samples after the other with no overlap.
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1. Implement the __add__() magic method for the SoundWave class so that if A and B
are SoundWave instances, A + B creates a new SoundWave object whose samples are the
element-wise sum of the samples from A and B. Raise a ValueError if the sample arrays
from A and B are not the same length.

Use your method to generate a three-second A minor chord (A, C, and E together).

2. Implement the __rshift__() magic methoda for the SoundWave class so that if A and B
are SoundWave instances, A >> B creates a new SoundWave object whose samples are the
concatenation of the samples from A, then the samples from B. Raise a ValueError if the
sample rates from the two objects are not equal.
(Hint: np.concatenate(), np.hstack(), and/or np.append() may be useful.)

Use your method to generate the arpeggio A→ C→ E, where each pitch lasts one second.

Consider using these two methods to produce elementary versions of some simple tunes.
aThe >> operator is a bitwise shift operator and is usually reserved for operating on binary numbers.

The Discrete Fourier Transform

As with the chords generated above, all sound waves are sums of varying amounts of different fre-
quencies (pitches). In the case of the discrete samples f =

[
f0 f1 · · · fn−1

]T
that we have worked

with thus far, each fi gives information about the amplitude of the sound wave at a specific instant
in time. However, sometimes it is useful to find out what frequencies are present in the sound wave
and in what amount.

We can write the sound wave sample as a sum

f =

n−1∑
k=0

ckwn
(k), (7.3)

where {w(k)
n }n−1

k=0 , called the discrete Fourier basis, represents various frequencies. The coefficients
ck represent the amount of each frequency present in the sound wave.

The discrete Fourier transform (DFT) is a linear transformation that takes f and finds the
coefficients c =

[
c0 c1 · · · cn−1

]T
needed to write f in this frequency basis. Later in the lab, we

will convert the index k to a value in Hertz to find out what frequency ck corresponds to.

Because the sample f was generated by taking n evenly spaced samples of the sound wave, we
generate the basis {w(k)

n }n−1
k=0 by taking n evenly spaced samples of the frequencies represented by

the oscillating functions {e−2πikt/n}n−1
k=0 . (Note that i =

√
−1, the imaginary unit, is represented as

1j in Python). This yields

w(k)
n =

[
ω0
n ω−k

n · · · ω
−(n−1)k
n

]T
, (7.4)

where ωn = e2πi/n.
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The DFT is then represented by the change of basis matrix

Fn =
1

n

[
w0

n w1
n w2

n · · · wn−1
n

]
=

1

n



1 1 1 · · · 1

1 ω−1
n ω−2

n · · · ω
−(n−1)
n

1 ω−2
n ω−4

n · · · ω
−2(n−1)
n

...
...

...
. . .

...
1 ω

−(n−1)
n ω

−2(n−1)
n · · · ω

−(n−1)2

n

 , (7.5)

and we can take the DFT of f by calculating

c = Fnf . (7.6)

Note that the DFT depends on the number of samples n, since the discrete Fourier basis we use
depends on the number of samples taken. The larger n is, the closer the frequencies approximated
by the DFT will be to the actual frequencies present in the sound wave.

Achtung!

There are several different conventions for defining the DFT. For example, instead of (7.6),
scipy.fftpack.fft() uses the formula

c = nFnf ,

where Fn is as given (7.5). Denoting this version of the DFT as F̂nf = ĉ, we have nFn = F̂n

and nc = ĉ. The conversion is easy, but it is very important to be aware of which convention
a particular implementation of the DFT uses.

Problem 5. Write a function that accepts an array f of samples. Use 7.6 to calculate the
coefficients c of the DFT of f . Include the 1/n scaling in front of the sum.

Test your implementation on small, random arrays against scipy.fftpack.fft(), scaling
your output c to match SciPy’s output ĉ. Once your function is working, try to optimize it so
that the entire array of coefficients is calculated in the one line.
(Hint: Use array broadcasting.)

The Fast Fourier Transform

Calculating the DFT of a vector of n samples using only (7.6) is at leastO(n2), which is incredibly slow
for realistic sound waves. Fortunately, due to its inherent symmetry, the DFT can be implemented
as a recursive algorithm by separating the computation into even and odd indices. This method of
calculating the DFT is called the fast Fourier transform (FFT) and runs in O(n log n) time.
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Algorithm 1 The fast Fourier transform for arrays with 2a entries for some a ∈ N.
1: procedure simple_fft(f , N)
2: procedure split(g)
3: n← size(g)

4: if n ≤ N then
5: return nFng ▷ Use the function from Problem 5 for small enough g.
6: else
7: even ← SPLIT(g::2) ▷ Get the DFT of every other entry of g, starting from 0.
8: odd ← SPLIT(g1::2) ▷ Get the DFT of every other entry of g, starting from 1.
9: z← zeros(n)

10: for k = 0, 1, . . . , n− 1 do ▷ Calculate the exponential parts of the sum.
11: zk ← e−2πik/n

12: m← n // 2 ▷ Get the middle index for z (// is integer division).
13: return [even + z:m⊙odd, even + zm:⊙odd] ▷ Concatenate two arrays of length m.
14: return SPLIT(f) / size(f)

Note that the base case in lines 4–5 of Algorithm 1 results from setting n = 1 in (7.6), yielding
the single coefficient c0 = g0. The ⊙ in line 13 indicates the component-wise product

f ⊙ g =
[
f0g0 f1g1 · · · fn−1gn−1

]T
,

which is also called the Hadamard product of f and g.

This algorithm performs significantly better than the naïve implementation of the DFT, but
the simple version described in Algorithm 1 only works if the number of original samples is exactly
a power of 2. SciPy’s FFT routines avoid this problem by padding the sample array with zeros until
the size is a power of 2, then executing the remainder of the algorithm from there. Of course, SciPy
also uses various other tricks to further speed up the computation.

Problem 6. Write a function that accepts an array f of n samples where n is a power of 2.
Use Algorithm 1 to calculate the DFT of f .
(Hint: eliminate the loop in lines 10–11 with np.arange() and array broadcasting, and use
np.concatenate() or np.hstack() for the concatenation in line 13.)

Test your implementation on random arrays against scipy.fftpack.fft(), scaling your
output c to match SciPy’s output ĉ. Time your function from Problem 5, this function, and
SciPy’s function on an array with 8192 entries.
(Hint: Use %time in Jupyter Notebook to time a single line of code.)

Visualizing the DFT

The graph of the DFT of a sound wave is useful in a variety of applications. While the graph of
the sound in the time domain gives information about the amplitude (volume) of a sound wave at a
given time, the graph of the DFT shows which frequencies (pitches) are present in the sound wave.
Plotting a sound’s DFT is referred to as plotting in the frequency domain.
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As a simple example, the single-tone notes generated by the function in Problem 3 contain only
one frequency. For instance, Figure 7.2a graphs the DFT of an A tone. However, this plot shows two
frequency spikes, despite there being only one frequency present in the actual sound. This is due to
symmetries inherent to the DFT; for frequency detection, the second half of the plot can be ignored
as in Figure 7.2b.
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(a) The DFT of an A tone with symmetries.
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(b) The DFT of an A tone without symmetries.

Figure 7.2: Plots of the DFT with and without symmetries. Notice that the x-axis of the symmetrical
plot on the left goes up to 44100 (the sample rate of the sound wave) while the x-axis of the non-
symmetric plot on the right goes up to only 22050 (half the sample rate). Also notice that the spikes
occur at 440 Hz and 43660 Hz (which is 44100− 440).

The DFT of a more complicated sound wave has many frequencies, each of which corresponds to
a different tone present in the sound wave. The magnitude of the coefficients indicates a frequency’s
influence in the sound wave; a greater magnitude means that the frequency is more influential.
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Figure 7.3: The discrete Fourier transform of tada.wav. Each spike in the graph corresponds to a
frequency present in the sound wave. Since the sample rate of tada.wav is 22050 Hz, the plot of its
DFT without symmetries only goes up to 11025 Hz, half of its sample rate.
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Plotting Frequencies

Since the DFT represents the frequency domain, the x-axis of a plot of the DFT should be in terms
of Hertz, which has units 1/s. In other words, to plot the magnitudes of the Fourier coefficients
against the correct frequencies, we must convert the frequency index k of each ck to Hertz. This can
be done by multiplying the index by the sample rate and dividing by the number of samples:

k

num samples
× num samples

second
=

k

second
. (7.7)

In other words, kr/n = v, where r is the sample rate, n is the number of samples, and v is the
resulting frequency.

Problem 7. Modify your SoundWave plotting method from Problem 1 so that it accepts a
boolean defaulting to False. If the boolean is True, take the DFT of the stored samples and
plot—in a new subplot—the frequencies present on the x-axis and the magnitudes of those
frequencies (use np.abs() to compute the magnitude) on the y-axis. Only display the first half
of the plot (as in Figure 7.2b), and use (7.7) to adjust the x-axis so that it correctly shows the
frequencies in Hertz. Use SciPy to calculate the DFT.

Display the DFT plots of the A tone and the A minor chord from Problem 4. Compare
your results to Figures 7.2b and 7.4.
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Figure 7.4: The DFT of the A minor chord.

If the frequencies present in a sound are already known before plotting its DFT, the plot may
be interesting, but little new information is actually revealed. Thus, the main applications of the
DFT involve sounds in which the frequencies present are unknown. One application in particular is
sound filtering, which will be explored in greater detail in a subsequent lab. The first step in filtering
a sound is determining the frequencies present in that sound by taking its DFT.

Consider the DFT of the A minor chord in Figure 7.4. This graph shows that there are three
main frequencies present in the sound. To determine what those frequencies are, find which indices
of the array of DFT coefficients have the three largest values, then scale these indices the same way
as in (7.7) to translate the indices to frequencies in Hertz.
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Problem 8. The file mystery_chord.wav contains an unknown chord. Use the DFT and the
frequency table in Problem 3 to determine the individual notes that are present in the sound.
(Hint: np.argsort() may be useful.)



8 Convolution and
Filtering

Lab Objective: The Fourier transform reveals information in the frequency domain about signals
and images that might not be apparent in the usual time (sound) or spatial (image) domain. In this
lab, we use the discrete Fourier transform to efficiently convolve sound signals and filter out some
types of unwanted noise from both sounds and images.

Achtung!

This lab is a continuation of The Discrete Fourier Transform lab and will expand the SoundWave
class that was implemented there. Before beginning this lab, make sure to copy your code for the
methods __init__(), plot(), export(), __add__(), and __rshift__() into the SoundWave
class in the new Jupyter Notebook.

Convolution
Mixing two sounds signals—a common procedure in signal processing and analysis—is usually done
through a discrete convolution. Given two periodic sound sample vectors f and g of length n, the
discrete convolution of f and g is a vector of length n where the kth component is given by

(f ∗ g)k =

n−1∑
j=0

fk−jgj , k = 0, 1, 2, . . . , n− 1. (8.1)

Since audio needs to be sampled frequently to create smooth playback, a recording of a song can
contain tens of millions of samples; even a one-minute signal has 2, 646, 000 samples if it is recorded
at the standard rate of 44, 100 samples per second (44, 100 Hz). The naïve method of using the sum
in (8.1) n times is O(n2), which is often too computationally expensive for convolutions of this size.

Fortunately, the discrete Fourier transform (DFT) can be used compute convolutions efficiently.
The finite convolution theorem states that the Fourier transform of a convolution is the element-wise
product of Fourier transforms:

Fn(f ∗ g) = n(Fnf)⊙ (Fng). (8.2)
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In other words, convolution in the time domain is equivalent to component-wise multiplication in the
frequency domain. Here Fn is the DFT on Rn, ∗ is discrete convolution, and ⊙ is component-wise
multiplication. Thus, the convolution of f and g can be computed by

f ∗ g = nF−1
n ((Fnf)⊙ (Fng)), (8.3)

where F−1
n is the inverse discrete Fourier transform (IDFT). The fast Fourier transform (FFT) puts

the cost of (8.3) at O(n log n), a huge improvement over the naïve method.

Note

Although individual samples are real numbers, results of the IDFT may have small complex
components due to rounding errors. These complex components can be safely discarded by
taking only the real part of the output of the IDFT.

>>> import numpy
>>> from scipy.fftpack import fft, ifft # Fast DFT and IDFT functions.

>>> f = np.random.random(2048)
>>> f_dft_idft = ifft(fft(f)).real # Keep only the real part.
>>> np.allclose(f, f_dft_idft) # Check that IDFT(DFT(f)) = f.
True

Achtung!

SciPy uses a different convention to define the DFT and IDFT than this and the previous lab,
resulting in a slightly different form of the convolution theorem. Writing SciPy’s DFT as F̂n

and its IDFT as F̂−1
n , we have F̂n = nFn, so (8.3) becomes

f ∗ g = F̂−1
n ((F̂nf)⊙ (F̂ng)), (8.4)

without a factor of n. Use (8.4), not (8.3), when using fft() and ifft() from scipy.fftpack.

Circular Convolution

The definition (8.1) and the identity (8.3) require f and g to be periodic vectors. However, the
convolution f ∗g can always be computed by simply treating each vector as periodic. The convolution
of two raw sample vectors is therefore called the periodic or circular convolution. This strategy mixes
sounds from the end of each signal with sounds at the beginning of each signal.

Problem 1.
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Implement the __mul__() magic method for the SoundWave class so that if A and B are
SoundWave instances, A * B creates a new SoundWave object whose samples are the circu-
lar convolution of the samples from A and B. If the samples from A and B are not the same
length, append zeros to the shorter array to make them the same length before convolving. Use
scipy.fftpack and (8.4) to compute the convolution, and raise a ValueError if the sample
rates from A and B are not equal.

A circular convolution creates an interesting effect on a signal when convolved with a
segment of white noise: the sound loops seamlessly from the end back to the beginning. To
see this, generate two seconds of white noise (at the same sample rate as tada.wav) with the
following code.

>>> rate = 22050 # Create 2 seconds of white noise at a given rate.
>>> white_noise = np.random.randint(-32767, 32767, rate*4, dtype=np.int16)

Next, convolve tada.wav with the white noise. Finally, use the >> operator to append the
convolution result to itself. This final signal sounds the same from beginning to end, even
though it is the concatenation of two signals. Make sure to embed both results in the notebook.

Linear Convolution

Although circular convolutions can give interesting results, most common sound mixtures do not
combine sounds at the beginning of one signal with sounds at the end of another. Whereas circular
convolution assumes that the samples represent a full period of a periodic function, linear convolution
aims to combine non-periodic discrete signals in a way that prevents the beginnings and endings from
interacting. Given two samples with lengths n and m, the simplest way to achieve this is to pad both
samples with zeros so that they each have length n+m− 1, compute the convolution of these larger
arrays, and take the first n+m− 1 entries of that convolution.

Problem 2.

Implement the __pow__() magic method for the SoundWave class so that if A and B are
SoundWave instances, A ** B creates a new SoundWave object whose samples are the linear
convolution of the samples from A and B. Raise a ValueError if the sample rates from A and
B are not equal.

Because scipy.fftpack performs best when the length of the inputs is a power of 2, start
by computing the smallest 2a such that 2a ≥ n +m − 1, where a ∈ N and n and m are the
number of samples from A and B, respectively. Append zeros to each sample so that they each
have 2a entries, then compute the convolution of these padded samples using (8.4). Use only
the first n+m− 1 entries of this convolution as the samples of the returned SoundWave object.

To test your method, read CGC.wav and GCG.wav. Time (separately) the convolution of
these signals with SoundWave.__pow__() and with scipy.signal.fftconvolve(). Compare
the results by listening to the original and convolved signals. Embed all results in the notebook.
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Problem 3. Clapping in a large room with an echo produces a sound that resonates in the
room for up to several seconds. This echoing sound is referred to as the impulse response of
the room, and is a way of approximating the acoustics of a room. When the sound of a single
instrument in a carpeted room is convolved with the impulse response from a concert hall, the
new signal sounds as if the instrument is being played in the concert hall.

The file chopin.wav contains a short clip of a piano being played in a room with little or no
echo, and balloon.wav is a recording of a balloon being popped in a room with a substantial
echo (the impulse). Use your method from Problem 2 or scipy.signal.fftconvolve() to
compute the linear convolution of chopin.wav and balloon.wav. Make sure to embed the
original files and the convolved file in the notebook.

Filtering Frequencies with the DFT
The DFT also provides a way to clean a signal by altering some of its frequencies. Consider
noisy1.wav, a noisy recording of a short voice clip. The time-domain plot of the signal only shows
that the signal has a lot of static. On the other hand, the signal’s DFT suggests that the static may
be the result of some concentrated noise between about 1250–2600 Hz. Removing these frequencies
could result in a much cleaner signal.
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Figure 8.1: The time-domain plot (left) and DFT (right) of noisy1.wav.

To implement this idea, recall that the kth entry of the DFT array c = Fnf corresponds to the
frequency v = kr/n in Hertz, where r is the sample rate and n is the number of samples. Hence,
the DFT entry ck corresponding to a given frequency v in Hertz has index k = vn/r, rounded to an
integer if needed. In addition, since the DFT is symmetric, cn−k also corresponds to this frequency.
This suggests a strategy for filtering out an unwanted interval of frequencies [vlow, vhigh] from a signal:

1. Compute the integer indices klow and khigh corresponding to vlow and vhigh, respectively.

2. Set the entries of the signal’s DFT from klow to khigh and from n − khigh to n − klow to zero,
effectively removing those frequencies from the signal.

3. Take the IDFT of the modified DFT to obtain the cleaned signal.

Using this strategy to filter noisy1.wav results in a much cleaner signal. However, any “good”
frequencies in the affected range are also removed, which may decrease the overall sound quality.
The goal, then, is to remove only as many frequencies as necessary.
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Figure 8.2: The time-domain plot (left) and DFT (right) of noisy1.wav after being cleaned.

Problem 4. Add a method to the SoundWave class that accepts two frequencies vlow and vhigh

in Hertz. Compute the DFT of the stored samples and zero out the frequencies in the range
[vlow, vhigh] (remember to account for the symmetry DFT). Take the IDFT of the altered array
and store it as the sample array.

Test your method by cleaning noisy1.wav. Then clean noisy2.wav, which also has some
artificial noise that obscures the intended sound. Embed the original and cleaned versions of
both files in the notebook.
(Hint: plot the DFT of noisy2.wav to determine which frequencies to eliminate.)

A digital audio signal made of a single sample vector with is called monoaural or mono. When
several sample vectors with the same sample rate and number of samples are combined into a matrix,
the overall signal is called stereophonic or stereo. This allows multiple speakers to each play one
channel—one of the original sample vectors—simultaneously. “Stereo” usually means there are two
channels, but there may be any number of channels (5.1 surround sound, for instance, has five).

Most stereo sounds are read as n×m matrices, where n is the number of samples and m is the
number of channels (i.e., each column is a channel). However, some functions, including Jupyter’s
embedding tool IPython.display.Audio(), receive stereo signals as m× n matrices (each row is a
channel). Be aware that both conventions are common.

Problem 5. During the 2010 World Cup in South Africa, large plastic horns called vuvuzelas
were blown excessively throughout the games. Broadcasting organizations faced difficulties with
their programs due to the incessant noise level. Eventually, audio filtering techniques were used
to cancel out the sound of the vuvuzela, which has a frequency of around 200–500 Hz.

The file vuvuzela.wava is a stereo sound with two channels. Use your function from
Problem 4 to clean the sound clip by filtering out the vuvuzela frequencies in each channel.
Recombine the two cleaned samples. Embed the original and cleaned versions in the notebook.

aSee https://www.youtube.com/watch?v=g_0NoBKWCT8.

https://www.youtube.com/watch?v=g_0NoBKWCT8
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The Two-dimensional Discrete Fourier Transform

The DFT can be easily extended to any number of dimensions. Computationally, the problem reduces
to performing the usual one-dimensional DFT iteratively along each of the dimensions. For example,
to compute the two-dimensional DFT of an m × n matrix, calculate the usual DFT of each of the
n columns, then take the DFT of each of the m rows of the resulting matrix. Calculating the two-
dimensional IDFT is done in a similar fashion, but in reverse order: first calculate the IDFT of the
rows, then the IDFT of the resulting columns.

>>> from scipy.fftpack import fft2, ifft2

>>> A = np.random.random((10, 10))
>>> A_dft = fft2(A) # Calculate the 2d DFT of A.
>>> A_dft_ifft = ifft2(A_dft).real # Calculate the 2d IDFT.
>>> np.allclose(A, A_dft_ifft)
True

Just as the one-dimensional DFT can be used to remove noise in sounds, its two-dimensional
counterpart can be used to remove “noise” in images. The procedure is similar to the filtering
technique in Problems 4 and 5: take the two-dimensional DFT of the image matrix, modify certain
entries of the DFT matrix to remove unwanted frequencies, then take the IDFT to get a cleaner
version of the original image. This strategy makes the fairly strong assumption that the noise in
the image is periodic and corresponds to certain frequencies. While this may seem like an unlikely
scenario, it does actually occur in many digital images—for an example, try taking a picture of a
computer screen with a digital camera.

To begin cleaning an image with the DFT, take the two-dimensional DFT of the image matrix.
Identify spikes—abnormally high frequency values that may be causing the noise—in the image DFT
by plotting the log of the magnitudes of the Fourier coefficients. With cmap="gray", spikes show up
as bright spots. See Figures 8.3a–8.3b.

# Read the image.
>>> from imageio.v3 import imread
>>> image = imread("noisy_face.png")

# Plot the log magnitude of the image's DFT.
>>> im_dft = fft2(image)
>>> plt.imshow(np.log(np.abs(im_dft)), cmap="gray")
>>> plt.show()

Instead of setting spike frequencies to zero (as was the case for sounds), replace them with
values that are similar to those around them. There are many ways to do this, but one convention
is to simply “patch” each spike by setting portions of the DFT matrix to some set value, such as the
mean of the DFT array. See Figure 8.3d.

Once the spikes have been covered, take the IDFT of the modified DFT to get a (hopefully
cleaner) image. Notice that Figure 8.3c still has noise present, but it is a slight improvement over the
original. However, it often suffices to remove some of the noise, even if it is not possible to remove
it all with this method.
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(a) The original blurry image. (b) The DFT of the original image.

(c) The improved image. (d) The DFT of the improved image.

Figure 8.3: To remove noise from an image, take the DFT of the image and replace the abnormalities
with values more consistent with the rest of the DFT. Notice that the new image is less noisy, but
only slightly. This is because only some of the abnormalities in the DFT were changed; in order to
further decrease the noise, we would need to further alter the DFT.

Problem 6. The file license_plate.png contains a noisy image of a license plate. The bottom
right corner of the plate has is a sticker with information about the month and year that the
vehicle registration was renewed. However, in its current state, the year is not clearly legible.

Use the two-dimensional DFT to clean up the image enough so that the year in the bottom
right corner is legible. This may require a little trial and error. Compare the noisy and cleaned
images side by side in subplots and identify the year on the sticker.
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9 Introduction to
Wavelets

Lab Objective: Wavelets are used to sparsely represent information. This makes them useful in
a variety of applications. We explore both the one- and two-dimensional discrete wavelet transforms
using various types of wavelets. We then use a Python package called PyWavelets for further wavelet
analysis including image cleaning and image compression.

Wavelet Functions
Wavelets families are sets of orthogonal functions (wavelets) designed to decompose nonperiodic,
piecewise continuous functions. These families have four types of wavelets: mother, daughter, father,
and son functions. Father and son wavelets contain information related to the general movement of
the function, while mother and daughter wavelets contain information related to the details of the
function. The father and mother wavelets are the basis of a family of wavelets. Son and daughter
wavelets are just scaled translates of the father and mother wavelets, respectively.

Haar Wavelets

The Haar Wavelet family is one of the most widely used wavelet families in wavelet analysis. This
set includes the father, mother, son, and daughter wavelets defined below. The Haar father (scaling)
function is given by

φ(x) =

{
1 if 0 ≤ x < 1

0 otherwise.

The Haar son wavelets are scaled and translated versions of the father wavelet:

φjk(x) = φ(2jx− k) =

{
1 if k

2j ≤ x <
k+1
2j

0 otherwise.

The Haar mother wavelet function is defined as

ψ(x) =


1 if 0 ≤ x < 1

2

−1 if 1
2 ≤ x < 1

0 otherwise.

The Haar daughter wavelets are scaled and translated versions of the mother wavelet

ψjk = ψ(2jx− k)
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Wavelet Decompositions

Information (such as a mathematical function or signal) can be stored and analyzed by considering
its wavelet decomposition. A wavelet decomposition is a linear combination of wavelets. For example,
a mathematical function f can be approximated as a combination of Haar son and daughter wavelets
as follows:

f(x) =

∞∑
k=−∞

akφm,k(x) +

∞∑
k=−∞

bm,kψm,k(x) + · · ·+
∞∑

k=−∞

bn,kψn,k(x)

where m < n, and all but a finite number of the ak and bj,k terms are nonzero. The ak terms are
often referred to as approximation coefficients while the bj,k terms are known as detail coefficients.
The approximation coefficients typically capture the broader, more general features of a signal while
the detail coefficients capture smaller details and noise.

A wavelet decomposition can be done with any family of wavelet functions. Depending on the
properties of the wavelet and the function (or signal) f , f can be approximated to an arbitrary level
of accuracy. Each arbitrary wavelet family has a mother wavelet ψ and a father wavelet φ which are
the basis of the family. A countably infinite set of wavelet functions (daughter and son wavelets) can
be generated using dilations and shifts of the first two functions where m, k ∈ Z:

ψm,k(x) = ψ(2mx− k)
φm,k(x) = φ(2mx− k).

The Discrete Wavelet Transform

The mapping from a function to a sequence of wavelet coefficients is called the discrete wavelet
transform. The discrete wavelet transform is analogous to the discrete Fourier transform. Now,
instead of using trigonometric functions, different families of basis functions are used.

In the case of finitely-sampled signals and images, there exists an efficient algorithm for com-
puting the wavelet decomposition. Commonly used wavelets have associated high-pass and low-pass
filters which are derived from the wavelet and scaling functions, respectively.

When the low-pass filter is convolved with the sampled signal, low frequency (also known as
approximation) information is extracted. This is similar to turning up the bass on a speaker, which
extracts the low frequencies of a sound wave. This filter highlights the overall (slower-moving) pattern
without paying too much attention to the high frequency details and extracts the approximation
coefficients.

When the high-pass filter is convolved with the sampled signal, high frequency information (also
known as detail) is extracted. This is similar to turning up the treble on a speaker, which extracts
the high frequencies of a sound wave. This filter highlights the small changes found in the signal and
extracts the detail coefficients.

The two primary operations of the algorithm are the discrete convolution and downsampling,
denoted ∗ and DS, respectively. First, a signal is convolved with both filters. The convolutions fold
the signal back on itself so the resulting array is the same size but half the information is duplicated,
downsampling is then required to eliminate the repeated information. In the context of this lab, a
filter bank is the combined process of convolving with a filter, and then downsampling. The result will
be an array of approximation coefficients A and an array of detail coefficients D. This process can be
repeated on the new approximation to obtain another layer of approximation and detail coefficients.
See Figure 9.1.



105

A common lowpass filter is the averaging filter. Given an array x, the averaging filter produces
an array y where yn is the average of xn and xn−1. In other words, the averaging filter convolves an
array with the array L =

[
1
2

1
2

]
. This filter preserves the main idea of the data. The corresponding

highpass filter is the distance filter. Given an array x, the distance filter produces an array y where
yn is the distance between xn and xn−1 (|xn − xn−1|). In other words, the difference filter convolves
an array with the array H =

[
− 1

2
1
2

]
. This filter preserves the details of the data.

For the Haar Wavelet, we will use the lowpass and highpass filters mentioned. In order for
this filters to have inverses, the filters must be normalized (for more on why this is, see Additional
Materials). The resulting lowpass and highpass filters for the Haar Wavelets are the following:

L =
[√

2
2

√
2
2

]
H =

[
−

√
2
2

√
2
2

]

Aj

Lo

Hi

Aj+1

Dj+1

Key: = convolve = downsample

Figure 9.1: The one-dimensional discrete wavelet transform implemented as a filter bank.

As noted earlier, the key mathematical operations of the discrete wavelet transform are con-
volution and downsampling. Given a filter and a signal, the convolution can be obtained using
scipy.signal.fftconvolve().

>>> from scipy.signal import fftconvolve
>>> # Initialize a filter.
>>> L = np.ones(2)/np.sqrt(2)
>>> # Initialize a signal X.
>>> X = np.sin(np.linspace(0, 2*np.pi, 16))
>>> # Convolve X with L.
>>> fftconvolve(X, L)
[ -1.84945741e-16 2.87606238e-01 8.13088984e-01 1.19798126e+00

1.37573169e+00 1.31560561e+00 1.02799937e+00 5.62642704e-01
7.87132986e-16 -5.62642704e-01 -1.02799937e+00 -1.31560561e+00

-1.37573169e+00 -1.19798126e+00 -8.13088984e-01 -2.87606238e-01
-1.84945741e-16]
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The convolution operation alone gives redundant information, so it is downsampled to keep
only what is needed. The array will be downsampled by a factor of 2, which means keeping only
every other entry:

>>> # Downsample an array X.
>>> sampled = X[1::2] # Keeps odd entries

Both the approximation and detail coefficients are computed in this manner. The approximation
uses the low-pass filter while the detail uses the high-pass filter. Implementation of a filter bank is
found in Algorithm 1.

Algorithm 1 The one-dimensional discrete wavelet transform. X is the signal to be transformed,
L is the low-pass filter, H is the high-pass filter and n is the number of filter bank iterations.
1: procedure dwt(X,L,H, n)
2: A0 ← X ▷ Initialization.
3: for i = 0 . . . n− 1 do
4: Di+1 ← DS(Ai ∗H) ▷ High-pass filter and downsample.
5: Ai+1 ← DS(Ai ∗ L) ▷ Low-pass filter and downsample.
6: return An, Dn, Dn−1, . . . , D1.

Problem 1. Write a function that calculates the discrete wavelet transform using Algorithm
1. The function should return a list of one-dimensional NumPy arrays in the following form:
[An, Dn, . . . , D1].

Test your function by calculating the Haar wavelet coefficients of a noisy sine signal with
n = 4:

domain = np.linspace(0, 4*np.pi, 1024)
noise = np.random.randn(1024)*.1
noisysin = np.sin(domain) + noise
coeffs = dwt(noisysin, L, H, 4)

Plot the original signal with the approximation and detail coefficients and verify that they
match the plots in Figure 9.2.
(Hint: Use array broadcasting).

Note: the plots in your jupyter notebook do not have to be labeled exactly like those in
9.2. As long as the signals are clearly visible that is enough.
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Figure 9.2: A level four wavelet decomposition of a signal. The top panel is the original signal, the
next panel down is the approximation, and the remaining panels are the detail coefficients. Notice
how the approximation resembles a smoothed version of the original signal, while the details capture
the high-frequency oscillations and noise.

Inverse Discrete Wavelet Transform

The process of the discrete wavelet transform is reversible. Using modified filters, a set of detail and
approximation coefficients can be manipulated and combined to recreate a signal. The Haar wavelet
filters for the inverse transformation are found by reversing the operations for each filter. The Haar
inverse filters are given below:

L−1 =
[√

2
2

√
2
2

]
H−1 =

[√
2
2 −

√
2
2

]
The first row refers to the inverse high-pass filter and the second row refers to the inverse low-pass
filter.

Suppose the wavelet coefficients An and Dn have been computed. An−1 can be recreated
by tracing the schematic in Figure 9.1 backwards: An and Dn are first upsampled, and then are
convolved with the inverse low-pass and high-pass filters, respectively. In the case of the Haar
wavelet, upsampling involves doubling the length of an array by inserting a 0 at every other position.
To complete the operation, the new arrays are convolved and added together to obtain An−1.

>>> # Upsample the coefficient arrays A and D.
>>> up_A = np.zeros(2*A.size)
>>> up_A[::2] = A
>>> up_D = np.zeros(2*D.size)
>>> up_D[::2] = D
>>> # Convolve and add, discarding the last entry.
>>> A = fftconvolve(up_A, L)[:-1] + fftconvolve(up_D, H)[:-1]

This process is continued with the newly obtained approximation coefficients and with the next
detail coefficients until the original signal is recovered.
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Problem 2. Write a function that performs the inverse wavelet transform. The function should
accept three things as arguments: a list of arrays (of the same form as the output of Problem
1), a reverse low-pass filter, and a reverse high-pass filter. The function should return a single
array, which represents the recovered signal.

Note that the input list of arrays has length n + 1 (consisting of An together with
Dn, Dn−1, . . . , D1). Your code should run once per Di matrix so it should execute a total
of n times.

To test your function, first perform the inverse transform on the noisy sine wave that you
created in the first problem. Then, compare the original signal with the signal recovered by
your inverse wavelet transform function using np.allclose().

Achtung!

Although Algorithm 1 and the preceding discussion apply in the general case, the code imple-
mentations apply only to the Haar wavelet. Because of the nature of the discrete convolution,
when convolving with longer filters, the signal to be transformed needs to undergo a different
type of lengthening in order to avoid information loss during the convolution. As such, the
functions written in Problems 1 and 2 will only work correctly with the Haar filters and would
require modifications to be compatible with more wavelets.

The Two-dimensional Wavelet Transform

The generalization of the wavelet transform to two dimensions is similar to one dimensional trans-
forms. Again, the two primary operations used are convolution and downsampling. The main
difference in the two-dimensional case is the number of convolutions and downsamples per iteration.
First, the convolution and downsampling are performed along the rows of an array. This results in
two new arrays, as in the one dimensional case. Then, convolution and downsampling are performed
along the columns of the two new arrays. This results in four final arrays that make up the new
approximation and detail coefficients. See Figure 9.3.

When implemented as an iterative filter bank, each pass through the filter bank yields one
set of approximation coefficients plus three sets of detail coefficients. More specifically, if the two-
dimensional array X is the input to the filter bank, the arrays Approx, H, V , and D are obtained.
Approx is a smoothed approximation of X (similar to An in the one-dimensional case), and the other
three arrays contain detail coefficients that capture high-frequency oscillations in horizontal (H),
vertical (V ), and diagonal (D) directions. The arrays A, H, V , and D are known as subbands. Any
or all of the subbands can be fed into a filter bank to further decompose the signal into additional
subbands. This decomposition can be represented by a partition of a rectangle, called a subband
pattern. The subband pattern for one pass of the filter bank is shown in Figure 9.4, with an example
of an image decomposition given in Figure 9.5.
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Figure 9.3: The two-dimensional discrete wavelet transform implemented as a filter bank.
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Figure 9.4: The subband pattern for one step in the 2-dimensional wavelet transform.
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Figure 9.5: Subbands for the mandrill image after one pass through the filter bank. Note how the
upper left subband (A) is an approximation of the original Mandrill image, while the other three
subbands highlight the stark vertical, horizontal, and diagonal changes in the image.
Original image source: http://sipi.usc.edu/database/.

The wavelet coefficients obtained from a two-dimensional wavelet transform are used to ana-
lyze and manipulate images at differing levels of resolution. Images are often sparsely represented
by wavelets; that is, most of the image information is captured by a small subset of the wavelet
coefficients. This is a key fact for wavelet-based image compression and will be discussed in further
detail later in the lab.

The PyWavelets Module
PyWavelets is a Python package designed for wavelet analysis. Although it has many other uses,
in this lab it will primarily be used for image manipulation. PyWavelets can be installed using the
following command:

$ pip install PyWavelets

http://sipi.usc.edu/database/
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PyWavelets provides a simple way to calculate the subbands resulting from one pass through
the filter bank. The following code demonstrates how to find the approximation and detail subbands
of an image.

>>> from imageio.v3 import imread
>>> import pywt # The PyWavelets package.
# The True parameter produces a grayscale image.
>>> mandrill = imread('mandrill1.png', cmap=True)
# Use the Daubechies 4 wavelet with periodic extension.
>>> lw = pywt.dwt2(mandrill, 'db4', mode='per')

The function pywt.dwt2() calculates the subbands resulting from one pass through the filter
bank. The second positional argument specifies the type of wavelet to be used in the transform. The
mode keyword argument sets the extension mode, which determines the type of padding used in the
convolution operation. For the problems in this lab, always use mode='per', which is the periodic
extension. The function dwt2() returns a tuple. The first entry of the list is the A, or approximation,
subband. The second entry of the list is a separate tuple containing the remaining subbands, H, V ,
and D (in that order).

PyWavelets supports a number of different wavelets which are divided into different classes
known as families. The supported families and their wavelet instances can be listed by executing the
following code:

>>> # List the available wavelet families.
>>> print(pywt.families())
['haar', 'db', 'sym', 'coif', 'bior', 'rbio', 'dmey', 'gaus', 'mexh', 'morl', '←↩

cgau', 'shan', 'fbsp', 'cmor']
>>> # List the available wavelets in a given family.
>>> print(pywt.wavelist('coif'))
['coif1', 'coif2', 'coif3', 'coif4', 'coif5', 'coif6', 'coif7', 'coif8', 'coif9←↩

', 'coif10', 'coif11', 'coif12', 'coif13', 'coif14', 'coif15', 'coif16', '←↩
coif17']

It’s important to note that the names from the wavelist are what we use when we call dwt2.
Sometimes the name of a family will also exist as a wavelet transform in the wave list, but not
always. Different wavelets have different properties; the most suitable wavelet is dependent on the
specific application. For example, the morlet wavelet is closely related to human hearing and vision.
Note that not all of these families work with the function pywt.dwt2(), because they are continuous
wavelets. Choosing which wavelet is used is partially based on the properties of a wavelet, but since
many wavelets share desirable properties, the best wavelet for a particular application is often not
known without some type of testing.

Note

The numerical value in a wavelets name refers to the filter length. This value is multiplied by
the standard filter length of the given wavelet, resulting in the new filter length. For example,
coif1 has filter length 6 and coif2 has filter length 12.
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Problem 3. Explore the two-dimensional wavelet transform by completing the following:

1. Save a picture of a raccoon with the following code

>>> from scipy.misc import face
>>> raccoon = face(True)

2. Plot the subbands of raccoon as described above (using the Daubechies 4 wavelet with
periodic extension). Compare this with the subbands of the mandrill image shown in
Figure 9.5.

3. Compare the subband patterns of the haar, symlet, and coiflet wavelets of the raccoon
picture by plotting the subbands after one pass through the filter bank. The haar subband
should have more detail than the symlet subband, and the symlet subband should have
more detail than the coiflet wavelet.

A few Hints: for plotting, find a function that will plot an image given an array. Also, when
plotting the transformations that represent the horizontal, vertical, or diagonal components of
the image take np.abs() of the array when you plot it. This will radicalize the array and make
its detections easier to view. Finally, you will run into an error if you try to use just 'sym' as
an argument. Consider why this could be and how you might find the proper argument to use.

The function pywt.wavedec2() is similar to pywt.dwt2(), but it also includes a keyword ar-
gument, level, which specifies the number of times to pass an image through the filter bank. It
will return a list of subbands, the first of which is the final approximation subband, while the
remaining elements are tuples which contain sets of detail subbands (H, V , and D). For ex-
ample, if I were to call pywt.wavedec2 with level=4, the output would be of the form [Approx,
(H4,V4,D4),(H3,V3,D3),(H2,V2,D2),(H1,V1,D1)].

If level is not specified, the number of passes through the filter bank will be the maximum
level where the decomposition is still useful. The function pywt.waverec2() accepts a list of subband
patterns (like the output of pywt.wavedec2() or pywt.dwt2()), a name string denoting the wavelet,
and a keyword argument mode for the extension mode. It returns a reconstructed image using
the reverse filter bank. When using this function, be sure that the wavelet and mode match the
deconstruction parameters. PyWavelets has many other useful functions including dwt(), idwt
() and idwt2() which can be explored further in the documentation for PyWavelets, https://
pywavelets.readthedocs.io/en/latest/index.html.

Applications

Noise Reduction

Noise in an image is defined as unwanted visual artifacts that obscure the true image. Images acquire
noise from a variety of sources, including cameras, data transfer, and image processing algorithms.
This section will focus on reducing a particular type of noise in images called Gaussian white noise.

https://pywavelets.readthedocs.io/en/latest/index.html
https://pywavelets.readthedocs.io/en/latest/index.html
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Gaussian white noise causes every pixel in an image to be perturbed by a small amount. Many
types of noise, including Gaussian white noise, are very high-frequency. Since many images are
relatively sparse in high-frequency domains, noise in an image can be safely removed from the high
frequency subbands while minimally distorting the true image. A basic, but effective, approach to
reducing Gaussian white noise in an image is thresholding. Thresholding can be done in two ways,
referred to as hard and soft thresholding.

Given a positive threshold value τ , hard thresholding sets every detail coefficient whose mag-
nitude is less than τ to zero, while leaving the remaining coefficients untouched. Soft thresholding
also zeros out all coefficients of magnitude less than τ , but in addition maps the remaining positive
coefficients β to β − τ and the remaining negative coefficients α to α+ τ .

Once the coefficients have been thresholded, the inverse wavelet transform is used to recover
the denoised image. The threshold value is generally a function of the variance of the noise, and in
real situations, is not known. In fact, noise variance estimation in images is a research area in its
own right, but that goes beyond the scope of this lab.

Problem 4. Write two functions that accept a list of wavelet coefficients in the usual form,
as well as a threshold value. Each function returns the thresholded wavelet coefficients (also in
the usual form). The first function should implement hard thresholding and the second should
implement soft thresholding. While writing these two functions, remember that only the detail
coefficients (meaning the elements of H,V, or D arrays) are thresholded, so the first entry of
the input coefficient list (The A matrix) should remain unchanged.

To test your functions, perform hard and soft thresholding on noisy_darkhair.png and
plot the resulting images together. When testing your function, use the Daubechies 4 wavelet
and four sets of detail coefficients (level=4 when using wavedec2()). For soft thresholding use
τ = 20, and for hard thresholding use τ = 40.
Some notes:

1. Masking will be helpful however it’s important to consider the order in which you change
values since adjusting certain values by τ initially can skew which conditions that value
satisfies. Use your masks in a safe order.

2. In previous problems there was only one tuple of detail coefficients now there may be
more. Make sure your code is robust enough to handle any number of tuples of detail
coefficients.

3. Remember to recompose your image before attempting to plot the images. Details on
how to use waverec2() are found in the reading above.

Image Compression

Transform methods based on Fourier and wavelet analysis play an important role in image compres-
sion; for example, the popular JPEG image compression standard is based on the discrete cosine
transform. The JPEG2000 compression standard and the FBI Fingerprint Image database, along
with other systems, take the wavelet approach.
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The general framework for compression is as follows. First, the image to be compressed under-
goes some form of preprocessing, depending on the particular application. Next, the discrete wavelet
transform is used to calculate the wavelet coefficients, and these are then quantized, i.e. mapped to
a set of discrete values (for example, rounded to the nearest integer). The quantized coefficients are
then passed through an entropy encoder (such as Huffman Encoding), which reduces the number
of bits required to store the coefficients. What remains is a compact stream of bits that can be
saved or transmitted much more efficiently than the original image. The steps above are nearly all
invertible (the only exception being quantization), allowing the original image to be almost perfectly
reconstructed from the compressed bitstream. See Figure 9.6.

Image Pre-Processing Wavelet Decomposition

Quantization Entropy Coding Bit Stream

Figure 9.6: Wavelet Image Compression Schematic

WSQ: The FBI Fingerprint Image Compression Algorithm

The Wavelet Scalar Quantization (WSQ) algorithm is among the first successful wavelet-based image
compression algorithms. It solves the problem of storing millions of fingerprint scans efficiently while
meeting the law enforcement requirements for high image quality. This algorithm is capable of
achieving compression ratios in excess of 10-to-1 while retaining excellent image quality; see Figure
9.7. This section of the lab steps through a simplified version of this algorithm by writing a Python
class that performs both the compression and decompression. Differences between this simplified
algorithm and the complete algorithm are found in the Additional Material section at the end of this
lab. Most of the methods of the class have already been implemented. The following problems will
detail the methods you will need to implement yourself.

(a) Uncompressed (b) 12:1 compressed (c) 26:1 compressed

Figure 9.7: Fingerprint scan at different levels of compression. Original image source: http://www.
nist.gov/itl/iad/ig/wsq.cfm.

http://www.nist.gov/itl/iad/ig/wsq.cfm
http://www.nist.gov/itl/iad/ig/wsq.cfm
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WSQ: Preprocessing

Preprocessing in this algorithm ensures that roughly half of the new pixel values are negative, while
the other half are positive, and all fall in the range [−128, 128]. The input to the algorithm is a
matrix of nonnegative 8-bit integer values giving the grayscale pixel values for the fingerprint image.
The image is processed by the following formula:

M ′ =
M −m

s
,

where M is the original image matrix, M ′ is the processed image, m is the mean pixel value, and
s = max{max(M) −m,m − min(M)}/128 (here max(M) and min(M) refer to the maximum and
minimum pixel values in the matrix). We’ve provided the code for this part of the algorithm.

WSQ: Calculating the Wavelet Coefficients

The next step in the compression algorithm is decomposing the image into subbands of wavelet
coefficients. In this implementation of the WSQ algorithm, the image is decomposed into five sets
of detail coefficients (level=5) and one approximation subband, as shown in Figure 9.8. Each of
these subbands should be placed into a list in the same ordering as in Figure 9.8 (another way
to consider this ordering is the approximation subband followed by each level of detail coefficients
[A,H5, V5, D5, H4, V4, . . . , D1]).

Problem 5. Implement the class method decompose(). This function should accept an image
to decompose and should return a list of ordered subbands. Use the function pywt.wavedec2()
with the 'coif1' wavelet to obtain the subbands. These subbands should then be ordered in
a single list as described above.

Implement the inverse of the decomposition by writing the class method recreate().
This function should accept a list of 16 subbands (ordered like the output of decompose()) and
should return a reconstructed image. Use pywt.waverec2() to reconstruct an image from the
subbands. Note that you will need to adjust the accepted list in order to adhere to the required
input for waverec2().
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Figure 9.8: Subband Pattern for simplified WSQ algorithm.

WSQ: Quantization

Quantization is the process of mapping each wavelet coefficient to an integer value and is the main
source of compression in the algorithm. By mapping the wavelet coefficients to a relatively small set
of integer values, the complexity of the data is reduced, which allows for efficient encoding of the
information in a bit string. Further, a large portion of the wavelet coefficients will be mapped to 0 and
discarded completely. The fact that fingerprint images tend to be very nearly sparse in the wavelet
domain means that little information is lost during quantization. Care must be taken, however, to
perform this quantization in a manner that achieves good compression without discarding so much
information that the image cannot be accurately reconstructed.

Given a wavelet coefficient a in subband k, the corresponding quantized coefficient p is given
by

p =


⌊
a−Zk/2

Qk

⌋
+ 1, a > Zk/2

0, −Zk/2 ≤ a ≤ Zk/2⌈
a+Zk/2

Qk

⌉
− 1, a < −Zk/2,

where Zk and Qk are dependent on the subband. They determine how much compression is achieved.
If Qk = 0, all coefficients are mapped to 0.

An array of detail coefficients (such as H) can be quantized by running each value of the array
through the piecewise function.

Selecting appropriate values for Zk and Qk is a tricky problem in itself, and relies on heuristics
based on the statistical properties of the wavelet coefficients. The methods that calculate these values
have already been initialized.



117

Quantization is not a perfectly invertible process. Once the wavelet coefficients have been
quantized, some information is permanently lost. However, wavelet coefficients âk in subband k can
be roughly reconstructed from the quantized coefficients p using

âk =


(p− C)Qk + Zk/2, p > 0

0, p = 0

(p+ C)Qk − Zk/2, p < 0,

where C is a new dequanitization parameter. This process is called dequantization. Again, if Qk = 0,
âk = 0 should be returned.

Problem 6. Implement the quantization step by writing the quantize() method of your class.
This method should accept a NumPy array of coefficients and the quantization parameters Qk

and Zk. The function should return a NumPy array of the quantized coefficients.
Also implement the dequantize() method of your class using the formula given above.

This function should accept the same parameters as quantize() as well as a parameter C which
defaults to .44. The function should return a NumPy array of dequantized coefficients.

(Hint: Masking and array slicing will help keep your code short and fast when implement-
ing both of these methods. Remember the case for Qk = 0. Test your functions by comparing
the output of your functions to a hand calculation on a small matrix.)

WSQ: The Rest

The remainder of the compression and decompression methods have already been implemented in
the WSQ class. The following discussion explains the basics of what happens in those methods.
Once all of the subbands have been quantized, they are divided into three groups. The first group
contains the smallest ten subbands (positions zero through nine), while the next two groups contain
the three subbands of next largest size (positions ten through twelve and thirteen through fifteen,
respectively). All of the subbands of each group are then flattened and concatenated with the other
subbands in the group. These three arrays of values are then mapped to Huffman indices. Since
the wavelet coefficients for fingerprint images are typically very sparse, special indices are assigned
to lists of sequential zeros of varying lengths. This allows large chunks of information to be stored
as a single index, greatly aiding in compression. The Huffman indices are then assigned a bit string
representation through a Huffman map.

Python does not natively include all of the tools necessary to work with bit strings, but the
Python package bitstring does have these capabilities. Download bitstring using the following com-
mand:

$ pip install bitstring

You will not use bitstring functions in this lab. but the code provided in the lab does call functions
from the bitstring module. So you’ll need to import the package with the following line of code:

>>> import bitstring as bs
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WSQ: Calculating the Compression Ratio

The methods of compression and decompression are now fully implemented. The final task is to
verify how much compression has taken place. The compression ratio is the ratio of the number of
bits in the original image to the number of bits in the encoding. Assuming that each pixel of the
input image is an 8-bit integer, the number of bits in the original image is just eight times the number
of pixels (the number of pixels in the original source image is stored in the class attribute _pixels).
The number of bits in the encoding can be calculated by adding up the lengths of each of the three
bit strings stored in the class attribute _bitstrings.

Problem 7. Implement the method get_ratio() by calculating the ratio of compression. The
function should not accept any parameters and should return the compression ratio.

Your compression algorithm is now complete! Test your class with the following code.
The compression ratio should be approximately 18.

# Try out different values of r between .1 to .9.
r = .5
finger = imread('uncompressed_finger.png', cmap=True)
wsq = WSQ()
wsq.compress(finger, r)
print(wsq.get_ratio())
new_finger = wsq.decompress()
plt.subplot(211)
plt.imshow(finger, cmap=plt.cm.Greys_r)
plt.subplot(212)
plt.imshow(np.abs(new_finger), cmap=plt.cm.Greys_r)
plt.show()
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Additional Material

Haar Wavelet Transform

The Haar Wavelet Transform is a general matrix transform used to convolve Haar Wavelets. It
is found by combining the convolution matrices for a lowpass and highpass filter such that one is
directly on top of the other. The lowpass filter is taking the average of every two elements in an
array and the highpass filter is taking the difference of every two elements in an array. Redundant
information given in the new matrix is then removed via downsampling. However, in order for the
transform matrix to have the property AT = A−1, the columns of the matrix must be normalized.
Thus, each column is normalized (and subsequently the filters) and the resulting matrix is the Haar
Wavelet Transform.

For more on the Haar Wavelet Transform, see Discrete Wavelet Transformations: An Elemen-
tary Approach with Applications by Patrick J. Van Fleet.

WSQ Algorithm

The official standard for the WSQ algorithm is slightly different from the version implemented in
this lab. One of the largest differences is the subband pattern that is used in the official algorithm;
this pattern is demonstrated in Figure 9.9. The pattern used may seem complicated and somewhat
arbitrary, but it is used because of the relatively good empirical results when used in compression.
This pattern can be obtained by performing a single pass of the 2-dimensional filter bank on the image
then passing each of the resulting subbands through the filter bank resulting in 16 total subbands.
This same process is then repeated with the A, H and V subbands of the original approximation
subband creating 46 additional subbands. Finally, the subband corresponding to the top left of
Figure 9.9 should be passed through the 2-dimensional filter bank a single time.

As in the implementation given above, the subbands of the official algorithm are divided into
three groups. The subbands 0 through 18 are grouped together, as are 19 through 51 and 52 through
63. The official algorithm also uses a wavelet specialized for image compression that is not included
in the PyWavelets distribution. There are also some slight modifications made to the implementation
of the discrete wavelet transform that do not drastically affect performance.
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Figure 9.9: True subband pattern for WSQ algorithm.



10 Polynomial
Interpolation

Lab Objective: Learn and compare three methods of polynomial interpolation: standard Lagrange
interpolation, Barycentric Lagrange interpolation and Chebyshev interpolation. Explore Runge’s phe-
nomenon and how the choice of interpolating points affect the results. Use polynomial interpolation
to study air pollution by approximating graphs of particulates in air.

Polynomial Interpolation
Polynomial interpolation is the method of finding a polynomial that matches a function at specific
points in its range. More precisely, if f(x) is a function on the interval [a, b] and p(x) is a poly-
nomial then p(x) interpolates the function f(x) at the points x0, x1, . . . , xn if p(xj) = f(xj) for all
j = 0, 1, . . . , n. In this lab most of the discussion is focused on using interpolation as a means of
approximating functions or data, however, polynomial interpolation is useful in a much wider array
of applications.

Given a function f(x) and a set of unique points {xi}ni=0, it can be shown that there exists
a unique interpolating polynomial p(x). That is, there is one and only one polynomial of degree n
that interpolates f(x) through those points. This uniqueness property is why, for the remainder of
this lab, an interpolating polynomial is referred to as the interpolating polynomial. One approach to
finding the unique interpolating polynomial of degree n is Lagrange interpolation.

Lagrange interpolation

Given a set {xi}ni=1 of n points to interpolate, a family of n basis functions with the following property
is constructed:

Lj(xi) =

{
0 if i ̸= j

1 if i = j
.

The Lagrange form of this family of basis functions is

Lj(x) =

n∏
k=1,k ̸=j

(x− xk)

n∏
k=1,k ̸=j

(xj − xk)
(10.1)
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(a) Interpolation using 5 equally spaced points.
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(b) Interpolation using 11 equally spaced points.

Figure 10.1: Interpolations of Runge’s function f(x) = 1
1+25x2 with equally spaced interpolating

points.

Each of these Lagrange basis functions is a polynomial of degree n−1 and has the necessary properties
as given above.

Problem 1. Define a function lagrange() that will be used to construct and evaluate an
interpolating polynomial on a domain of x values. The function should accept two NumPy
arrays of length n which contain the x and y values of the interpolating points as well as a
NumPy array of values of length m at which the interpolating polynomial will be evaluated.

Within lagrange(), write a subroutine that will evaluate each of the n Lagrange basis
functions at every point in the domain. It may be helpful to follow these steps:

1. Compute the denominator of each Lj (as in Equation 10.1) .

2. Using the previous step, evaluate Lj at all points in the computational domain (this will
give you m values for each Lj .)

3. Combine the results into an n×m NumPy array, consisting of each of the n Lj evaluated
at each of the m points in the domain.

You may find the functions np.product() and np.delete() to be useful while writing
this method.

Lagrange interpolation is completed by combining the Lagrange basis functions with the y-
values of the function to be interpolated yi = f(xi) in the following manner:

p(x) =

n∑
j=1

yjLj(x) (10.2)

This will create the unique interpolating polynomial.
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Since polynomials are typically represented in their expanded form with coefficients on each of
the terms, it may seem like the best option when working with polynomials would be to use Sympy, or
NumPy’s poly1d class to compute the coefficients of the interpolating polynomial individually. This
is rarely the best approach, however, since expanding out the large polynomials that are required can
quickly lead to instability (especially when using large numbers of interpolating points). Instead, it
is usually best just to leave the polynomials in unexpanded form (which is still a polynomial, just not
a pretty-looking one), and compute values of the polynomial directly from this unexpanded form.

# Evaluate the polynomial (x-2)(x+1) at 10 points without expanding the ←↩
expression.

>>> pts = np.arange(10)
>>> (pts - 2) * (pts + 1)
array([ 2, 0, 0, 2, 6, 12, 20, 30, 42, 56])

In the given example, there would have been no instability if the expression had actually been
expanded but in the case of a large polynomial, stability issues can dominate the computation.
Although the coefficients of the interpolating polynomials will not be explicitly computed in this lab,
polynomials are still being used, albeit in a different form.

Problem 2. Complete the implementation of lagrange().
Evaluate the interpolating polynomial at each point in the domain by combining the y

values of the interpolation points and the evaluated Lagrange basis functions from Problem
1 as in Equation 10.2. Return the final array of length m that consists of the interpolating
polynomial evaluated at each point in the domain.

You can test your function by plotting Runge’s function f(x) = 1
1+25x2 and your interpo-

lating polynomial on the same plot for different values of n equally spaced interpolating values
then comparing your plot to the plots given in Figure 10.1.

The Lagrange form of polynomial interpolation is useful in some theoretical contexts and is
easier to understand than other methods, however, it has some serious drawbacks that prevent it
from being a useful method of interpolation. First, Lagrange interpolation is O(n2) where other
interpolation methods are O(n2) (or faster) at startup but only O(n) at run-time, Second, Lagrange
interpolation is an unstable algorithm which causes it to return innacurate answers when larger num-
bers of interpolating points are used. Thus, while useful in some situations, Lagrange interpolation
is not desirable in most instances.

Barycentric Lagrange interpolation

Barycentric Lagrange interpolation is simple variant of Lagrange interpolation that performs much
better than plain Lagrange interpolation. It is essentially just a rearrangement of the order of
operations in Lagrange multiplication which results in vastly improved perfomance, both in speed
and stability.

Barycentric Lagrange interpolation relies on the observation that each basis function Lj can be
rewritten as

Lj(x) =
w(x)

(x− xj)
wj
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where

w(x) =

n∏
j=1

(x− xj)

and
wj =

1∏n
k=1,k ̸=j(xj − xk)

.

The wj ’s are known as the barycentric weights.
Using the previous equations, the interpolating polynomial can be rewritten

p(x) = w(x)

n∑
j=1

wjyj
x− xj

which is the first barycentric form. The computation of w(x) can be avoided by first noting that

1 = w(x)

n∑
j=1

wj

x− xj

which allows the interpolating polynomial to be rewriten as

p(x) =

n∑
j=1

wjyj
x− xj

n∑
j=1

wj

x− xj

This form of the Lagrange interpolant is known as the second barycentric form which is the form
used in Barycentric Lagrange interpolation. So far, the changes made to Lagrange interpolation have
resulted in an algorithm that is O(n) once the barycentric weights (wj) are known. The following
adjustments will improve the algorithm so that it is numerically stable and later discussions will
allow for the quick addition of new interpolating points after startup.

The second barycentric form makes it clear that any factors that are common to the wk can
be ignored (since they will show up in both the numerator and denominator). This allows for an
important improvement to the formula that will prevent overflow error in the arithmetic. When com-
puting the barycentric weights, each element of the product

∏n
k=1,k ̸=j(xj − xk) should be multiplied

by C−1, where 4C is the width of the interval being interpolated (C is known as the capacity of
the interval). In effect, this scales each barycentric weight by C1−n which helps to prevent overflow
during computation. Thus, the new barycentric weights are given by

wj =
1∏n

k=1,k ̸=j [(xj − xk)/C]
. (10.3)

Once again, this change is possible since the extra factor C1−n is cancelled out in the final product.
This process is summed up in the following code:

# Given a NumPy array xint of interpolating x-values, calculate the weights.
>>> n = len(xint) # Number of interpolating points.
>>> w = np.ones(n) # Array for storing barycentric weights.
# Calculate the capacity of the interval.
>>> C = (np.max(xint) - np.min(xint)) / 4
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>>> shuffle = np.random.permutation(n-1)
>>> for j in range(n):
>>> temp = (xint[j] - np.delete(xint, j)) / C
>>> temp = temp[shuffle] # Randomize order of product.
>>> w[j] /= np.product(temp)

The order of temp was randomized so that the arithmetic does not overflow due to poor ordering
(if standard ordering is used, overflow errors can be encountered since all of the points of similar
magnitude are multiplied together at once). When these two fixes are combined, the Barycentric
Algorithm becomes numerically stable.

Problem 3. Create a class that performs Barycentric Lagrange interpolation. The constructor
of your class should accept two NumPy arrays which contain the x and y values of the interpo-
lation points. Store these arrays as attributes. In the constructor, compute the corresponding
barycentric weights using Equation 10.3 and store the resulting array as a class attribute. Be
sure that the relative ordering of the arrays remains unchanged.

Implement the __call__() method so that it accepts a NumPy array of values at which
to evaluate the interpolating polynomial and returns an array of the evaluated points. Your
class can be tested in the same way as the Lagrange function written in Problem 2

Achtung!

As currently explained and implemented, the Barycentric class from Problem 3 will fail when
a point to be evaluated exactly matches one of the x-values of the interpolating points. This
happens because a divide by zero error is encountered in the final step of the algorithm. The
fix for this, although not required here, is quite easy: keep track of any problem points and
replace the final computed value with the corresponding y-value (since this is a point that is
exactly interpolated). If you do not implement this fix, just be sure not to pass in any points
that exactly match your interpolating values.

Another advantage of the barycentric method is that it allows for the addition of new interpolat-
ing points in O(n) time. Given a set of existing barycentric weights {wj}nj=1 and a new interpolating
point xi, the new barycentric weight is given by

wi =
1∏n

k=1(xi − xk)
.

In addition to calculating the new barycentric weight, all existing weights should be updated as
follows wj =

wj

xj−xi
.
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Problem 4. Include a method in the class written in Problem 3 that allows for the addition of
new interpolating points by updating the barycentric weights. Your function should accept two
NumPy arrays which contain the x and y values of the new interpolation points. Update and
store the old weights then extend the class attribute arrays that store the weights, and the x
and y values of the interpolation points with the new data. When updating all class attributes,
make sure to maintain the same relative order.

The implementation outlined here calls for the y-values of the interpolating points to be known
during startup, however, these values are not needed until run-time This allows the y-values to be
changed without having to recompute the barycentric weights. This is an additional advantage of
Barycentric Lagrange interpolation.

Scipy’s Barycentric Lagrange class

Scipy includes a Barycentric interpolator class. This class includes the same functionality as the class
described in Problems 3 and 4 in addition to the ability to update the y-values of the interpolation
points. The following code will produce a figure similar to Figure 10.1b.

>>> from scipy.interpolate import BarycentricInterpolator

>>> f = lambda x: 1/(1+25 * x**2) # Function to be interpolated.
# Obtain the Chebyshev extremal points on [-1,1].
>>> n = 11
>>> pts = np.linspace(-1, 1, n)
>>> domain = np.linspace(-1, 1, 200)

>>> poly = BarycentricInterpolator(pts[:-1])
>>> poly.add_xi([pts[-1]]) # Oops, forgot one of the points.
>>> poly.set_yi(f(pts)) # Set the y values.

>>> plt.plot(domain, f(domain))
>>> plt.plot(domain, poly(domain))
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(a) Polynomial using 5 Chebyshev roots.
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(b) Polynomial using 11 Chebyshev roots.

Figure 10.2: Example of overcoming Runge’s phenomenon by using Chebyshev nodes for
interpolating values. Plots made using Runge’s function f(x) = 1

1+25x2 . Compare with Figure 10.1



127

Chebyshev Interpolation

Chebyshev Nodes

As has been mentioned previously, the Barycentric version of Lagrange interpolation is a stable
process that does not accumulate large errors, even with extreme inputs. However, polynomial
interpolation itself is, in general, an ill-conditioned problem. Thus, even small changes in the in-
terpolating values can give drastically different interpolating polynomials. In fact, poorly chosen
interpolating points can result in a very bad approximation of a function. As more points are added,
this approximation can worsen. This increase in error is called Runge’s phenomenon.

The set of equally spaced points is an example of a set of points that may seem like a reasonable
choice for interpolation but in reality produce very poor results. Figure 10.1 gives an example of
this using Runge’s function. As the number of interpolating points increases, the quality of the
approximation deteriorates, especially near the endpoints.

Although polynomial interpolation has a great deal of potential error, a good set of interpolating
points can result in fast convergence to the original function as the number of interpolating points
is increased. One such set of points is the Chebyshev extremal points which are related to the
Chebyshev polynomials (to be discussed shortly). The n + 1 Chebyshev extremal points on the
interval [a, b] are given by the formula yj = 1

2 (a+ b+(b−a) cos( jπn )) for j = 0, 1, . . . , n. These points
are shown in Figure 10.3. One important feature of these points is that they are clustered near the
endpoints of the interval, this is key to preventing Runge’s phenomenon.

Problem 5. Write a function that defines a domain x of 400 equally spaced points on the
interval [−1, 1]. For n = 22, 23, . . . , 28, repeat the following experiment.

1. Interpolate Runge’s function f(x) = 1/(1+25x2) with n equally spaced points over [−1, 1]
using SciPy’s BarycentricInterpolator class, resulting in an approximating function f̃ .
Compute the absolute error ∥f(x)− f̃(x)∥∞ of the approximation using la.norm() with
ord=np.inf.

2. Interpolate Runge’s function with n + 1 Chebyshev extremal points, also via SciPy, and
compute the absolute error.

Plot the errors of each method against the number of interpolating points n in a log-log plot.
To verify that your figure make sense, try plotting the interpolating polynomials with the

original function for a few of the larger values of n.
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Figure 10.3: The Chebyshev extremal points. The n points where the Chebyshev polynomial of
degree n reaches its local extrema. These points are also the projection onto the x-axis of n equally
spaced points around the unit circle.

Chebyshev Polynomials

The Chebyshev roots and Chebyshev extremal points are closely related to a set of polynomials
known as the Chebyshev polynomials. The first two Chebyshev polynomials are defined as T0(x) = 1

and T1(x) = x. The remaining polynomials are defined by the recursive algorithm Tn+1(x) =

2xTn(x) − Tn−1(x). The Chebyshev polynomials form a complete basis for the polynomials in R
which means that for any polynomial p(x), there exists a set of unique coefficients {ak}nk=0 such that

p(x) =

n∑
k=0

akTk.

Finding the Chebyshev representation of an interpolating polynomial is a slow process (domi-
nated by matrix multiplication or solving a linear system), but when the interpolating values are the
Chebyshev extrema, there exists a fast algorithm for computing the Chebyshev coefficients of the
interpolating polynomial. This algorithm is based on the Fast Fourier transform which has temporal
complexity O(n log n). Given the n + 1 Chebyshev extremal points yj = cos( jπn ) for j = 0, 1, . . . , n

and a function f , the unique n-degree interpolating polynomial p(x) is given by

p(x) =

n∑
k=0

akTk

where
ak = γkℜ [DFT (f(y0), f(y1), . . . , f(y2n−1))]k .

Note that although this formulation includes yj for j > n, there are really only n+ 1 distinct values
being used since yn−k = yn+k. Also, ℜ denotes the real part of the Fourier transform and γk is
defined as

γk =

{
1 k ∈ {0, n}
2 otherwise.
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Problem 6. Write a function that accepts a function f and an integer n. Compute the n+ 1

Chebyshev coefficients for the degree n interpolating polynomial of f using the Fourier transform
(np.real() and np.fft.fft() will be helpful). When using NumPy’s fft() function, multiply
every entry of the resulting array by the scaling factor 1

2n to match the derivation given above.
Validate your function with np.polynomial.chebyshev.poly2cheb(). The results should

be exact for polynomials.

# Define f(x) = -3 + 2x^2 - x^3 + x^4 by its (ascending) coefficients.
>>> f = lambda x: -3 + 2*x**2 - x**3 + x**4
>>> pcoeffs = [-3, 0, 2, -1, 1]
>>> ccoeffs = np.polynomial.chebyshev.poly2cheb(pcoeffs)

# The following callable objects are equivalent to f().
>>> fpoly = np.polynomial.Polynomial(pcoeffs)
>>> fcheb = np.polynomial.Chebyshev(ccoeffs)

Lagrange vs. Chebyshev
As was previously stated, Barycentric Lagrange interpolation is O(n2) at startup and O(n) at runtime
while Chebyshev interpolation is O(n log n). This improved speed is one of the greatest advantages
of Chebyshev interpolation. Chebyshev interpolation is also more accurate than Barycentric inter-
polation, even when using the same points. Despite these significant advantages in accuracy and
temporal complexity, Barycentric Lagrange interpolation has one very important advantage over
Chebyshev interpolation: Barycentric interpolation can be used on any set of interpolating points
while Chebyshev is restricted to the Chebyshev nodes. In general, because of their better accuracy,
the Chebyshev nodes are more desirable for interpolation, but there are situations when the Cheby-
shev nodes are not available or when specific points are needed in an interpolation. In these cases,
Chebyshev interpolation is not possible and Barycentric Lagrange interpolation must be used.

Utah Air Quality
The Utah Department of Environmental Quality has air quality stations throughout the state of
Utah that measure the concentration of particles found in the air. One particulate of particular
interest is PM2.5 which is a set of extremely fine particles known to cause tissue damage to the
lungs. The file airdata.npy has the hourly concentration of PM2.5 in micrograms per cubic meter
for a particular measuring station in Salt Lake County for the year 2016. The given data presents
a fairly smooth function which can be reasonably approximated by an interpolating polynomial.
Although Chebyshev interpolation would be preferable (because of its superior speed and accuracy),
it is not possible in this case because the data is not continous and the information at the Chebyshev
nodes is not known. In order to get the best possible interpolation, it is still preferable to use points
close to the Chebyshev extrema with Barycentric interpolation. The following code will take the
n+1 Chebyshev extrema and find the closest match in the non-continuous data found in the variable
data then calculate the barycentric weights.

>>> fx = lambda a, b, n: .5*(a+b + (b-a) * np.cos(np.arange(n+1) * np.pi / n))
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>>> a, b = 0, 366 - 1/24
>>> domain = np.linspace(0, b, 8784)
>>> points = fx(a, b, n)
>>> temp = np.abs(points - domain.reshape(8784, 1))
>>> temp2 = np.argmin(temp, axis=0)

>>> poly = barycentric(domain[temp2], data[temp2])

Problem 7. Write a function that interpolates the given data along the whole interval at the
closest approximations to the n + 1 Chebyshev extremal nodes. The function should accept
n, perform the Barycentric interpolation then plot the original data and the approximating
polynomial on the same domain on two separate subplots. Your interpolating polynomial
should give a fairly good approximation starting at around 50 points. Note that beyond about
200 points, the given code will break down since it will attempt to return multiple of the same
points causing a divide by 0 error. If you did not perform the fix suggested in the ACHTUNG box,
make sure not to pass in any points that exactly match the interpolating values.
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Additional Material
The Clenshaw Algorithm is a fast algorithm commonly used to evaluate a polynomial given its
representation in Chebyshev coefficients. This algorithm is based on the recursive relation between
Chebyshev polynomials and is the algorithm used by NumPy’s polynomial.chebyshev module.

Algorithm 1 Accepts an array x of points at which to evaluate the polynomial and an array
a = [a0, a1, . . . , an−1] of Chebyshev coefficients.
1: procedure ClenshawRecursion(x, a)
2: un+1 ← 0

3: un ← 0

4: k ← n− 1

5: while k ≥ 1 do
6: uk ← 2xuk+1 − uk+2 + ak
7: k ← k − 1

8: return a0 + xu1 − u2
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11 Gaussian Quadrature

Lab Objective: Learn the basics of Gaussian quadrature and its application to numerical inte-
gration. Build a class to perform numerical integration using Legendre and Chebyshev polynomials.
Compare the accuracy and speed of both types of Gaussian quadrature with the built-in Scipy package.
Perform multivariate Gaussian quadrature.

Legendre and Chebyshev Gaussian Quadrature
It can be shown that for any class of orthogonal polynomials p ∈ R[x; 2n + 1] with corresponding
weight function w(x), there exists a set of points {xi}ni=0 and weights {wi}ni=0 such that∫ b

a

p(x)w(x)dx =

n∑
i=0

p(xi)wi.

Since this relationship is exact, a good approximation for the integral∫ b

a

f(x)w(x)dx

can be expected as long as the function f(x) can be reasonably interpolated by a polynomial at the
points xi for i = 0, 1, . . . , n. In fact, it can be shown that if f(x) is 2n + 1 times differentiable, the
error of the approximation will decrease as n increases.

Gaussian quadrature can be performed using any basis of orthonormal polynomials, but the
most commonly used are the Legendre polynomials and the Chebyshev polynomials. Their weight
functions are wl(x) = 1 and wc(x) =

1√
1−x2

, respectively, both defined on the open interval (−1, 1).

Problem 1. Define a class for performing Gaussian quadrature. The constructor should accept
an integer n denoting the number of points and weights to use (this will be explained later)
and a label indicating which class of polynomials to use. If the label is not either "legendre"
or "chebyshev", raise a ValueError; otherwise, store it as an attribute.

The weight function w(x) will show up later in the denominator of certain computations.
Define the reciprocal function w(x)−1 = 1/w(x) as a lambda function and save it as an attribute.

133
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Calculating Points and Weights

All sets of orthogonal polynomials {uk}nk=0 satisfy the three-term recurrence relation

u0 = 1, u1 = x− α1, uk+1 = (x− αk)uk − βkuk−1

for some coefficients {αk}nk=1 and {βk}nk=1. For the Legendre polynomials, they are given by

αk = 0, βk =
k2

4k2 − 1
,

and for the Chebyshev polynomials, they are

αk = 0, βk =

{
1
2 if k = 1
1
4 otherwise.

Given these values, the corresponding Jacobi matrix is defined as follows.

J =



α1

√
β1 0 . . . 0√

β1 α2

√
β2 . . . 0

0
√
β2 α3

. . . 0
...

. . . . . .
...

0 . . .
√
βn−1

0 . . .
√
βn−1 αn


According to the Golub-Welsch algorithm,1 the n eigenvalues of J are the points xi to use in Gaussian
quadrature, and the corresponding weights are given by wi = µw(R)v2i,0 where vi,0 is the first entry of
the ith eigenvector and µw(R) =

∫∞
−∞ w(x)dx is the measure of the weight function. Since the weight

functions for Legendre and Chebyshev polynomials have compact support on the interval (−1, 1),
their measures are given as follows.

µwl
(R) =

∫ ∞

−∞
wl(x)dx =

∫ 1

−1

1dx = 2 µwc(R) =
∫ ∞

−∞
wc(x)dx =

∫ 1

−1

1√
1− x2

dx = π

Problem 2. Write a method for your class from Problem 1 that accepts an integer n. Construct
the n×n Jacobi matrix J for the polynomial family indicated in the constructor. Use SciPy to
compute the eigenvalues and eigenvectors of J , then compute the points {xi}ni=1 and weights
{wi}ni=1 for the quadrature. Return both the array of points and the array weights.

Test your method by checking your points and weights against the following values using
the Legendre polynomials with n = 5.

xi − 1
3

√
5 + 2

√
10
7

− 1
3

√
5− 2

√
10
7

0 1
3

√
5− 2

√
10
7

1
3

√
5 + 2

√
10
7

wi
322− 13

√
70

900

322 + 13
√
70

900

128

225

322 + 13
√
70

900

322− 13
√
70

900

1See http://gubner.ece.wisc.edu/gaussquad.pdf for a complete treatment of the Golub-Welsch algorithm, in-
cluding the computation of the recurrence relation coefficients for arbitrary orthogonal polynomials.

http://gubner.ece.wisc.edu/gaussquad.pdf
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Finally, modify the constructor of your class so that it calls your new function and stores
the resulting points and weights as attributes.
(Note: The order of the points and weights in the table may differ depending on whether
you used scipy.linalg.eig() or scipy.linalg.eigh(). The order doesn’t matter but it is
important that each point corresponds to the correct weight.)

Unit Test

In the file test_gaussian_quadrature.py, write unit tests for the points_weights() method
in your GaussianQuadrature class. Some unit tests have been provided for Problem 1.

Note: The unit tests provided may have different attribute names than those you have written
for your class. You may adjust the provided tests to match your code, or change your code to
conform with the given tests.

Integrating with Given Weights and Points

Now that the points and weights have been obtained, they can be used to approximate the integrals
of different functions. For a given function f(x) with points xi and weights wi,∫ 1

−1

f(x)w(x)dx ≈
n∑

i=1

f(xi)wi.

There are two problems with the preceding formula. First, the weight function is part of the integral
being approximated, and second, the points obtained are only found on the interval (−1, 1) (in the
case of the Legendre and Chebyshev polynomials). To solve the first problem, define a new function
g(x) = f(x)/w(x) so that ∫ 1

−1

f(x)dx =

∫ 1

−1

g(x)w(x)dx ≈
n∑

i=1

g(xi)wi. (11.1)

The integral of f(x) on [−1, 1] can thus be approximated with the inner product wTg(x), where
g(x) = [g(x1), . . . , g(xn)]

T and w = [w1, . . . , wn]
T.

Problem 3. Write a method for your class that accepts a callable function f . Use (11.1) and
the stored points and weights to approximate of the integral of f on the interval [−1, 1].
(Hint: Use w(x)−1 from Problem 1 to compute g(x) without division.)

Test your method with examples that are easy to compute by hand and by comparing
your results to scipy.integrate.quad() (The answer given below is found by using Chebyshev,
even though the default mode is Lagrange.)

>>> import numpy as np
>>> from scipy.integrate import quad

# Integrate f(x) = 1 / sqrt(1 - x**2) from -1 to 1.
>>> f = lambda x: 1 / np.sqrt(1 - x**2)
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>>> quad(f, -1, 1)[0]
3.141592653589591

Note

Since the points and weights for Gaussian quadrature do not depend on f , they only need to be
computed once and can then be reused to approximate the integral of any function. The class
structure in Problems 1–4 takes advantage of this fact, but scipy.integrate.quad() does not.
If a larger n is needed for higher accuracy, however, the computations must be repeated to get
a new set of points and weights.

Shifting the Interval of Integration

Since the weight functions for the Legendre and Chebyshev polynomials have compact support on
the interval (−1, 1), all of the quadrature points are found on that interval as well. To integrate a
function on an arbitrary interval [a, b] requires a change of variables. Let

u =
2x− b− a
b− a

so that u = −1 when x = a and u = 1 when x = b. Then

x =
b− a
2

u+
a+ b

2
and dx =

b− a
2

du,

so the transformed integral is given by∫ b

a

f(x)dx =
b− a
2

∫ 1

−1

f

(
b− a
2

u+
a+ b

2

)
du.

By defining a new function h(x) as

h(x) = f

(
(b− a)

2
x+

(a+ b)

2

)
,

the integral of f can be approximated by integrating h over [−1, 1] with (11.1). This results in the
final quadrature formula∫ b

a

f(x)dx =
b− a
2

∫ 1

−1

h(x)dx =
b− a
2

∫ 1

−1

g(x)w(x)dx ≈ b− a
2

n∑
i=1

g(xi)wi, (11.2)

where now g(x) = h(x)/w(x).

Problem 4. Write a method for your class that accepts a callable function f and bounds of
integration a and b. Use (11.2) to approximate the integral of f from a to b.
(Hint: Define h(x) and use your method from Problem 3.)
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Problem 5. The standard normal distribution has the following probability density function.

f(x) =
1√
2π
e−x2/2

This function has no symbolic antiderivative, so it can only be integrated numerically. The
following code gives an “exact” value of the integral of f(x) from −∞ to a specified value.

>>> from scipy.stats import norm

>>> norm.cdf(1) # Integrate f from -infty to 1.
0.84134474606854293
>>> norm.cdf(1) - norm.cdf(-1) # Integrate f from -1 to 1.
0.68268949213708585

Write a function that uses scipy.stats to calculate the “exact” value

F =

∫ 2

−3

f(x)dx.

Then repeat the following experiment for n = 5, 10, 15, . . . , 50.

1. Use your class from Problems 1–4 with the Legendre polynomials to approximate F using
n points and weights. Calculate and record the error of the approximation.

2. Use your class with the Chebyshev polynomials to approximate F using n points and
weights. Calculate and record the error of the approximation.

Plot the errors against the number of points and weights n, using a log scale for the y-axis.
Finally, plot a horizontal line showing the error of scipy.integrate.quad() (which doesn’t
depend on n). Make sure your plot is clearly labeled.

Multivariate Quadrature
The extension of Gaussian quadrature to higher dimensions is fairly straightforward. The same set
of points {zi}ni=1 and weights {wi}ni=1 can be used in each direction, so the only difference from 1-D
quadrature is how the function is shifted and scaled. To begin, let h : R2 → R and define g : R2 → R
by g(x, y) = h(x, y)/(w(x)w(y)) so that∫ 1

−1

∫ 1

−1

h(x, y)dx dy. =

∫ 1

−1

∫ 1

−1

g(x, y)w(x)w(y)dx dy ≈
n∑

i=1

n∑
j=1

wiwjg(zi, zj). (11.3)

To integrate f : R2 → R over an arbitrary box [a1, b1]× [a2, b2], set

h(x, y) = f

(
b1 − a1

2
x+

a1 + b1
2

,
b2 − a2

2
y +

a2 + b2
2

)
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so that ∫ b2

a2

∫ b1

a1

f(x)dx dy =
(b1 − a1)(b2 − a2)

4

∫ 1

−1

∫ 1

−1

h(x, y)dx dy. (11.4)

Combining (11.3) and (11.4) gives the final 2-D Gaussian quadrature formula. Compare it to (11.2).∫ b2

a2

∫ b1

a1

f(x)dx dy ≈ (b1 − a1)(b2 − a2)
4

n∑
i=1

n∑
j=1

wiwjg(zi, zj) (11.5)

Problem 6. Write a method for your class that accepts a function f : R2 → R (which actually
accepts two separate arguments, not one array with two elements) and bounds of integration
a1, a2, b1, and b2. Use (11.5) to compute the double integral∫ b2

a2

∫ b1

a1

f(x)dx dy.

Validate your method by comparing it scipy.integrate.nquad(). Note carefully that
this function has slightly different syntax for the bounds of integration.

>>> from scipy.integrate import nquad

# Integrate f(x,y) = sin(x) + cos(y) over [-10,10] in x and [-1,1] in y.
>>> f = lambda x, y: np.sin(x) + np.cos(y)
>>> nquad(f, [[-10, 10], [-1, 1]])[0]
33.658839392315855

Note

Although Gaussian quadrature can obtain reasonable approximations in lower dimensions, it
quickly becomes intractable in higher dimensions due to the curse of dimensionality. In other
words, the number of points and weights required to obtain a good approximation becomes
so large that Gaussian quadrature become computationally infeasible. For this reason, high-
dimensional integrals are often computed via Monte Carlo methods, numerical integration tech-
niques based on random sampling. However, quadrature methods are generally significantly
more accurate in lower dimensions than Monte Carlo methods.



12 One-dimensional
Optimization

Lab Objective: Most mathematical optimization problems involve estimating the minimizer(s) of
a scalar-valued function. Many algorithms for optimizing functions with a high-dimensional domain
depend on routines for optimizing functions of a single variable. There are many techniques for
optimization in one dimension, each with varying degrees of precision and speed. In this lab, we
explore Newton’s method and basins of attraction, and then we implement the secant method and
apply it to the backtracking problem.

Iterative Methods
An iterative method is an algorithm that must be applied repeatedly to obtain a result. The general
idea behind any iterative method is to make an initial guess at the solution to a problem, apply a
few easy computations to better approximate the solution, use that approximation as the new initial
guess, and repeat until done. More precisely, let F be some function used to approximate the solution
to a problem. Starting with an initial guess of x0, compute

xk+1 = F (xk) (12.1)

for successive values of k to generate a sequence (xk)∞k=0 that hopefully converges to the true solution.
If the terms of the sequence are vectors, they are denoted by xk.

In the best case, the iteration converges to the true solution x, written limk→∞ xk = x or
xk → x. In the worst case, the iteration continues forever without approaching the solution. In
practice, iterative methods require carefully chosen stopping criteria to guarantee that the algorithm
terminates at some point. The general approach is to continue iterating until the difference between
two consecutive approximations is sufficiently small, and to iterate no more than a specific number
of times. That is, choose a very small ε > 0 and an integer N ∈ N, and update the approximation
using (12.1) until either

|xk − xk−1| < ε or k > N. (12.2)

The choices for ε and N are significant: a “large” ε (such as 10−6) produces a less accurate
result than a “small” ε (such 10−16), but demands less computations; a small N (10) also potentially
lowers accuracy, but detects and halts nonconvergent iterations sooner than a large N (10,000). In
code, ε and N are often named tol and maxiter, respectively (or similar).

While there are many ways to structure the code for an iterative method, probably the cleanest
way is to combine a for loop with a break statement. As a very simple example, let F (x) = x

2 . This
method converges to x = 0 independent of starting point.
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>>> F = lambda x: x / 2
>>> x0, tol, maxiter = 10, 1e-9, 8
>>> for k in range(maxiter): # Iterate at most N times.
... print(x0, end=' ')
... x1 = F(x0) # Compute the next iteration.
... if abs(x1 - x0) < tol: # Check for convergence.
... break # Upon convergence, stop iterating.
... x0 = x1 # Otherwise, continue iterating.
...
10 5.0 2.5 1.25 0.625 0.3125 0.15625 0.078125

In this example, the algorithm terminates after N = 8 iterations (the maximum number of
allowed iterations) because the tolerance condition |xk − xk−1| < 10−9 is not met fast enough. If N
had been larger (say 40), the iteration would have quit early due to the tolerance condition.

Newton’s Method
Newton’s method is an important root-finding algorithm that can also be used for optimization.
Given f : R→ R and a good initial guess x0, the sequence (xk)

∞
k=1 generated by the recursive rule

xk+1 = xk −
f(xk)

f ′(xk)
(12.3)

converges to a point x̄ satisfying f(x̄) = 0 as long as three conditions hold:

1. f and f ′ exist and are continuous,

2. f ′(x̄) ̸= 0, and

3. x0 is “sufficiently close” to x̄.

In applications, the first two conditions usually hold. If x̄ and x0 are not “sufficiently close,” Newton’s
method may converge very slowly, or it may not converge at all. However, when all three conditions
hold, Newton’s method converges quadratically, meaning that the maximum error is squared at every
iteration. This is very quick convergence, making Newton’s method as powerful as it is simple.

Problem 1. Write a function that accepts a function f , an initial guess x0, the derivative Df ,
a stopping tolerance tol defaulting to 10−5, and a maximum number of iterations maxiter
defaulting to 15. Use Newton’s method as described in (12.3) to compute a zero x̄ of f .

Terminate the algorithm when |xk − xk−1| is less than tol or after iterating maxiter times.
Return the last computed approximation to x̄, a boolean value indicating whether or not the
algorithm converged, and the number of iterations completed.

Test your function against functions like f(x) = ex− 2 (see Figure 12.1) or f(x) = x4− 3.
Check that the computed zero x̄ satisfies f(x̄) ≈ 0. Also consider comparing your function to
scipy.optimize.newton(), which accepts similar arguments.
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0.0 0.5 1.0 1.5 2.0

x0

x1

x2x3

f(x) = ex 2

Figure 12.1: Newton’s method approximates the zero of a function (blue) by choosing as the next
approximation the x-intercept of the tangent line (red) that goes through the point (xk, f(xk)). In
this example, f(x) = ex − 2, which has a zero at x̄ = log(2). Setting x0 = 2 and using (12.3) to
iterate, we have x1 = x0 − f(x0)

f ′(x0)
= 2 − e2−2

e2 ≈ 1.2707. Similarly, x2 ≈ 0.8320, x3 ≈ .7024, and
x4 ≈ 0.6932. After only a few iterations, the zero log(2) ≈ 0.6931 is already computed to several
digits of accuracy.

Note

Newton’s method can be used to find zeros of functions that are hard to solve for analytically.
For example, the function f(x) = sin(x)

x − x is not continuous on any interval containing 0, but
it can be made continuous by defining f(0) = 1. Newton’s method can then be used to compute
the zeros of this function.

Basins of Attraction

When a function f has many zeros, the zero that Newton’s method converges to depends on the
initial guess x0. For example, the function f(x) = x2 − 1 has zeros at −1 and 1. If x0 < 0, then
Newton’s method converges to −1; if x0 > 0 then it converges to 1 (see Figure 12.2a). The regions
(−∞, 0) and (0,∞) are called the basins of attraction of f . Starting in one basin of attraction leads
to finding one zero, while starting in another basin yields a different zero.

When f is a polynomial of degree greater than 2, the basins of attraction are much more
interesting. For example, the basis of attraction for f(x) = x3 − x are shown in Figure 12.2b. The
basin for the zero at the origin is connected, but the other two basins are disconnected and share a
kind of symmetry.
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2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

(a) Basins of attraction for f(x) = x2 − 1.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

(b) Basins of attraction for f(x) = x3 − x.

Figure 12.2: Basins of attraction with α = 1. Since choosing a different value for α can change which
zero Newton’s method converges to, the basins of attraction may change for other values of α.

It can be shown that Newton’s method converges in any Banach space with only slightly stronger
hypotheses than those discussed previously. In particular, Newton’s method can be performed over
the complex plane C to find imaginary zeros of functions. Plotting the basins of attraction over C
yields some interesting results.

The zeros of f(x) = x3−1 are 1, and − 1
2±

√
3
2 i. To plot the basins of attraction for f(x) = x3−1

on the square complex domain X = {a+bi | a ∈ [− 3
2 ,

3
2 ], b ∈ [− 3

2 ,
3
2 ]}, create an initial grid of complex

points in this domain using np.meshgrid().

>>> x_real = np.linspace(-1.5, 1.5, 500) # Real parts.
>>> x_imag = np.linspace(-1.5, 1.5, 500) # Imaginary parts.
>>> X_real, X_imag = np.meshgrid(x_real, x_imag)
>>> X_0 = X_real + 1j*X_imag # Combine real and imaginary parts.

The grid X0 is a 500×500 array of complex values to use as initial points for Newton’s method.
Array broadcasting makes it easy to compute an iteration of Newton’s method at every grid point.

>>> f = lambda x: x**3 - 1
>>> Df = lambda x: 3*x**2
>>> X_1 = X_0 - f(X_0)/Df(X_0)

After enough iterations, the (i, j)th element of the grid Xk corresponds to the zero of f that
results from using the (i, j)th element of X0 as the initial point. For example, with f(x) = x3 − 1,
each entry of Xk should be close to 1, − 1

2 +
√
3
2 i, or − 1

2 −
√
3
2 i. Each entry of Xk can then be assigned

a value indicating which zero it corresponds to. Some results of this process are displayed below.
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(a) Basins of attraction for f(x) = x3 − 1. (b) Basins of attraction for f(x) = x3 − x.

Figure 12.3

Note

Notice that in some portions of Figure 12.3a, whenever red and blue try to come together, a
patch of green appears in between. This behavior repeats on an infinitely small scale, producing
a fractal. Because it arises from Newton’s method, this kind of fractal is called a Newton fractal.

Newton fractals show that the long-term behavior of Newton’s method is extremely
sensitive to the initial guess x0. Changing x0 by a small amount can change the output of
Newton’s method in a seemingly random way. This phenomenon is called chaos in mathematics.

Problem 2. Write a function that accepts a function f : C → C, its derivative Df : C → C,
an array zeros of the zeros of f , a list domain containing the bounds [rmin, rmax, imin, imax] for
the domain of the plot, an integer res that determines the resolution of the plot, and number
of iterations iters to run the iteration. Compute and plot the basins of attraction of f in the
complex plane over the specified domain in the following steps.

1. Construct a res×res grid X0 over the domain {a+ bi | a ∈ [rmin, rmax], b ∈ [imin, imax]}.

2. Run Newton’s method on X0 iters times, obtaining the res×res array xk. Do not check
for convergence at each step.

3. Xk cannot be directly visualized directly because its values are complex. Solve this issue
by creating another res×res array Y . To compute the (i, j)th entry Yi,j , determine
which zero of f is closest to the (i, j)th entry of Xk. Set Yi,j to the index of this zero in
the array zeros. If there are R distinct zeros, each Yi,j should be one of 0, 1, . . . , R− 1.
(Hint: np.argmin() may be useful.)

4. Use plt.pcolormesh() to visualize the basins. Recall that this function accepts three
array arguments: the x-coordinates (in this case, the real components of the initial grid),
the y-coordinates (the imaginary components of the grid), and an array indicating color
values (Y ). Set cmap="brg" to get the same color scheme as in Figure 12.3.
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Test your function using f(x) = x3 − 1 and f(x) = x3 − x. The resulting plots should
resemble Figures 12.3a and 12.3b, respectively (perhaps with the colors permuted).

The Secant Method

The first-order necessary conditions from elementary calculus state that if f is differentiable, then
its derivative evaluates to zero at each of its local minima and maxima. Therefore using Newton’s
method to find the zeros of f ′ is a way to identify potential minima or maxima of f . Specifically,
starting with an initial guess x0, set

xk+1 = xk −
f ′(xk)

f ′′(xk)
(12.4)

and iterate until |xk − xk−1| is satisfactorily small. Note that this procedure does not use the actual
function f at all, but it requires many evaluations of its first and second derivatives. As a result,
Newton’s method converges in few iterations, but it can be computationally expensive.

The second derivative of an objective function is not always known or may be prohibitively
expensive to evaluate. The secant method solves this problem by numerically approximating the
second derivative with a difference quotient.

f ′′(x) ≈ f ′(x+ h)− f ′(x)
h

Selecting x = xk and h = xk−1 − xk gives the following approximation.

f ′′(xk) ≈
f ′(xk + xk−1 − xk)− f ′(xk)

xk−1 − xk
=
f(xk)− f ′(xk−1)

xk − xk−1
(12.5)

Inserting (12.5) into (12.4) results in the complete secant method formula.

xk+1 = xk −
xk − xk−1

f ′(xk)− f ′(xk−1)
f ′(xk) =

xk−1f
′(xk)− xkf ′(xk−1)

f ′(xk)− f ′(xk−1)
(12.6)

Notice that this recurrence relation requires two previous points (both xk and xk−1) to calculate
the next estimate. This method converges superlinearly — slower than Newton’s method — with
convergence criteria similar to Newton’s method.

Problem 3. Write a function that accepts a first derivative df, starting points x0 and x1, a
stopping tolerance tol, and a maximum of iterations maxiter. Use (12.6) to implement the
Secant method. Try to make as few computations as possible by only computing df at (xk)

once for each k. Return the minimizer approximation, whether or not the algorithm converged,
and the number of iterations computed.

Test your code with the function f(x) = x2 + sin(x) + sin(10x) and with initial guesses
of x0 = 0 and x1 = −1. Plot your answer with the graph of the function. Also compare your
results to scipy.optimize.newton(); without providing the fprime argument, this function
uses the secant method. However, it still only takes in one initial condition, so it may converge
to a different local minimum than your function.

>>> df = lambda x: 2*x + np.cos(x) + 10*np.cos(10*x)
>>> optimize.newton(df, x0=0, tol=1e-10, maxiter=500)
2.3155516573790806
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Descent Methods
Consider now a function f : Rn → R. Descent methods, also called line search methods, are opti-
mization algorithms that create a convergent sequence (xk)

∞
k=1 by the following rule.

xk+1 = xk + αkpk (12.7)

Here αk ∈ R is called the step size and pk ∈ Rn is called the search direction. The choice of pk is
usually what distinguishes an algorithm; in the one-dimensional case (n = 1), pk = f ′(xk)/f

′′(xk)

results in Newton’s method, and using the approximation in (12.5) results in the secant method.
To be effective, a descent method must also use a good step size αk. If αk is too large, the

method may repeatedly overstep the minimum; if αk is too small, the method may converge extremely
slowly. See Figure 12.4.

x0x1

Figure 12.4: If the step size αk is too large, a descent method may repeatedly overstep the minimizer.

Given a search direction pk, the best step size αk minimizes the function ϕk(α) = f(xk+αpk).
Since f is scalar-valued, ϕk : R → R, so any of the optimization methods discussed previously can
be used to minimize ϕk. However, computing the best αk at every iteration is not always practical.
Instead, some methods use a cheap routine to compute a step size that may not be optimal, but which
is good enough. The most common approach is to find an αk that satisfies the Wolfe conditions:

f(xk + αkpk) ≤ f(xk) + c1αkDf(xk)
Tpk (12.8)

−Df(xk + αkpk)
Tpk ≤ −c2Df(xk)

Tpk (12.9)

where 0 < c1 < c2 < 1 (for the best results, choose c1 << c2). The condition (12.8) is also called
the Armijo rule and ensures that the step decreases f . However, this condition is not enough on its
own. By Taylor’s theorem,

f(xk + αkpk) = f(xk) + αkDf(xk)
Tpk +O(α2

k).
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Thus, a very small αk will always satisfy (12.8) since Df(xk)
Tpk < 0 (as pk is a descent direction).

The condition (12.9), called the curvature condition, ensures that the αk is large enough for the
algorithm to make significant progress.

It is possible to find an αk that satisfies the Wolfe conditions, but that is far from the minimizer
of ϕk(α). The strong Wolfe conditions modify (12.9) to ensure that αk is near the minimizer.

|Df(xk + αkpk)
Tpk| ≤ c2|Df(xk)

Tpk|

The Armijo–Goldstein conditions provide another alternative to (12.9):

f(xk) + (1− c)αkDf(xk)
Tpk ≤ f(xk + αkpk) ≤ f(xk) + cαkDf(xk)

Tpk,

where 0 < c < 1. These conditions are very similar to the Wolfe conditions (the right inequality is
(12.8)), but they do not require the calculation of the directional derivative Df(xk + αkpk)

Tpk.

Backtracking

A backtracking line search is a simple strategy for choosing an acceptable step size αk: start with an
fairly large initial step size α, then repeatedly scale it down by a factor ρ until the desired conditions
are satisfied. The following algorithm only requires α to satisfy (12.8). This is usually sufficient, but
if it finds α’s that are too small, the algorithm can be modified to satisfy (12.9) or one of its variants.

Algorithm 1 Backtracking using the Armijo Rule
1: procedure backtracking(f , Df , xk, pk, α, ρ, c)
2: Dfp ← Df(xk)

Tpk ▷ Compute these values only once.
3: fx ← f(xk)

4: while
(
f(xk + αpk) > fx + cαDfp

)
do

5: α← ρα
return α

Problem 4. Write a function that accepts a function f : Rn → R, its derivativeDf : Rn → Rn,
an approximate minimizer xk, a search direction pk, an initial step length α, and parameters
ρ and c. Implement the backtracking method of Algorithm 1. Return the computed step size.

The functions f and Df should both accept 1-D NumPy arrays of length n. For example,
if f(x, y, z) = x2 + y2 + z2, then f and Df could be defined as follows.

>>> f = lambda x: x[0]**2 + x[1]**2 + x[2]**2
>>> Df = lambda x: np.array([2*x[0], 2*x[1], 2*x[2]])

SciPy’s scipy.optimize.linesearch.scalar_search_armijo() finds an acceptable step
size using the Armijo rule. It may not give the exact answer as your implementation since it
decreases α differently, but the answers should be similar.

>>> from scipy.optimize import linesearch
>>> from jax import numpy as jnp
>>> from jax import grad

# Get a step size for f(x,y,z) = x^2 + y^2 + z^2.
>>> f = lambda x: x[0]**2 + x[1]**2 + x[2]**2
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>>> x = jnp.array([150., .03, 40.]) # Current minimizer guesss.
>>> p = jnp.array([-.5, -100., -4.5]) # Current search direction.
>>> phi = lambda alpha: f(x + alpha*p) # Define phi(alpha).
>>> dphi = grad(phi)
>>> alpha, _ = linesearch.scalar_search_armijo(phi, phi(0.), dphi(0.))
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13 Gradient Descent
Methods

Lab Objective: Iterative optimization methods choose a search direction and a step size at each
iteration. One simple choice for the search direction is the negative gradient, resulting in the method of
steepest descent. While theoretically foundational, in practice this method is often slow to converge.
An alternative method, the conjugate gradient algorithm, uses a similar idea that results in much
faster convergence in some situations. In this lab we implement a method of steepest descent and two
conjugate gradient methods, then apply them to regression problems.

The Method of Steepest Descent
Let f : Rn → R with first derivative Df : Rn → Rn. The following iterative technique is a common
template for methods that aim to compute a local minimizer x∗ of f .

xk+1 = xk + αkpk (13.1)

Here xk is the kth approximation to x∗, αk is the step size, and pk is the search direction. Newton’s
method and its relatives follow this pattern, but they require the calculation (or approximation)
of the inverse Hessian matrix Df2(xk)

−1 at each step. The following idea is a simpler and less
computationally intensive approach than Newton and quasi-Newton methods.

The derivativeDf(x)T (often called the gradient of f at x, sometimes notated∇f(x)) is a vector
that points in the direction of greatest increase of f at x. It follows that the negative derivative
−Df(x)T points in the direction of steepest decrease at x. The method of steepest descent chooses
the search direction pk = −Df(xk)

T at each step of (13.1), resulting in the following algorithm.

xk+1 = xk − αkDf(xk)
T (13.2)

Setting αk = 1 for each k is often sufficient for Newton and quasi-Newton methods. However,
a constant choice for the step size in (13.2) can result in oscillating approximations or even cause the
sequence (xk)

∞
k=1 to travel away from the minimizer x∗. To avoid this problem, the step size αk can

be chosen in a few ways.

• Start with αk = 1, then set αk = αk

2 until f(xk − αkDf(xk)
T) < f(xk), terminating the

iteration if αk gets too small. This guarantees that the method actually descends at each step
and that αk satisfies the Armijo rule, without endangering convergence.
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• At each step, solve the following one-dimensional optimization problem.

αk = argmin
α

f(xk − αDf(xk)
T)

Using this choice is called exact steepest descent. This option is more expensive per iteration
than the above strategy, but it results in fewer iterations before convergence.

Problem 1. Write a function that accepts an objective function f : Rn → R, its derivative
Df : Rn → Rn, an initial guess x0 ∈ Rn, a convergence tolerance tol defaulting to 1e−5,
and a maximum number of iterations maxiter defaulting to 100. Implement the exact method
of steepest descent, using a one-dimensional optimization method to choose the step size (use
opt.minimize_scalar() or your own 1-D minimizer). Iterate until ∥Df(xk)∥∞ < tol or k >
maxiter. Return the approximate minimizer x∗, whether or not the algorithm converged (True
or False), and the number of iterations computed.

Test your function on f(x, y, z) = x4+y4+z4 (easy) and the Rosenbrock function (hard).
It should take many iterations to minimize the Rosenbrock function, but it should converge
eventually with a large enough choice of maxiter.

The Conjugate Gradient Method
Unfortunately, the method of steepest descent can be very inefficient for certain problems. Depending
on the nature of the objective function, the sequence of points can zig-zag back and forth or get stuck
on flat areas without making significant progress toward the true minimizer.

Gradient Descent, 28903 iterations

Figure 13.1: On this surface, gradient descent takes an extreme number of iterations to converge to
the minimum because it gets stuck in the flat basins of the surface.

Unlike the method of steepest descent, the conjugate gradient algorithm chooses a search direc-
tion that is guaranteed to be a descent direction, though not the direction of greatest descent. These
directions are using a generalized form of orthogonality called conjugacy.
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Let Q be a square, positive definite matrix. A set of vectors {x0,x1, . . . ,xm} is called Q-
conjugate if each distinct pair of vectors xi,xj satisfy xT

i Qxj = 0. A Q-conjugate set of vectors is
linearly independent and can form a basis that diagonalizes the matrix Q. This guarantees that an
iterative method to solve Qx = b only require as many steps as there are basis vectors.

Solve a positive definite system Qx = b is valuable in and of itself for certain problems, but it
is also equivalent to minimizing certain functions. Specifically, consider the quadratic function

f(x) =
1

2
xTQx− bTx+ c.

Because Df(x)T = Qx− b, minimizing f is the same as solving the equation

0 = Df(x)T = Qx− b ⇒ Qx = b,

which is the original linear system. Note that the constant c does not affect the minimizer, since if
x∗ minimizes f(x) it also minimizes f(x) + c.

Using the conjugate directions guarantees an iterative method to converge on the minimizer
because each iteration minimizes the objective function over a subspace of dimension equal to the
iteration number. Thus, after n steps, where n is the number of conjugate basis vectors, the algorithm
has found a minimizer over the entire space. In certain situations, this has a great advantage over
gradient descent, which can bounce back and forth. This comparison is illustrated in Figure 13.2.
Additionally, because the method utilizes a basis of conjugate vectors, the previous search direction
can be used to find a conjugate projection onto the next subspace, saving computational time.

Gradient Descent, 90 iterations
Conjugate Gradient, 2 iterations

Figure 13.2: Paths traced by Gradient Descent (orange) and Conjugate Gradient (red) on a quadratic
surface. Notice the zig-zagging nature of the Gradient Descent path, as opposed to the Conjugate
Gradient path, which finds the minimizer in 2 steps.
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Algorithm 1
1: procedure Conjugate Gradient(x0, Q, b, tol)
2: r0 ← Qx0 − b

3: d0 ← −r0
4: k ← 0

5: while ∥rk∥ ≥ tol, k < n do
6: αk ← rTkrk/d

T
kQdk

7: xk+1 ← xk + αkdk

8: rk+1 ← rk + αkQdk

9: βk+1 ← rTk+1rk+1/r
T
krk

10: dk+1 ← −rk+1 + βk+1dk

11: k ← k + 1.
return xk+1

The points xk are the successive approximations to the minimizer, the vectors dk are the
conjugate descent directions, and the vectors rk (which actually correspond to the steepest descent
directions) are used in determining the conjugate directions. The constants αk and βk are used,
respectively, in the line search, and in ensuring the Q-conjugacy of the descent directions.

Problem 2. Write a function that accepts an n×n positive definite matrix Q, a vector b ∈ Rn,
an initial guess x0 ∈ Rn, and a stopping tolerance. Use Algorithm 1 to solve the system Qx = b.
Continue the algorithm until ∥rk∥ is less than the tolerance, iterating no more than n times.
Return the solution x, whether or not the algorithm converged in n iterations or less, and the
number of iterations computed. Test your function on the simple system

Q =

[
2 0

0 4

]
, b =

[
1

8

]
,

which has solution x∗ =
[
1
2 , 2

]T. This is equivalent to minimizing the quadratic function
f(x, y) = x2 + 2y2 − x− 8y; check that your function from Problem 1 gets the same solution.

More generally, you can generate a random positive definite matrix Q for testing by setting
setting Q = ATA for any A of full rank. Note, for values of n ≤ 5 this method is not stable
enough to always converge in exaclty n iterations. Try using the code given below to test your
function for values of n < 5.

There is a file called test_gradient_methods.py that contains some prewritten unit tests
that you can use to test your function.

>>> import numpy as np
>>> from scipy import linalg as la

# Generate Q, b, and the initial guess x0.
>>> n = 4
>>> A = np.random.random((n, n))
>>> Q = A.T @ A
>>> b, x0 = np.random.random((2, n))

>>> x = la.solve(Q, b) # Use your function here.
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>>> np.allclose(Q @ x, b)
True

Non-linear Conjugate Gradient

The algorithm presented above is only valid for certain linear systems and quadratic functions, but
the basic strategy may be adapted to minimize more general convex or non-linear functions. Though
the non-linear version does not have guaranteed convergence as the linear formulation does, it can
still converge in less iterations than the method of steepest descent. Modifying the algorithm for
more general functions requires new formulas for αk, rk, and βk.

• The scalar αk is simply the result of performing a line-search in the given direction dk and is
thus defined αk = argmin

α
f(xk + αdk).

• The vector rk in the original algorithm was really just the gradient of the objective function,
so now define rk = Df(xk)

T.

• The constants βk can be defined in various ways, and the most correct choice depends on the
nature of the objective function. A well-known formula, attributed to Fletcher and Reeves, is
βk = Df(xk)Df(xk)

T/Df(xk−1)Df(xk−1)
T.

Algorithm 2
1: procedure Non-Linear Conjugate Gradient(f , Df , x0, tol, maxiter)
2: r0 ← −Df(x0)

T

3: d0 ← r0
4: α0 ← argmin

α
f(x0 + αd0)

5: x1 ← x0 + α0d0

6: k ← 1

7: while ∥rk∥ ≥ tol, k < maxiter do
8: rk ← −Df(xk)

T

9: βk = rTkrk/r
T
k−1rk−1

10: dk ← rk + βkdk−1.
11: αk ← argmin

α
f(xk + αdk).

12: xk+1 ← xk + αkdk.
13: k ← k + 1.

Problem 3. Write a function that accepts a convex objective function f , its derivative Df ,
an initial guess x0, a convergence tolerance defaulting to 1e−5, and a maximum number of
iterations defaultin to 100. Use Algorithm 2 to compute the minimizer x∗ of f . Return the
approximate minimizer, whether or not the algorithm converged, and the number of iterations
computed.

Compare your function to SciPy’s opt.fmin_cg().

>>> opt.fmin_cg(opt.rosen, np.array([10, 10]), fprime=opt.rosen_der)
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Optimization terminated successfully.
Current function value: 0.000000
Iterations: 44
Function evaluations: 102 # Much faster than steepest descent!
Gradient evaluations: 102

array([ 1.00000007, 1.00000015])

Unit Test

There is a file called test_gradient_methods.py that contains some prewritten unit tests for
Problem 2. There is a place for you to add your own unit tests to test your function from
Problem 3 which will be graded.

Regression Problems
A major use of the conjugate gradient method is solving linear least squares problems. Recall that
a least squares problem can be formulated as an optimization problem:

x∗ = min
x
∥Ax− b∥2,

where A is an m × n matrix with full column rank, x ∈ Rn, and b ∈ Rm. The solution can be
calculated analytically, and is given by

x∗ = (ATA)−1ATb.

In other words, the minimizer solves the linear system

ATAx = ATb. (13.3)

Since A has full column rank, it is invertible, ATA is positive definite, and for any non-zero vector
z, Az ̸= 0. Therefore, zTATAz = ∥Az∥2 > 0. As ATA is positive definite, conjugate gradient can be
used to solve Equation 13.3.

Linear least squares is the mathematical underpinning of linear regression. Linear regression
involves a set of real-valued data points {y1, . . . , ym}, where each yi is paired with a corresponding
set of predictor variables {xi,1, xi,2, . . . , xi,n} with n < m. The linear regression model posits that

yi = β0 + β1xi,1 + β2xi,2 + · · ·+ βnxi,n + εi

for i = 1, 2, . . . ,m. The real numbers β0, . . . , βn are known as the parameters of the model, and the
εi are independent, normally-distributed error terms. The goal of linear regression is to calculate
the parameters that best fit the data. This can be accomplished by posing the problem in terms of
linear least squares. Define

b =

 y1
...
ym

 , A =


1 x1,1 x1,2 · · · x1,n
1 x2,1 x2,2 · · · x2,n
...

...
...

. . .
...

1 xm,1 xm,2 · · · xm,n

 , x =


β0
β1
...
βn

 .
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The solution x∗ = [β∗
0 , β

∗
1 , . . . , β

∗
n]

T to the system ATAx = ATb gives the parameters that best fit
the data. These values can be understood as defining the hyperplane that best fits the data.
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Linear Regression

Figure 13.3: Solving the linear regression problem results in a best-fit hyperplane.

Problem 4. Using your function from Problem 2, solve the linear regression problem specified
by the data contained in the filea linregression.txt. This is a whitespace-delimited text file
formatted so that the i-th row consists of yi, xi,1, . . . , xi,n. Use np.loadtxt() to load in the
data and return the solution to the normal equations.

aSource: Statistical Reference Datasets website at http://www.itl.nist.gov/div898/strd/lls/data/LINKS/
v-Longley.shtml.

Logistic Regression

Logistic regression is another important technique in statistical analysis and machine learning that
builds off of the concepts of linear regression. As in linear regression, there is a set of predictor
variables {xi,1, xi,2, . . . , xi,n}mi=1 with corresponding outcome variables {yi}mi=1. In logistic regression,
the outcome variables yi are binary and can be modeled by a sigmoidal relationship. The value of
the predicted yi can be thought of as the probability that yi = 1. In mathematical terms,

P(yi = 1 |xi,1, . . . , xi,n) = pi,

where

pi =
1

1 + exp(−(β0 + β1xi,1 + · · ·+ βnxi,n))
.

The parameters of the model are the real numbers β0, β1, . . . , βn. Note that pi ∈ (0, 1) regardless of
the values of the predictor variables and parameters.

http://www.itl.nist.gov/div898/strd/lls/data/LINKS/v-Longley.shtml
http://www.itl.nist.gov/div898/strd/lls/data/LINKS/v-Longley.shtml
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The probability of observing the outcome variables yi under this model, assuming they are
independent, is given by the likelihood function L : Rn+1 → R

L(β0, . . . , βn) =
m∏
i=1

pyi

i (1− pi)1−yi .

The goal of logistic regression is to find the parameters β0, . . . , βk that maximize this likelihood
function. Thus, the problem can be written as:

max
(β0,...,βn)

L(β0, . . . , βn).

Maximizing this function is often a numerically unstable calculation. Thus, to make the objec-
tive function more suitable, the logarithm of the objective function may be maximized because the
logarithmic function is strictly monotone increasing. Taking the log and turning the problem into a
minimization problem, the final problem is formulated as:

min
(β0,...,βn)

− logL(β0, . . . , βn).

A few lines of calculation reveal that this objective function can also be rewritten as

− logL(β0, . . . , βn) =
m∑
i=1

log(1 + exp(−(β0 + β1xi,1 + · · ·+ βnxi,n)))+

m∑
i=1

(1− yi)(β0 + β1xi,1 + · · ·+ βnxi,n).

The values for the parameters {βi}ni=1 that we obtain are known as the maximum likelihood
estimate (MLE). To find the MLE, conjugate gradient can be used to minimize the objective function.

For a one-dimensional binary logistic regression problem, we have predictor data {xi}mi=1 with
labels {yi}mi=1 where each yi ∈ {0, 1}. The negative log likelihood then becomes the following.

− logL(β0, β1) =
m∑
i=1

log(1 + e−(β0+β1xi)) + (1− yi)(β0 + β1xi) (13.4)

Problem 5. Write a class for doing binary logistic regression in one dimension that implement
the following methods.

1. fit(): accept an array x ∈ Rn of data, an array y ∈ Rn of labels (0s and 1s), and an
initial guess β0 ∈ R2. Define the negative log likelihood function as given in (13.4), then
minimize it (with respect to β) with your function from Problem 3 or opt.fmin_cg().
Store the resulting parameters β0 and β1 as attributes.

2. predict(): accept a float x ∈ R and calculate

σ(x) =
1

1 + exp(−(β0 + β1x))
,

where β0 and β1 are the optimal values calculated in fit(). The value σ(x) is the
probability that the observation x should be assigned the label y = 1.
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This class does not need an explicit constructor. You may assume that predict() will be called
after fit().

Problem 6. On January 28, 1986, less than two minutes into the Challenger space shuttle’s
10th mission, there was a large explosion that originated from the spacecraft, killing all seven
crew members and destroying the shuttle. The investigation that followed concluded that the
malfunction was caused by damage to O-rings that are used as seals for parts of the rocket
engines. There were 24 space shuttle missions before this disaster, some of which had noted
some O-ring damage. Given the data, could this disaster have been predicted?

The file challenger.npy contains data for 23 missions (during one of the 24 missions, the
engine was lost at sea). The first column (x) contains the ambient temperature, in Fahrenheit,
of the shuttle launch. The second column (y) contains a binary indicator of the presence of
O-ring damage (1 if O-ring damage was present, 0 otherwise).

Instantiate your class from Problem 5 and fit it to the data, using an initial guess of
β0 = [20,−1]T. Plot the resulting curve σ(x) for x ∈ [30, 100], along with the raw data. Return
the predicted probability (according to this model) of O-ring damage on the day the shuttle
was launched, given that it was 31◦F.
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14 The Simplex Method

Lab Objective: The Simplex Method is a straightforward algorithm for finding optimal solutions
to optimization problems with linear constraints and cost functions. Because of its simplicity and
applicability, this algorithm has been named one of the most important algorithms invented within
the last 100 years. In this lab we implement a standard Simplex solver for the primal problem.

Standard Form

The Simplex Algorithm accepts a linear constrained optimization problem, also called a linear pro-
gram, in the form given below:

minimize cTx

subject to Ax ⪯ b

x ⪰ 0

Note that any linear program can be converted to standard form, so there is no loss of generality
in restricting our attention to this particular formulation.

Such an optimization problem defines a region in space called the feasible region, the set of
points satisfying the constraints. Because the constraints are all linear, the feasible region forms
a geometric object called a polytope, having flat faces and edges (see Figure 14.1). The Simplex
Algorithm jumps among the vertices of the feasible region searching for an optimal point. It does
this by moving along the edges of the feasible region in such a way that the objective function is
always increased after each move.

159
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(a) The feasible region for a linear program with
2-dimensional constraints.

x∗

(b) The feasible region for a linear program with
3-dimensional constraints.

Figure 14.1: If an optimal point exists, it is one of the vertices of the polyhedron. The simplex
algorithm searches for optimal points by moving between adjacent vertices in a direction that increases
the value of the objective function until it finds an optimal vertex.

Implementing the Simplex Algorithm is straightforward, provided one carefully follows the
procedure. We will break the algorithm into several small steps, and write a function to perform
each one. To become familiar with the execution of the Simplex algorithm, it is helpful to work
several examples by hand.

The Simplex Solver
Our program will be more lengthy than many other lab exercises and will consist of a collection of
functions working together to produce a final result. It is important to clearly define the task of each
function and how all the functions will work together. If this program is written haphazardly, it will
be much longer and more difficult to read than it needs to be. We will walk you through the steps
of implementing the Simplex Algorithm as a Python class.

For demonstration purposes, we will use the following linear program.

minimize − 3x0 − 2x1

subject to x0 − x1 ≤ 2

3x0 + x1 ≤ 5

4x0 + 3x1 ≤ 7

x0, x1 ≥ 0.

Accepting a Linear Program

Our first task is to determine if we can even use the Simplex algorithm. Assuming that the problem
is presented to us in standard form, we need to check that the feasible region includes the origin. For
now, we only check for feasibility at the origin. A more robust solver sets up the auxiliary problem
and solves it to find a starting point if the origin is infeasible.
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Problem 1. Write a class that accepts the arrays c, A, and b of a linear optimization problem
in standard form. In the constructor, check that the system is feasible at the origin. That is,
check that Ax ⪯ b when x = 0. Raise a ValueError if the problem is not feasible at the origin.

Adding Slack Variables

The next step is to convert the inequality constraints Ax ⪯ b into equality constraints by introducing
a slack variable for each constraint equation. If the constraint matrix A is an m × n matrix, then
there are m slack variables, one for each row of A. Grouping all of the slack variables into a vector
w of length m, the constraints now take the form Ax+w = b. In our example, we have

w =

 x2
x3
x4


When adding slack variables, it is useful to represent all of your variables, both the original

primal variables and the additional slack variables, in a convenient manner. One effective way is to
refer to a variable by its subscript. For example, we can use the integers 0 through n− 1 to refer to
the original (non-slack) variables x0 through xn−1, and we can use the integers n through n+m− 1

to track the slack variables (where the slack variable corresponding to the ith row of the constraint
matrix is represented by the index n+ i− 1).

We also need some way to track which variables are independent (non-zero) and which variables
are dependent (those that have value 0). This can be done using the objective function. At anytime
during the optimization process, the non-zero variables in the objective function are independent and
all other variables are dependent.

Creating a Dictionary

After we have determined that our program is feasible, we need to create the dictionary (sometimes
called the tableau), a matrix to track the state of the algorithm.

There are many different ways to build your dictionary. We will do this by setting the corre-
sponding dependent variable equations to 0. For example, if x5 were a dependent variable we would
expect to see a -1 in the column that represents x5. Define

Ā =
[
A Im

]
,

where Im is the m×m identity matrix we will use to represent our slack variables, and define

c̄ =

[
c

0

]
.

That is, c̄ ∈ Rn+m such that the first n entries are c and the final m entries are zeros. Then the
initial dictionary has the form

D =

[
0 c̄T

b −Ā

]
(14.1)

The columns of the dictionary correspond to each of the variables (both primal and slack), and
the rows of the dictionary correspond to the dependent variables.



162 Lab 14. The Simplex Method

For our example the initial dictionary is

D =


0 −3 −2 0 0 0

2 −1 1 −1 0 0

5 −3 −1 0 −1 0

7 −4 −3 0 0 −1

 .
The advantage of using this kind of dictionary is that it is easy to check the progress of your

algorithm by hand.

Problem 2. Add a method to your Simplex solver that takes in arrays c, A, and b to create
the initial dictionary as a NumPy array. Make sure to initialize the dictionary in __init__ by
calling the method you just created and name the parameter self.dictionary (failure to do this
will result in no points received for the problem).

Pivoting

Pivoting is the mechanism that really makes Simplex useful. Pivoting refers to the act of swapping
dependent and independent variables, and transforming the dictionary appropriately. This has the
effect of moving from one vertex of the feasible polytope to another vertex in a way that increases
the value of the objective function. Depending on how you store your variables, you may need to
modify a few different parts of your solver to reflect this swapping.

When initiating a pivot, you need to determine which variables will be swapped. In the dictio-
nary representation, you first find a specific element on which to pivot, and the row and column that
contain the pivot element correspond to the variables that need to be swapped. Row operations are
then performed on the dictionary so that the pivot column becomes a negative elementary vector.

Let’s break it down, starting with the pivot selection. We need to use some care when choosing
the pivot element. To find the pivot column, search from left to right along the top row of the
dictionary (ignoring the first column), and stop once you encounter the first negative value. The
index corresponding to this column will be designated the entering index, since after the full pivot
operation, it will enter the basis and become a dependent variable.

Using our initial dictionary D in the example, we stop at the second column:

D =


0 −3 −2 0 0 0

2 −1 1 −1 0 0

5 −3 −1 0 −1 0

7 −4 −3 0 0 −1


We now know that our pivot element will be found in the second column. The entering index is thus
1.

Next, we select the pivot element from among the negative entries in the pivot column (ignor-
ing the entry in the first row). If all entries in the pivot column are non-negative, the problem is
unbounded and has no solution. In this case, the algorithm should terminate. Otherwise, assuming
our pivot column is the jth column of the dictionary and that the negative entries of this column are
Di1,j , Di2,j , . . . , Dik,j , we calculate the ratios

−Di1,0

Di1,j
,
−Di2,0

Di2,j
, . . . ,

−Dik,0

Dik,j
,
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and we choose our pivot element to be one that minimizes this ratio. If multiple entries minimize the
ratio, then we utilize Bland’s Rule, which instructs us to choose the entry in the row corresponding
to the smallest index (obeying this rule is important, as it prevents the possibility of the algorithm
cycling back on itself infinitely). The index corresponding to the pivot row is designated as the
leaving index, since after the full pivot operation, it will leave the basis and become a independent
variable.

In our example, we see that all entries in the pivot column (ignoring the entry in the first row,
of course) are negative, and hence they are all potential choices for the pivot element. We then
calculate the ratios, and obtain

−2
−1

= 2,
−5
−3

= 1.66...,
−7
−4

= 1.75.

We see that the entry in the third row minimizes these ratios. Hence, the element in the second
column (index 1), third row (index 2) is our designated pivot element.

D =


0 −3 −2 0 0 0

2 −1 1 −1 0 0

5 −3 −1 0 −1 0

7 −4 −3 0 0 −1



Problem 3. Write a method that will determine the pivot row and pivot column according to
Bland’s Rule.

Definition 14.1 (Bland’s Rule). Choose the independent variable with the smallest index
that has a negative coefficient in the objective function as the leaving variable. Choose the
dependent variable with the smallest index among all the binding dependent variables.

Bland’s Rule is important in avoiding cycles when performing pivots. This rule guarantees
that a feasible Simplex problem will terminate in a finite number of pivots. Hint: Avoid dividing
by zero.
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Finally, we perform row operations on our dictionary in the following way: divide the pivot row
by the negative value of the pivot entry. Then use the pivot row to zero out all entries in the pivot
column above and below the pivot entry. In our example, our pivot is -3. So, we must first divide
the pivot row by 3, and then zero out the two entries above the pivot element and the single entry
below it: 

0 −3 −2 0 0 0

2 −1 1 −1 0 0

5 −3 −1 0 −1 0

7 −4 −3 0 0 −1

→


0 −3 −2 0 0 0

2 −1 1 −1 0 0

5/3 −1 −1/3 0 −1/3 0

7 −4 −3 0 0 −1

→

−5 0 −1 0 1 0

2 −1 1 −1 0 0

5/3 −1 −1/3 0 −1/3 0

7 −4 −3 0 0 −1

→

−5 0 −1 0 1 0

1/3 0 4/3 −1 1/3 0

5/3 −1 −1/3 0 −1/3 0

7 −4 −3 0 0 −1

→

−5 0 −1 0 1 0

1/3 0 4/3 −1 1/3 0

5/3 −1 −1/3 0 −1/3 0

1/3 0 −5/3 0 4/3 −1

 .
The result of these row operations is our updated dictionary, and the pivot operation is complete.

Problem 4. Add a method to your solver that checks for unboundedness and performs a single
pivot operation from start to completion. If the problem is unbounded, raise a ValueError.

Termination and Reading the Dictionary

Up to this point, our algorithm accepts a linear program, adds slack variables, and creates the initial
dictionary. After carrying out these initial steps, it then performs the pivoting operation iteratively
until the optimal point is found. But how do we determine when the optimal point is found? The
answer is to look at the top row of the dictionary, which represents the objective function. More
specifically, before each pivoting operation, check whether all of the entries in the top row of the
dictionary (ignoring the entry in the first column) are nonnegative. If this is the case, then we have
found an optimal solution, and so we terminate the algorithm.

The final step is to report the solution. The ending state of the dictionary and index list tells
us everything we need to know. The minimal value attained by the objective function is found in
the upper leftmost entry of the dictionary. Variables with nonzero entries in the objective function,
or first row of our dictionary array, are independent variables. Variables with an entry of 0 in the
objective function are dependent variables, and their values are given by the first column of the
dictionary. Specifically, independent variables are given the value of 0 while the dependent variable
whose index is located at the ith entry of the index list has the value Ti+1,0.

In our example, suppose that our algorithm terminates with the dictionary and index list in
the following state:

D =


−5.2 0 0 0 0.2 0.6

0.6 0 0 −1 1.4 −0.8
1.6 −1 0 0 −0.6 0.2

0.2 0 −1 0 0.8 −0.6
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Then the minimal value of the objective function is −5.2. The independent variables have indices
4, 5 and have the value 0. The dependent variables have indices 3, 1, and 2, and have values .6, 1.6,
and .2, respectively. In the notation of the original problem statement, the solution is given by

x0 = 1.6

x1 = .2.

Problem 5. Write an additional method in your solver called solve() that obtains the op-
timal solution, then returns the minimal value, the dependent variables, and the independent
variables. The dependent and independent variables should be represented as two dictionaries,
where the key:value pairs are int:float, respectively, that map the index of the variable to its
corresponding value.

For our example, we would return the tuple
(-5.2, {0: 1.6, 1: .2, 2: .6}, {3: 0, 4: 0}).

Unit Test

There is a file called test_simplex.py that contains the following block of code as a unit test.
There is a place for you to write your own unit tests for Problem 5, the simplex solver, which
will be graded.

At this point, you should have a Simplex solver that is ready to use. The following code
demonstrates how your solver is expected to behave:

>>> import SimplexSolver

# Initialize objective function and constraints.
>>> c = np.array([-3., -2.])
>>> b = np.array([2., 5, 7])
>>> A = np.array([[1., -1], [3, 1], [4, 3]])

# Instantiate the simplex solver, then solve the problem.
>>> solver = SimplexSolver(c, A, b)
>>> sol = solver.solve()
>>> print(sol)
(-5.2,
{0: 1.6, 1: 0.2, 2: 0.6},
{3: 0, 4: 0})

If the linear program were infeasible at the origin or unbounded, we would expect the solver to
alert the user by raising an error.
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Note that this simplex solver is not fully operational. It can’t handle the case of infeasibility
at the origin. This can be fixed by adding methods to your class that solve the auxiliary problem,
that of finding an initial feasible dictionary when the problem is not feasible at the origin. Solving
the auxiliary problem involves pivoting operations identical to those you have already implemented,
so adding this functionality is not overly difficult.

The Product Mix Problem
We now use our Simplex implementation to solve the product mix problem, which in its dependent
form can be expressed as a simple linear program. Suppose that a manufacturer makes n products
using m different resources (labor, raw materials, machine time available, etc). The ith product is
sold at a unit price pi, and there are at most mj units of the jth resource available. Additionally, each
unit of the ith product requires aj,i units of resource j. Given that the demand for product i is di
units per a certain time period, how do we choose the optimal amount of each product to manufacture
in that time period so as to maximize revenue, while not exceeding the available resources?

Let x1, x2, . . . , xn denote the amount of each product to be manufactured. The sale of product
i brings revenue in the amount of pixi. Therefore our objective function, the profit, is given by

n∑
i=1

pixi.

Additionally, the manufacture of product i requires aj,ixi units of resource j. Thus we have the
resource constraints

n∑
i=1

aj,ixi ≤ mj for j = 1, 2, . . . ,m.

Finally, we have the demand constraints which tell us not to exceed the demand for the products:

xi ≤ di for i = 1, 2, . . . , n

The variables xi are constrained to be nonnegative, of course. We therefore have a linear
program in the appropriate form that is feasible at the origin. It is a simple task to solve the problem
using our Simplex solver.

Problem 6. Solve the product mix problem for the data contained in the file productMix.npz.
In this problem, there are 4 products and 3 resources. The archive file, which you can load
using the function np.load, contains a dictionary of arrays. The array with key 'A' gives the
resource coefficients ai,j (i.e. the (i, j)-th entry of the array give ai,j). The array with key 'p'
gives the unit prices pi. The array with key 'm' gives the available resource units mj . The
array with key 'd' gives the demand constraints di.

Return a 1-d numpy array of the number of units that should be produced for each product.
(For productMix.npz, the function should return an array of length four). Hint: Because this
is a maximization problem and your solver works with minimizations, you will need to change
the sign of the array c.

Beyond Simplex
The Computing in Science and Engineering journal listed Simplex as one of the top ten algorithms
of the twentieth century [Nas00]. However, like any other algorithm, Simplex has its drawbacks.



167

In 1972, Victor Klee and George Minty Cube published a paper with several examples of worst-
case polytopes for the Simplex algorithm [KM72]. In their paper, they give several examples of
polytopes that the Simplex algorithm struggles to solve.

Consider the following linear program from Klee and Minty.

max 2n−1x1 +2n−2x2 + · · · +2xn−1 +xn

subject to x1 ≤ 5

4x1 +x2 ≤ 25

8x1 +4x2 +x3 ≤ 125

...
...

2nx1 +2n−1x2 + · · · +4xn−1 +xn ≤ 5

Klee and Minty show that for this example, the worst case scenario has exponential time com-
plexity. With only n constraints and n variables, the simplex algorithm goes through 2n iterations.
This is because there are 2n extreme points, and when starting at the point x = 0, the simplex
algorithm goes through all of the extreme points before reaching the optimal point (0, 0, . . . , 0, 5n).
Other algorithms, such as interior point methods, solve this problem much faster because they are
not constrained to follow the edges.
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15 Reinforcement
Learning 1:
Gymnasium

Lab Objective: Reinforcement learning is a topic found at the intersection between machine
learning and control theory. Gymnasium is a module designed to learn and apply reinforcement
learning. The purpose of this lab is to learn the variety of functionalities available in Gymnasium
and to implement them in various environments to solve the reinforcement learning problem using
trial and error and two model-free methods.

Reinforcement learning, or RL for short, is a problem, a class of solutions that work well on
the problem, and a field that studies the problem and solutions to it. As a problem, RL refers to
the problem of getting an agent to explore an unknown environment to achieve a given task or goal.
That is, we have an agent in some world with a given objective it must accomplish in that world
but the agent is not told what to do at any moment (i.e. the agent only knows that it can do some
things). You can think of this as baking a cake without a recipe and only being told you can open
ingredients, mix them, and put them in the oven. Thus, you know that you can mix, open, or bake
eggs and flour, but you don’t know if you first need to mix the eggs and flour together, then open
them, and bake them or if it needs to be done in some other order.

As a class of solutions, RL refers to the various algorithms or computations whose tasks is to
help an agent learn, through sequential decision-making and experience, how to interact with and
learn from its environment in order to accomplish the given goal in the most optimal way possible.
It is different from other types of machine learning as reinforcement learning is concentrated more
on goal-focused learning as a consequence of its interactions with the environment than other types
of machine learning. Thus, RL is the umbrella referring to the field of study encompassing all this.

We will introduce a summary of the theory behind reinforcement learning prior to the actual
beginning of the lab. Here are a few definitions to help you familiarize yourself with the verbiage
used in RL (and by consequence in Gymnasium):

• An agent1 is a learner and decision maker whose goal is to learn a strategy or sequence of
actions to accomplish a given task or goal.

• The environment is the world in which the agent is located and consists of a set of different
states. It is everything outside the control of the agent.

1In control theory, the agent is called the controller, the environment is the plant or controlled system, and the
action is the control signal.

169



170 Lab 15. Reinforcement Learning 1: Gymnasium

• The state, denoted by s, is the set of information that describes the environment completely
so as to enable the agent to take an action. Thus, a state is the current representation of the
environment. The state space, S, is the set of all possible states that the agent can be in, which
includes the current state s and all possible future states the agent can reach from s.

• An observation is the information the agent gathers about the environment. Thus, the obser-
vation is the agent’s perception or measurement of the state. In some cases, the observation
may be a full measurement2 of the state, but in other cases, the observation is a partial repre-
sentation of the state.

• The reward, denoted by r3 or by a function r(s′, a, s) or r(s, a) of states and actions, is a real
scalar value used to define the goal the agent must accomplish. The reward is used to help the
agent know, in the immediate sense, how good or bad the action or sequence of actions that it
took was in helping it accomplish the goal. The set of all possible rewards that the agent can
receive is denoted R.

• A timestep or time-period, t, is the smallest discrete unit of time where the agent interacts with
the environment once. This interaction typically comprises a cycle of one state, one action,
and one reward. An episode is a finite sequence of timesteps that starts at some initial state,
s0 (i.e. the state at t = 0), and ends at some terminal state, sT . The terminal state is the final
state representing the end of an episode and can be a maximum number of timesteps or some
other desired state. Note that in this latter case, the time of termination, T , can be different
for each episode as well as the fact that each episode can have a different terminal state. When,
we work with episodes, we call this the finite horizon4 setting and use S to denote the set of
all non-terminal or normal states and S+ to denote the set of all states, including the terminal
states. We use T = {0, 1, . . . , T} to denote the set of all time-steps, including the terminal time
T , of one episode.

• A value function returns the value of a state or state-action pair as the expected future return
of rewards. That is, the value function helps us determine the long-term desirability of a state
or state-action pair after considering possible future states or state-action pairs that are likely
to follow and the rewards that they will bring. Value functions estimate how good it is for the
agent to be in a given state or to take an action in a given state, after considering the expected
future rewards.

– The state-action value, quality of a state-action pair, or action-value function for a policy
π, denoted by qπ(s, a) or q(s, a), is a function of state-action pairs that returns the value
or quality of a given pair as the expected return of taking action a while being in state
s and following policy π thereafter. In other words, given a state s, an action a, and a
policy π (i.e. a strategy to select an action based on a given state5), the value/quality
of a state-action pair, q(s, a), is the expected future return that the agent can receive by
taking action a while being in state s at some period t and enacting π thereafter.

The RL Interaction-Learning Framework
In this section, we will assume that we are only working within one episode with a set T = {0, 1, . . . , T}
of timesteps.

2In this case, the observation space is the state space so that the observation is equal to the state.
3We talk more about the function case in the next RL lab.
4When there an infinite amount of timesteps, we no longer use the word episode. We call this the infinite horizon

setting.
5We give a formal definition in the next RL lab.
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As mentioned earlier, in RL, the goal is to get an agent to learn, through sequential decision-
making, how to interact with its environment in order to accomplish some given objective (e.g. teach
a robot how to walk, a computer learning how to play chess, or have two chatbots generate dialogue
etc.). The agent interacts with the environment at each time-period t ∈ T by first receiving some
observation of the current state s of the environment at the that timestep t, denoted st. Then based
on this observation, the agent employs the mapping π to select6 an action a to perform for that
time-period, denoted at. One timestep later, t + 1, the agent receives some feedback, a reward rt,
to help it know how good or bad the action at was in helping it accomplish the task. After this,
the agent is now in the new state st+1 and the process begins again. This same process of state,
observation, action, and reward continues until we reach a terminal state7 and is one of the main
aspects separating RL from other types of machine learning. Note that the reward is received after
the action is taken and when the agent is in a new timestep. This is illustrated in Figure 15.1.

Figure 15.1: The reinforcement learning framework as given by [SB18]. Here, the reward is R and
Rt+1 is used to emphasize that the reward is received one time step later. Notice that the agent had
received the reward Rt for taking action At−1. This was given prior to choosing action At during
state St. The agent chooses the action At based on the observation of St and, to some extent, based
on the reward Rt. The agent then goes to the next state St+1, receives the reward Rt+1, and the
process repeats.

Hence, the agent interacts with the environment by taking actions and receiving rewards. These
rewards are immediate feedback that the agent can use to determine how good an action is in
helping it accomplish the task. In some environments, the reward follows after each action, called
dense rewards, which can facilitate the problem. In other environments, the reward may be sparsed
or delayed, perhaps until the end of the final timestep or until we fail/succeed, which makes the
problem more challenging.

Reinforcement Learning Techniques
The ultimate goal, that is the optimization problem, of RL is to learn an optimal policy, or optimal
strategy to select actions based on given states, that will bring the agent the most future reward,
which in turn helps the agent accomplish the given task. There are several ways to solve the RL
optimization problem. The major division in RL techniques is between model-based and model-free
methods.

6In the stochastic/probabilistic case, the selection makes sense seeing there are multiple actions to choose from. In
the deterministic case, the selection is equal to performing the only action available. This will be covered in the next
RL lab.

7In the infinite horizon case, also known as continuous, the process continues indefinitely.
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In model-based methods, the agent has a model of the environment, which includes a model
for any transitions between states as well as the rewards. The agent makes use of this model to learn
the optimal policy and updates the model as it interacts with the environment. One goal can be to
learn the dynamics of the environment and then use this to learn the optimal policy. On the other
hand, if we have certainty of the model and the dynamics, the agent can use this to evaluate future
actions without having to try various actions and measuring the results of such actions as the model
will help compute this. In contrast, model-free methods do not have a model of the environment.
The agent learns by interacting with the environment and observing the rewards it receives rather
than trying to learn the environment’s dynamics or using a model to calculate future rewards. Thus,
the agent learns by trial and error and creates a policy based on the consequences of its actions.

Figure 15.2: A diagram of various techniques used to solve the reinforcement learning optimization
problem as given by [BK22]. You can see this video for a more in depth explanation.

The next RL lab, Reinforcement Learning 2: Markov Decision Process, is an example of a
model-based method. We will employ an MDP model on the environment and use the Bellman
equations to find the optimal policy, assuming we know the dynamics of the environment. In this
lab, we will cover two model-free methods called Q-learning and SARSA(0). Thus, the main goal
of this lab is to find the optimal policy through trial and error, without having a model of the
environment.

Gymnasium Module
Gymnasium is a module used to perform reinforcement learning. It contains a collection of environ-
ments where reinforcement learning can be used to accomplish various tasks. These environments
include performing computer functions such as copy and paste, playing Atari video games, and
controlling robots. To install Gymnasium, simply run the following code:

>>> pip install gymnasium
>>> # You may also need to install these dependencies
>>> pip install gymnasium[all]
>>> pip install gymnasium[classic-control]

https://www.youtube.com/watch?v=i7q8bISGwMQ&list=PLMrJAkhIeNNQe1JXNvaFvURxGY4gE9k74&index=4
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Environments

Each environment in Gymnasium can be thought of as a different scenario where reinforcement
learning can be applied. A catalog of environments can be found using the following code.

>>> from gymnasium import envs
>>> print(envs.registry.values())
dict_values([EnvSpec(id='CartPole-v0', entry_point='gymnasium.envs.←↩

classic_control.cartpole:CartPoleEnv', reward_threshold=195.0, ←↩
nondeterministic=False, max_episode_steps=200, order_enforce=True, ←↩
autoreset=False, disable_env_checker=False, apply_api_compatibility=False, ←↩
kwargs={}, namespace=None, name='CartPole', version=0, additional_wrappers←↩
=(), vector_entry_point='gymnasium.envs.classic_control.cartpole:←↩
CartPoleVectorEnv'), ...

To learn more about Gymnasium and its environments, visit gymnasium.farama.org.
We will demonstrate how to work with Gymnasium environments by walking through the

environment "Blackjack-v1". The game Blackjack8 is a card game where the player receives two
cards from a face card deck. The goal of the player is to get cards whose sum is as close to 21 as
possible without exceeding 21. In this version of Blackjack, an ace is considered 1 or 11 and any face
card is considered 10. On each turn, the player may choose to take another card or stop drawing
cards. If their card sum does not exceed 21, they may take another card, but if it does, they lose.
After the player stops drawing cards, the computer may play the same game. If the computer gets
closer to 21 than the player (without exceeding 21), the player loses.

To begin working in an environment, the environment must be initialized and reset. Resetting
the environment puts everything in the correct starting position and is necessary to begin using the
environment. For example, in "Blackjack-v1", restarting the environment deals out a new game of
Blackjack. Once the environment is complete, it should then be closed. Closing the environment tells
the computer to stop running the environment (otherwise it will continue to run in the background).

>>> import gymnasium as gym
>>> env = gym.make('Blackjack-v1') # Initialize Blackjack-v1 environment
>>> env.reset() # Reset the environment
((16, 6, 1), {})

>>> env.close() # Close the environment

Action Space

An action, denoted by a, is the decision that the agent makes, while being in some state s, on what
to do next. The set of all possible actions that the agent can enact during some state s is called the
action set or set of allowable actions, denoted by As. The overall set of all possible actions that the
agent can take is denoted A = ∪s∈SAs and is called the action space. Note each state9 s ∈ S has an
associated As.

8For more on how to play Blackjack, see https://en.wikipedia.org/wiki/Blackjack.
9This does imply that all action spaces of terminal states are empty since the episode has finished. This does not

mean you cannot get a reward at any terminal state.

gymnasium.farama.org
https://en.wikipedia.org/wiki/Blackjack


174 Lab 15. Reinforcement Learning 1: Gymnasium

Once the environment is initialized and reset, the player can perform actions from the action
space. To perform an action, use the function step(), which accepts the action as a parameter and
returns an observation (more on those later). Environments may have discrete or continuous action
spaces, but the environments presented in this lab all have discrete action spaces. When the action
space is discrete, actions are defined as integers 0 through n, where n is the number of actions. The
action each integer represents can be found in the documentation of each environment. The action
space in "Blackjack-v1"10 has 2 actions, represented by 0 and 1: 0 indicates that the player will
stop drawing cards, and 1 indicates that the player will draw another card.

>>> env = gym.make('Blackjack-v1')
>>> env.reset() # Returns the initial state
((12,9,0),{})
>>> env.action_space # Determine the number of actions available
Discrete(2)
# Select a random action and take a step using that action
>>> random_action = env.action_space.sample()
>>> random_action
1
# In this case, the random action was to draw another card
>>> env.step(random_action)
((16, 9, 0), 0.0, False, False, {})

Observation Space

The observation space of an environment contains all possible observations. For example, in
"Blackjack-v1", an observation is a tuple containing the total sum of the player’s hand, the first card
of the computer’s hand, and a boolean indicating whether the player has an ace. The observation from
each action can be found in the tuple returned by step(), which tells us the following information:

1. observation: The current measurement of the current state of the environment.

2. reward: The reward given from the observation. In most environments, maximizing the total
reward increases performance. For example, the reward in 'Blackjack-v1' is 1 if the player
wins, -1 if the player loses, and 0 if there is a draw.

3. terminated: A boolean indicating whether the observation terminates the environment (i.e. a
boolean indicating if the agent reaches the terminal state).

4. truncated: A boolean indicating whether the episode truncates/finishes for some reason other
than having reached the terminal state. Typically, this is for a limit of timesteps.

5. info: Various information that may be helpful when debugging.

Consider the code below.

>>> env = gym.make('Blackjack-v1')
>>> env.reset()
((12, 1, 0),{})

10The documentation can be found here

https://gymnasium.farama.org/environments/toy_text/blackjack/
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>>> random_action = env.action_space.sample() # Make a random guess
>>> env.step(random_action)
((18, 1, 0), 0.0, False, False {})

This tuple can be interpreted as follows:

1. The sum of the player’s hand is 18, the computer’s first card is 1, and the player has no ace.

2. The reward is currently 0.0 (the game is not over yet).

3. The environment is not terminated.

4. The episode was not truncated

5. Information that may help debugging (which is currently empty).

In practice, this information is usually accessed by setting variables equal to step() as in

>>> obs, reward, done, trunc, info = env.step(random_action)

Problem 1. Write a function random_blackjack() that accepts an integer n. Run and ini-
tialize "Blackjack-v1" a total of n episodes and in each episode take random actions until the
game is terminated. Return the percentage of games the player wins. Use your function to
print the win percentage after 50,000 episodes (i.e. after 50,000 games).

Understanding Environments
Because each action and observation space is made up of numbers, good documentation is imperative
to understanding any given environment. Fortunately, most environments in Gymnasium are very
well documented, and most documentation follows the same pattern. There is a docstring which
includes a description of the environment, a detailed action space, a detailed observation space,
and explanation of rewards. It is always helpful to refer to this documentation when working in a
Gymnasium environment.

In addition to documentation, certain environments can be understood better through visual-
ization. For example, the environment "Acrobot-v1" displays a double pendulum. Rendering the
environment allows the user to see the movement of the double pendulum as forces are applied to it.
The best way to render an environment in Gymnasium is by running the following code through a
python (.py) script, using the argument render_mode='human'.

>>> import gymnasium as gym

>>> env = gym.make('Acrobot-v1', render_mode='human')
>>> # env.reset() returns the observation space and corresponding info
>>> observation, info = env.reset()

>>> done = False
>>> while not done: # Until the environment terminates...
>>> # Take random step
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>>> random_action = env.action_space.sample()
>>> obs, reward, done, trunc, info = env.step(random_action)

>>> env.close()

However, this lab uses a Jupyter (.ipynb) file, and Gymnasium environments do not render well
in Jupyter files. The visualization technique shown below is a simple workaround that uses the
argument render_mode='rgb_array', but unfortunately it renders slowly.

>>> from IPython import display
>>> from matplotlib import pyplot as plt

>>> env = gym.make('Acrobot-v1', render_mode='rgb_array')
>>> observation, info = env.reset()

>>> # Initialize visualization
>>> img = plt.imshow(env.render())

>>> done = False
>>> while not done:
>>> # Take random step
>>> random_action = env.action_space.sample()
>>> obs, reward, done, trunc, info = env.step(random_action)

>>> # Update visualization
>>> img.set_data(env.render())
>>> display.display(plt.gcf())
>>> display.clear_output(wait=True)

>>> env.close()

Figure 15.3: Rendering of "Acrobot-v1"
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Solving An Environment
One way to solve an environment is to use information from the current observation to choose our
next action. For example, consider "Blackjack-v1". Each observation tells us the player’s current
card sum. Based on the current card sum, we can decide whether we want to draw another card
or stop drawing cards. To take the decided action, simply input the integer representing the action
into the function step(). In the next three problems, you will try to solve the environment using
trial and error. Note that all of these environments are episodic tasks11 since the episode ends after
completing the task (or failing as well).

Problem 2. Write a function blackjack() which runs a naïve algorithm to win blackjack.
The function should receive an integer n as input. If the player’s hand is less than or equal to
n, the player should draw another card. If the player’s hand is more than n, they should stop
playing. Within the function, run the algorithm for 10,000 episodes and return the percentage
of games the player wins.

For n = 1, 2, . . . , 21, plot the average win rate returned by your function. Identify which
value(s) of n wins most often.
Hint: Remember what the actions are in the action space of "Blackjack-v1".

Problem 3. The environment "CartPole-v1" presents a cart with a vertical pole. The goal of
the environment is to keep the pole vertical as long as possible. The cart moves to the left with
action 0, and it moves to the right with action 1. The observation space of this environment is
a 4-dimensional array containing: the cart position, the cart velocity, the pole angle, and the
pole angular velocity, respectively. More information about this environment can be found at
gymnasium.farama.org/environments/classic_control/cart_pole/.

Write a function cartpole() which initializes the "CartPole-v1" environment and keeps
the pole vertical as long as possible based on the angular velocity of the tip of the pole. Return
the number of timesteps it takes before it terminates (about 200 on average).

Run the game for a single episode and render the environment at each timestep. Then
run your function 100 episodes without rendering, and print the average number of timesteps
before it terminates.

Problem 4. The environment "MountainCar-v0" shows a car in a valley. The goal of the
environment is to get the car to the top of the right mountain. The car can be driven forward
(toward the goal) with action 2, can be driven backward with action 0, and will be put in neutral
with action 1. Note that the car cannot immediately get up the hill because of gravity, so in order
to move the car to goal, momentum will need to be gained by going back and forth between both
sides of the valley. The observation space of this environment is a 2-dimensional array containing
the x position and the velocity of the car, respectively. More information about this environment
can be found at gymnasium.farama.org/environments/classic_control/mountain_car/.

11When working in the continuous or infinite horizon case, we call the task continuous task.

gymnasium.farama.org/environments/classic_control/cart_pole/
gymnasium.farama.org/environments/classic_control/mountain_car/
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Using the given position and velocity of the car, write a function car() that solves the
"MountainCar-v0" environment. Return the number of time-periods it takes before it termi-
nates, which should be less than 180.

Run the game for a single episode and render the environment at each time-period. Then
run your function for 100 episodes without rendering, and print the average number of time-
periods before it terminates.

Model-Free Methods
While naïve methods like the ones we have used above can be useful, they do not help in producing
an optimal policy to accomplish the given task. Model-free methods have the advantage of learning
straight from experience and without a need for a model and then use this knowledge to find an
optimal policy. To learn from experience, the model has to seek out actions it has not yet tried
in order to find the most optimal action (what is called exploration). Exploration can improve our
current knowledge of the environment so that we can obtain better rewards in the long run. However,
to find an optimal policy, the model also has to chose from actions, typically the most optimal action,
it has tried in the past and found to be effective in producing rewards (this being called exploitation.)
Thus, a model has to balance between exploring new actions and exploiting the best actions it has
found so far, a term known as the exploration-exploitation trade-off.

Moreover, since we have to learn from experience, we must often run the model through nu-
merous episodes or samples of various cycles of state-action-reward to be able to have sufficient
information in order to learn. To help with this latter case, we typically want to run the method for
a rather large number N ∈ N of episodes. That is, we want to iterate the method for N iterations
for however many timesteps there are in each iteration.

To Explore or Not to Explore?

To help balance the trade-off between exploration vs. exploitation, we can employ the epsilon-greedy
or ε-greedy algorithm/policy. The ε-greedy algorithm is a simple method that helps the agent decide
randomly whether to explore by taking a random action or exploit its knowledge and take the optimal
action. The value ε ∈ [0, 1] represents the agent’s willingness to explore (i.e. how often we want the
agent to explore), so that as ε→ 1, the agent cares more about exploring. Whereas, ε→ 0 signifies
that the agent cares more about exploitation and taking the optimal action.

In the simplest implementation of the algorithm, the agent defines some constant probability
ε ∈ [0, 1] where it will act randomly and explore various actions in order to learn more about the
environment through trial and error. With probability 1−ε, the agent will exploit the current policy
it has formed and take the best action given by that policy. Thus, in this simple case and at each
timestep in a given episode, we can draw some value from the standard uniform distribution and
compare it to ε. If the drawn value is less than ε, we take a random action. Otherwise, we exploit
our knowledge and take the best action.

The difficulty with always using the constant value ε for each timestep and for each episode is
that at the beginning we do not have sufficient information to exploit so that exploring is the better
option. However, as we gain more and more information as we cycle through various episodes, the
agent does not have to explore as much since the model is more robust and better able to predict an
optimal policy. But even in this latter case, the model could use some fine-tuning with some random
exploration. Hence, we may want to use a decaying epsilon for the ε-greedy policy.
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One way to employ a decaying epsilon is to use a linear decay. We can define δ = ε1−εN
N , ε1 > εN ,

where ε1 signifies the starting value of epsilon in the first episode and εN signifies the ending value of
epsilon we want at the last episode N . ε1 should be a value that is more biased towards exploration,
so either ε1 = 1 or it’s a value quite close to it. In contrast, εN should be more biased toward
exploitation, so that it takes a value closer to 0, if not actually equal to 0. Then for each episode
i ∈ {1, 2 . . . , N}, we can update the epsilon value of a given episode i with εi = ε1− (i− 1)δ. We can
then use each εi as the epsilon value for each episode and, at each timestep in an episode, compare it
to a randomly drawn value from the standard uniform distribution to determine whether to explore
or exploit. We give a few more models of a decaying epsilon in the Additional Materials section.

The advantage of using the epsilon-greedy algorithm is that it is simple to implement and can
be used in a variety of environments. This helps us balance the trade-off between exploration and
exploitation and can help us find an optimal policy. However, the epsilon-greedy algorithm is not
always the best method to use, and there are other methods that can be used to help balance the
trade-off between exploration and exploitation. With a constant epsilon, the agent may not explore
enough at the beginning and may not exploit enough at the end. With a decaying epsilon, the agent
may explore too much at the beginning and exploit too much at the end since the value is so low.
Moreover, the ε-greedy policy chooses actions uniformly at random, so that the worst possible action
has the same probability of being chosen as the best possible action.

Problem 5. Write a function epsilon_decay() that accepts an integer episode signifying the
number of the current episode, an integer N that defines the total number of episodes, a float
epsilon_start that defaults to 1.0, and a float epsilon_end that defaults to 1e-6. Return the
epsilon value for any given episode number using a linear decay.

To test your function, you can plot the epsilon value for each episode for N = 1000 and
ensure the graph is a linear graph sloping downward to 0 starting from 1.

Temporal Difference Learning

Q-learning and SARSA(0) are model-free methods that come from the concept of temporal-difference
learning, TD for short. Like other methods, TD learns directly from experience and does not require
a model of the environment, but it also updates its estimates of the value function based in part
on other estimates it has learned, without having to wait for a final outcome. Temporal difference
learning is a method that uses a reward and the difference between the value of the current state and
the value of the next state or states to update the value of the current state. In short, TD focuses
on the differences the agent experiences in time. The main goal of TD is to learn the value function
of the environment through an approximation.

The simplest equation for a TD method for some given estimate value function12, denoted by
V , is given by

V (st) = V (st) + α(rt + γV (st+1)− V (st)), (15.1)

12We give a formal definition in the next Reinforcement Learning lab.
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where rt + γV (st+1) is the TD-target and is an approximation of the value of the current state that
we want to approximate. The expression rt + γV (st+1) − V (st) is called the TD-error and is the
difference between the value of the current state, the TD-target, and the value of the next state.
Notice that all of the terms in Equation 15.1 are estimates of the true value function13. Equation
15.1 is known as the TD(0)14 or the one-step TD method since it updates the value of the current
state at timestep t just after one timestep (i.e. in timestep t+ 1). The idea of TD(0) is the basis for
the Q-learning and SARSA(0) algorithms.

Q-learning

Q-learning is a model-free reinforcement learning algorithm that uses the idea of TD to approximate
the optimal action-value function q∗(s, a). Q-learning creates a Q-table, which is an n×m dimensional
array, a lookup table, where n is the number of observations or states and m is the number of actions.
Each row in the Q-table represents a state, each column represents an action, and each cell stores
the approximated value Q(s, a) of taking that action in that state (i.e. the value of a state-action
pair). The main idea in Q-learning is that the quality of the current state-action pair is not only
based on the reward of the current state-action pair, but also on the difference between the maximum
value of the next state-action pairs, for the next state, and the old approximated value of the current
state-action pair. The Q-table is initialized with zeros and is updated using the following formula:

Qnew(st, at) = Qold(st, at) + α

[
rt + γ max

a∈Ast+1

(Q(st+1, a))−Qold(st, at)

]
(15.2)

= (1− α)Qold(st, at) + α

[
rt + γ max

a∈Ast+1

Q(st+1, a)

]
.

The expression rt + γ max
a∈Ast+1

(Q(st+1, a)) is the TD-target. The overall expression in the brackets

of Equation 15.2 (not the second equation below) is the TD-error. Thus, we update the Q-table
by taking a step in the direction of the TD-error and adding it to the old approximated value of
the current state-action pair. This process is repeated for each state-action pair until the Q-table
converges to the optimal policy.

The formula requires 3 hyperparameters15:

1. alpha: the learning rate is a value between (0, 1] tells the model the magnitude of the step it
should take towards the solution. It influences to what extent newly acquired information over-
rides old learned information. As α→ 1, the more the agent will consider the new information.

2. gamma: the discount factor is a value in the interval [0, 1] that determines how important the
reward of the current action is compared to future rewards. As γ → 1, the more the agent will
consider the future rewards.

3. epsilon: the epsilon value for the epsilon-greedy algorithm.

13This method of using estimates of current value we want to approximate during the update step is called boot-
strapping.

14This is a special case of TD(λ) and n-step TD methods.
15A hyperparameter is not the same as a model parameter. A hyperparameter is a configuration that is external to

the model and whose value cannot be estimated from data. It specifies how the learning process should behave and is
used to find model parameters.
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For each state, the optimal action is the action that maximizes the value in the Q-table. Thus,
to find the optimal policy for a given state, we need only take the argmax of the row in the Q-
table that corresponds to the given state. The following function will generate the optimal Q-table
for a given gym-environment. Note: read through the code and comments to understand how to
implement Q-learning because you will have to implement the SARSA(0) algorithm in problem 7.

def qlearn(env, alpha=0.1, gamma=0.6, epsilon=0.1, N=70_000, decay=False):
""" Use the Q-learning algorithm to find qvalues.
Parameters:

env (str): environment name (Gymnasium environment)
alpha (float): learning rate
gamma (float): discount factor
epsilon (float): epsilon value for epsilon-greedy algo
N (int): number of episodes to train for
decay (bool): whether to decay epsilon according to epsilon_decay

Returns:
q_table (ndarray nxm): the Q(s,a) approximation values

"""

# Make environment
env=gym.make(env)
# Make Q-table
q_table=np.zeros((env.observation_space.n, env.action_space.n))

# Train for N episodes
for i in range(1,N+1):

# Get epsilon value
if not decay:

epsilon=epsilon
else:

epsilon=epsilon_decay(i, N)

# Reset env and get initial state; Initialize penalties, reward, done
curr_state, info=env.reset()
penalties, reward=0,0
done=False

# Keep going until the terminal state is reached
while not done:

# Employ epsilon-greedy algo
if random.uniform(0,1) < epsilon: # Explore

curr_action=env.action_space.sample()
else: # Exploit

curr_action=(q_table[curr_state]).argmax()

# Take action and get new state and reward
next_state, reward, done, truncated, info=env.step(curr_action)
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# Calculate new qvalue
old_value=q_table[curr_state,curr_action]
next_max=(q_table[next_state]).max()
new_value=(1-alpha)*old_value+alpha*(reward+gamma*next_max)
q_table[curr_state, curr_action]=new_value

# Check if penalty is made; specific to Taxi env
if reward == -10:

penalties+=1

# Get next observation
curr_state=next_state

# Print episode number
if i % 100 == 0:

display.clear_output(wait=True)
print("Training model...")
print(f"Episode: {i}")

env.close()
print("Training finished.")
return q_table, penalties

Notice how we look at penalties in the code. The purpose of this is to see how many times
the agent makes a mistake. We typically expect the agent to make mistakes at the beginning of the
training process, but as the agent learns, we expect the number of mistakes to decrease. If the agent
is making a lot of mistakes, it may be a sign that the agent is not learning well.

Problem 6. The environment "Taxi-v3" depicts a taxi on a city grid, as shown in Figure
15.4. The goal of this environment is to pick up a passenger in a taxi and drop them off at
their destination as fast as possible. You will have to look at the environment specifications at
gymnasium.farama.org/environments/toy_text/taxi/ to understand it better.

1. Initialize the environment, then randomly act until the environment is done (i.e. until the
end of one episode) and print the total reward. Since the taxi is acting randomly, it often
takes so long for the environment to render that Jupyter will crash, so do NOT attempt
to render this environment.

2. Next, use qlearn() to calculate the optimal Q-table of the environment using the default
values for the hyperparameters as given and the given default value for N. Do NOT
decay the epsilon value. Then, render "Taxi-v3", use the Q-table to move through it (as
described above) for one episode, and print the total reward. Hint: q_table[observation
,:] might be helpful. Note that the training time, for the default N, should take about
no more than 3 minutes (depending on your computer) to complete.

gymnasium.farama.org/environments/toy_text/taxi/
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3. Third, use qlearn() to calculate the optimal Q-table of the environment using the default
values for α, γ, and N, but this time decay the epsilon value. Then, render "Taxi-v3",
use the Q-table to move through it for one episode, and print the total reward. For the
default N, the training time should take about 2-6 minutes (depending on your computer)
to complete. You will want to create a separate Q-table for this scenario.

4. Finally, write a function taxi() which initializes the "Taxi-v3" environment (without
rendering). Run scenarios 2 and 3 as described above for 1000 episodes, and write 2-
3 sentences comparing the use of a decaying epsilon value to a constant epsilon value.
You may want to look at average Q-learning total reward of 1000 episodes returned by
each scenario. You can also compare the penalties made in each scenario as given by
the qlearn() function as well as look at the time it took to train each scenario (i.e. the
time it took to create the Q-table). For the time, pay attention to the print statement
that gives the episode number and consider what epsilon is doing as you go through the
episodes.

Figure 15.4: Example starting position of "Taxi-v3"

SARSA(0)

The main idea behind SARSA(0), or just SARSA, is similar to Q-learning in that it approximates
the optimal action-value function q∗(s, a) using a Q-table. The difference between SARSA and Q-
learning is that SARSA uses the quality of the next state-action pair to update the value of the
current state-action pair, whereas Q-learning uses the maximum quality available in the state-action
pairs of the next state to update the value of the current state-action pair. Thus, the equation for
SARSA is given by

Qnew(st, at) = Qold(st, at) + α [rt + γQold(st+1, at+1)−Qold(st, at)] (15.3)
= (1− α)Qold(st, at) + α [rt + γQold(st+1, at+1)] ,
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where rt + γQold(st+1, at+1) is the TD-target and the expression in the brackets of Equation 15.3
(not the second equation below) is the TD-error. Thus, the agent estimates the value of the current
state-action pair by receiving the reward of the current state-action pair and then calculating an
estimate of the value next state-action pair. This is where the name SARSA comes from as the agent
uses the quintuple (st, at, rt, st+1, at+1) to update the value of the current state-action pair using
estimates of the next state-action pair.

The following pseudocode and the code block of Q-learning will help you implement the
SARSA(0) algorithm. Arrows with the tail end having the word fill signify that the given variable
is assigned a value that you must fill in. We give you some variables that may be harder to understand
from just reading the qlearn() codeblock.

Algorithm 1 SARSA(0) Algorithm
1: procedure sarsa0(env, alpha= 0.1, gamma= 0.6, epsilon= 0.1, N= 70_000, decay=False)
2: env←fill ▷ Make gym env
3: sarsa_tab←fill ▷ Initialize Q-table (given by SARSA)
4: for i in range(1,N+1) do ▷ Train
5: if not decay then ▷ Get epsilon value
6: epsilon←epsilon
7: else
8: epsilon←epsilon_decay(i, N)
9: curr_s, info←fill ▷ Reset env and get current state s

10: penalties, reward, done←fill ▷ Initialize penalties, reward, done
11: if random.uniform(0,1) < epsilon then ▷ Get current action using epsilon-greedy algo
12: curr_act←fill
13: else
14: curr_act←fill
15: while not done do
16: next_s, reward, done, trunc, info←fill ▷ Take current action, get new state, and

reward
17: if random.uniform(0,1) < epsilon then ▷ Get next action using epsilon-greedy algo
18: next_act←fill
19: else
20: next_act←fill
21: old_val←fill ▷ Get the value of the current state and action
22: next_val←sarsa_tab[next_s, next_act] ▷ Get the value of the next state and action
23: new_val←fill ▷ Calculate the new value of the current state and action
24: sarsa_tab[curr_s, curr_act]←new_val ▷ Update the Q-table
25: if reward == -10 then ▷ Check for penalty according to Taxi env
26: penalties+ = 1

27: curr_s←next_s ▷ Update the current state
28: curr_act←next_act ▷ Update the current action
29: env.close()
30: return sarsa_tab, penalties



185

Before concluding the lab and moving on to the last problem, do note that both Q-learning
and SARSA(0) can suffer from what is called maximization bias. However, we leave this off to the
Additionals Materials section as it necessitates another topic we briefly touch on in the conclusion.
We strongly recommend reading this section to help you know potential problems with Q-learning
and SARSA(0) and how to fix them when employing these algorithms in practice.

Wrapping Up
The type of reinforcement learning we have worked with in Q-learning is called off-policy learning.
This is a very important concept in RL, but we save it to the Additional Materials section were
we discuss it in more detail along on-policy learning, SARSA being an example. This will help
us understand the difference between the two types of learning and why we use them in different
scenarios. We strongly recommend reading this section to understand the difference between off-
policy and on-policy learning.

Moreover, we have worked with online reinforcement learning, where the agent learns from the
environment in real-time. That is, the agent interacts with the environment and learns from the
environment as it goes, so it can keep gathering data as it continues to interact. This is in contrast to
offline reinforcement learning, where the agent learns from a dataset of experiences that someone has
collected from the environment so that the agent does not interact with the environment in real-time
and cannot gather anymore data than the one given.

Lastly, this whole process of running the algorithm for N episodes is what in machine learning
is called training the model. Training the model is the process of feeding the model data and allowing
it to learn from that data. The objective of training is to learn the proper model parameters that
will allow it to increase its performance in the given task. In our case for model-free RL, training
the model has the objective of exploring and exploiting the environment to learn the optimal policy.

Problem 7. You will perform the following and use the "Taxi-v3" environment for the fol-
lowing problem:

1. Implement the sarsa0() function as given in Algorithm 1. You will need 15.3 to help you
calculate the new value of the current state-action pair as well as the given code block
of Q-learning to help you implement the function. You do not need to have a section
that prints out the episode number or the completion of training as in the Q-learning
function, but you can if you want. Do make sure to close the environment at the end of
the function. We have already given you the penalty check for the Taxi environment.

2. Then, use sarsa0() to calculate the optimal Q-table of the environment using the default
values for the hyperparameters as given and the given default value for N. Employ a
decaying epsilon value to calculate the Q-table. Render "Taxi-v3", use the Q-table to
move through it for one episode, and print the total reward. You will want to store this
Q-table in a separate variable. The training time for the default N should be about the
same as the training time for the Q-learning function with a decaying epsilon value.
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3. Finally, write a function compare() which initializes the "Taxi-v3" environment (without
rendering). This function will compare the average total reward of 1000 episodes of the Q-
learning and SARSA(0) tables that were created using a decaying epsilon. Run scenarios
the Taxi environment for 1000 episodes for each method using the tables you have now
created. Return the average total reward for 1000 episodes for each algorithm. This is a
tuple of two floats.

Additional Materials

More on the Epsilon-Greedy Algorithm

We talked about the difficulty of the trade-off between exploration and exploitation and how using
the ε-greedy algorithm can help with this. Using the epsilon-greedy algorithm is a simple way to
balance the trade-off between exploration and exploitation, but it is not the only way. Thompson
sampling (taught in Volume 2 Chapter 17), Upper confidence bound (UCB), and Softmax Action
Selection are other exploring strategies that can be used to handle the exploration-exploitation trade-
off. [SB18] makes a brief mention of these strategies, but they are not covered in depth. However,
there are plenty of free articles and blogs that cover these strategies in depth.

Rather than limiting ourselves to a constant epsilon value or a linear decay, we can use an
exponential decay for ε. Using ε1 as the starting value of epsilon and εN as the ending value of
epsilon, we can define the epsilon value for each episode i ∈ {1, . . . , N} as ε1 ∗ λ, λ = ( εNε1 )

i
N . We

could multiply the episode i in the numerator16 of λ by β to control the steepness of the decay, but
be careful as this can affect the value for εN .

Problem 8. Update the function epsilon_decay() as given in problem 5 to now include
in the parameters a string decay_type that defaults to "linear" that allows the user to
choose between a linear and exponential decay. Use "exp" for exponential decay. Then, up-
date the qlearn() function or sarsa0() function (below) to also include the same parameter
decay_type. Test the function with both linear and exponential decay. You could also try
other exploration strategies like Thompson sampling, UCB, and Softmax Action Selection and
compare them to the epsilon_decay() function.

Expected SARSA

We give a full definition of the policy π in the next lab. For now, to be more detailed, π takes in a
state s and returns a probability of taking an action a ∈ As.

Like Q-learning and SARSA(0), Expected SARSA is a model-free reinforcement learning algo-
rithm that approximates the optimal action-value function q∗(s, a). Specifically, Expected SARSA
uses the expected value of the next state-action pairs to update the value of the current state-action
pair. That is, we take into account how likely we are to take a certain action in the next state under
the current policy and use that to update the value of the current state-action pair. Thus, we move
in the direction of the expectation of the next state-action pairs (hence the name Expected SARSA).

16There is no uniqueness of using β in the numerator as the same effect can be had by using it in the numerator.
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The formula for Expected SARSA is given by

Qnew(st, at) = Qold(st, at) + α

[
rt + γE

[
Qold(st+1, at+1)

∣∣st+1

]
−Qold(st, at)

]

= Qold(st, at) + α

[
rt + γ

∑
a∈Ast+1

π(a|st+1)Q(st+1, a)−Qold(st, at)

]
.

In the case of a deterministic policy, the expected value of the next state-action pairs is the same
as before. When we do have a stochastic policy, we can use list comprehension to calculate the
expected value of the next state-action pairs. Note that Expected SARSA is an on-policy algorithm
like SARSA. We leave to the reader to determine which is the TD-target and the TD-error in the
above equation.

Q-learning vs. SARSA vs. Expected SARSA

Both Q-learning and SARSA are model-free reinforcement learning algorithms that approximate the
optimal action-value function. One of the main differences is that Q-learning uses the maximum
quality of the next state-action pair to update the value of the current state-action pair, whereas
SARSA uses the quality of the next state-action pair to update the value of the current state-action
pair. Thus, since Q-learning uses the best possible next action, it generally converges to the optimal
policy faster than SARSA because SARSA could still take an exploratory action. Moreover, SARSA
typically tends to lead to more stable solutions than Q-learning as well yielding better cumulative
rewards. Both are great model-free algorithms to use.

SARSA gets the next action stochastically by, at least in our code, using the epsilon-greedy
policy. This creates variance in our estimates of the value of the state-action pairs. While Expected
SARSA is computationally more expensive than SARSA, it is more stable and can yield better
cumulative rewards since it eliminates the variance found in SARSA. However, this is occurs when
the policy is highly stochastic. In most cases, Expected SARSA is only slightly better than SARSA.

To implement this algorithm, employ the same pseudocode as given in Algorithm 1 and the
given code block of Q-learning. Then just replace the equation for the new value of the current state-
action pair with the Expected SARSA equation using list comprehension to calculate the expected
value of the next state-action pairs. You will need to add in the parameter policy to the function
to be able to obtain the probability of taking an action in the next state under the current policy.

On-Policy vs. Off-Policy Learning

In model-free reinforcement learning, there are two types of learning: on-policy learning and off-
policy learning. The policy that the agent uses to determine its action/behavior as a response to its
environment is called the behavior policy. Whereas, the policy that the agent uses to learn from the
rewards of the actions taken and becomes the optimal policy is called the target policy (i.e. the policy
used to update the qualities/values of state-action pairs). In on-policy learning, the behavior policy
and the target policy are the same or similar. Whereas, in off-policy learning, the behavior policy
and the target policy are different.
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The ultimate goal is to learn the optimal policy, denoted π∗, but the way we learn π∗ can be
different. In on-policy learning, the agent uses a common behavior and target policy to respond to
the environment and then learn from the rewards of the actions taken in order to optimize the current
values of the state-action pairs so that they converge to the optimal ones. SARSA is an example of an
on-policy learning algorithm. In the TD-target expression of Equation 15.3, the policy used to take
actions in the environment is similar to the policy used to update the value of the state-action pairs.
In our case, we used the epsilon-greedy algorithm/policy to determine the current action and the
next action. Even if we used a different method for how to choose an action, say UCB or Thompson
sampling, the policy used to take actions in the environment would still be the same as the policy
used to update the value of the state-action pairs. You cannot use a different policy to take actions
in the environment than the one you use to update the value of the state-action pairs because that
will change the nature of SARSA so that it may not converge to the optimal policy.

Comparing this to Q-learning, an off-policy learning algorithm, the behavior policy and the
target policy are different. In this type of learning, the agent uses the behavior policy to take actions
and then uses the target policy to update the value of the state-action pairs so that it converges to
π∗. In the TD-target expression of Equation 15.2, the policy the agent uses to explore or take actions
in the environment, at least in our code, is the epsilon-greedy policy, but the policy the agent uses to
update the value of the state-action pairs always chooses the action that maximizes the value of the
next state-action pairs. Thus, regardless of whatever the behavior policy tells us to do (i.e. explore
or exploit according to the epsilon-greedy algorithm), the target policy will always choose the best
action to update the value of the state-action pairs. Hence, we have two different policies.

Overall, on-policy learning is a type of learning where the agent uses the same policy to take
actions in the environment and to then update its estimates of a value function that will converge to
the optimal value function. In contrast, off-policy learning is a type of learning where the agent uses
a one policy to take actions in the environment and another policy to then update its estimates of a
value function that will go to the optimal value function.

Maximization Bias & Double Q-Learning

This section is a direct connection to the previous section comparing and contrasting Q-learning,
Expected SARSA, and SARSA(0). But we first had to introduce the vocabulary of on-policy and
off-policy learning to understand the bias that can occur in both.

All of the given model-free methods involve maximization in the construction of their target
policies. There would be no problem if we did not have to approximate the value of the state-action
pairs using other estimates of the value of the state-action pairs. But the fact that we do, it leads
to overestimation of the value of the state-action pairs as we take the maximum value. It is the
choice of estimator, the maximum value, that leads to the overestimation of the value of the current
state-action pair since it is tied to its own value. That is, we are using an estimate of the value of the
next state-action pair to get an estimate of its maximum value over all possible actions in the action
space to update the value of the current state-action pair. Thus, we are using the same sample to
both determine the maximizing action and to estimate its value.

One way to mitigate the maximization bias is to use Double Q-learning. Double Q-learning is
an improvement to the normal Q-learning ideas of SARSA(0), Expected SARSA, and Q-learning.
The main idea is that rather than using the same sample to determine the maximizing action and to
estimate its value, we use two different samples to determine the maximizing action and to estimate
its value. This can be applied to Q-learning, SARSA(0), and Expected SARSA, but we will only
talk about implementing this idea in Q-learning. The reader should be able to implement this idea
in SARSA(0) and Expected SARSA as well.
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The process of Double Q-learning is simple. We take two Q-tables, Q1 and Q2, and use one
to determine the maximizing action and the other to estimate its value. We can use, for example,
Q1 to determine the maximizing action a∗ = argmax

a∈Ast+1

Q1(st+1, a) and then use Q2 to estimate its

value Q2(st+1, a∗). We can then update the value of the current state-action pair using the following
formula:

Q1(st, at) = Q1(st, at) + α

[
rt + γQ2(st+1, argmax

a∈Ast+1

{Q1(st+1, a)})−Q1(st, at)

]
= Q1(st, at) + α [rt + γQ2(st+1, a∗)−Q1(st, at)] .

This role can be reversed where we use Q2 to determine the maximizing action and Q1 to estimate
its value.

For implementation, we can divide the alternating between the two Q-tables by a random
number generator that chooses between the two Q-tables by simulating a coin flip (i.e. a 50-50
chance). This way, we can alternate between the two Q-tables to determine the maximizing action
and to estimate its value. There is nothing special about the 50-50 chance, but it is a simple way
to alternate between the two Q-tables. Moreover, we can have the behavioral policy utilize the two
Q-tables or just one of them. If using two, we can use an average of the two or a sum. Again, there
is nothing special about the average or sum, but it is a simple way to combine the two Q-tables. We
can implement as follows (note we chose an action over the sum of the two Q-tables):



190 Lab 15. Reinforcement Learning 1: Gymnasium

Algorithm 2 DoubleQ Learning Algorithm
1: procedure DoubleQLearn(env, alpha= 0.1, gamma= 0.6, epsilon= 0.1, N= 70_000,

decay=False)
2: env←gym.make(env)
3: q1← np.zeros((env.observation_space.n,env.action_space.n)) ▷ Initialize Q-tables
4: q2← np.zeros((env.observation_space.n,env.action_space.n))
5: for i in range(1,N+1) do ▷ Train
6: if not decay then ▷ Get epsilon value
7: epsilon←epsilon
8: else
9: epsilon←epsilon_decay(i, N)

10: curr_state, info←env.reset() ▷ Reset env and get current state
11: done←False
12: while not done do
13: if random.uniform(0,1) < epsilon then ▷ Get current action using epsilon-greedy algo
14: curr_action←env.action_space.sample()
15: else
16: curr_action←(q1[curr_state]+q2[curr_state]).argmax()
17: next_state, reward, done, trunc, info←env.step(curr_action)
18: if random.uniform(0,1) < 0.5 then ▷ Update q1
19: max_act←(q1[next_state]).argmax()
20: qval←q1[curr_state,curr_action]
21: next_qval←q2[next_state,max_act]
22: q1[curr_state,curr_action]←qval+alpha*(reward+gamma*next_qval-qval)
23: else ▷ Update q2
24: max_act←(q2[next_state]).argmax()
25: qval←q1[curr_state,curr_action]
26: next_qval←q1[next_state,max_act]
27: q2[curr_state,curr_action]←qval+alpha*(reward+gamma*next_qval-qval)
28: curr_state←next_state
29: return q1, q2

This double Q-learning algorithm is a great way to mitigate the maximization bias that can
occur in Q-learning, SARSA(0), and Expected SARSA. The above given algorithm can be modified
to work with SARSA(0) and Expected SARSA as well. Note this does increase the spatial complexity
of the algorithm as we now have two Q-tables to keep track of. But, we are only using one Q-table
to determine the maximizing action and the other to estimate its value so that temporal complexity
is not affected. While we have mitigated the maximization bias, it can be shown double Q-learning
can lead to underestimation of the value of the state-action pairs. But, this at least is better than
overestimation.
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Lab Objective: CVXPY is a package of Python functions and classes designed for the purpose of
convex optimization. In this lab we use these tools for linear and quadratic programming. We will
solve various optimization problems using CVXPY and optimize eating healthily on a budget.

Linear Programs
A linear program is a linear constrained optimization problem. Such a problem can be stated in
several different forms, one of which is

minimize cTx

subject to Gx ⪯ h

Ax = b.

The symbol ⪯ denotes that the components of Gx are less than the components of h. In other
words, if x ⪯ y, then xi < yi for all xi ∈ x and yi ∈ y. CVXPY accepts ≤,≥, and = in its
constraints as long as the equations satisfy convexity requirements described later in this chapter, so
we can reformulate this problem in yet another form:

minimize cTx

subject to Gx ⪯ h

Px ⪰ q

Ax = b.

CVXPY accepts NumPy arrays and SciPy sparse matrices for the constraints, but the variable x

must be a CVXPY Variable.
Consider the following example:

minimize − 4x1 − 5x2

subject to x1 + 2x2 ≤ 3

2x1 + x2 = 3

x1, x2 ≥ 0
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We can solve this problem using the following code. Note that cvxpy.Problem() accepts the con-
straints as a single list and that >= represents both standard and elementwise greater than or equal
to. The symbols <= and == are similarly versatile.

>>> import cvxpy as cp
>>> import numpy as np

# First we'll initialize the objective
# We can declare x with its size and sign
# nonneg = True is equivalent to the constraint P@ x >= 0 listed below
# Both are included for demonstration but are redundant
>>> x = cp.Variable(2, nonneg = True)
>>> c = np.array([-4, -5])
>>> objective = cp.Minimize(c.T @ x)

# Then we'll write the constraints
>>> A = np.array([2, 1])
>>> G = np.array([1, 2])
>>> P = np.eye(2)
>>> constraints = [A @ x == 3, G @ x <= 3, P @ x >= 0] #This must be a list

# Assemble the problem and then solve it
>>> problem = cp.Problem(objective, constraints)
>>> print(problem.solve())
-8.999999999850528
>>> print(x.value)
array([1., 1.])

Achtung!

If you are having trouble with pip install cvxpy check the following:

• CVXPY requires a C++ compiler, most MacOs ad Linux Systems have them built in. If
you are running Windows, make sure that you have the "C++ builder tools" from the
Visual Studio Build Tools installed.

• CVXPY requires specific versions of packages in order to run, check that you have the
right version of your packages. The most common is NumPy is not up to date.
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Problem 1. Solve the following convex optimization problem:

minimize 2x1 + x2 + 3x3

subject to x1 + 2x2 ≤ 3

x2 − 4x3 ≤ 1

2x1 + 10x2 + 3x3 ≥ 12

x1 ≥ 0

x2 ≥ 0

x3 ≥ 0

Return the minimizer x and the primal objective value.

l1 Norm

The l1 norm is defined

||x||1 =

n∑
i=1

|xi|.

An l1 minimization problem is minimizing a vector’s l1 norm, while fitting certain constraints. It can
be written in the following form:

minimize ∥x∥1
subject to Ax = b.

CVXPY includes the l1 norm and many other useful functions. To specify a norm in CVXPY,
use the syntax cp.norm(x, a) where a represents your choice of norm (1 in this case).

Problem 2. Write a function called l1Min() that accepts a matrix A and vector b as NumPy
arrays and solves the l1 minimization problem. Return the minimizer x and the primal objective
value.

To test your function consider the matrix A and vector b below.

A =

[
1 2 1 1

0 3 −2 −1

]
b =

[
7

4

]
The linear system Ax = b has infinitely many solutions. Use l1Min() to verify that the solution
which minimizes ||x||1 is approximately x = [0., 2.571, 1.857, 0.]T and the minimum objective
value is approximately 4.429. There’s a file called test_cvxpy_intro.py that contains this
example as a prewritten unit test that you can use to test your function for this problem.

The Transportation Problem
Consider the following transportation problem: A piano company needs to transport thirteen pianos
from their three supply centers (denoted by 1, 2, 3) to two demand centers (4, 5). Transporting a
piano from a supply center to a demand center incurs a cost, listed in Table 16.3. The company
wants to minimize shipping costs for the pianos while meeting the demand.
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Supply Center Number of pianos available
1 7
2 2
3 4

Table 16.1: Number of pianos available at each supply center

Demand Center Number of pianos needed
4 5
5 8

Table 16.2: Number of pianos needed at each demand center

Supply Center Demand Center Cost of transportation Number of pianos
1 4 4 p1
1 5 7 p2
2 4 6 p3
2 5 8 p4
3 4 8 p5
3 5 9 p6

Table 16.3: Cost of transporting one piano from a supply center to a demand center

A system of constraints can be defined using the variables p1, p2, p3, p4, p5, and p6. First, there
cannot be a negative number of pianos transported along any route. Next, use tables 16.1 and 16.2
and the variables p1...p6 to define a supply or demand constraint for each location. You may want to
format this as a matrix. Finally, the objective function is the number of pianos shipped along each
route multiplied by the respective costs (Table 16.3).

Note

Since our answers must be integers, in general this problem turns out to be an NP-hard prob-
lem. There is a whole field devoted to dealing with integer constraints, called integer linear
programming, which is beyond the scope of this lab. Fortunately, we can treat this particular
problem as a standard linear program and still obtain integer solutions.

Problem 3. Solve the piano transportation problem. Return the minimizer x and the primal
objective value.
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Quadratic Programming
Quadratic programming is similar to linear programming, but the objective function is quadratic
rather than linear. The constraints, if there are any, are still of the same form. Thus, G,h, A, and b

are optional. The formulation that we will use is

minimize
1

2
xTQx+ rTx

subject to Gx ⪯ h

Ax = b,

where Q is a positive semidefinite symmetric matrix.
As an example, consider the quadratic function

f(x1, x2) = 2x21 + 2x1x2 + x22 + x1 − x2.

There are no constraints, so we only need to initialize the matrix Q and the vector r. To find these,
we first rewrite our function to match the formulation given above. If we let

Q =

[
a b

b c

]
, r =

[
d

e

]
, and x =

[
x1
x2

]
,

then

1

2
xTQx+ rTx =

1

2

[
x1
x2

]T [
a b

b c

] [
x1
x2

]
+

[
d

e

]T [
x1
x2

]
=

1

2
ax21 + bx1x2 +

1

2
cx22 + dx1 + ex2

Thus, we see that the proper values to initialize our matrix Q and vector r are:

a = 4 d = 1

b = 2 e = −1
c = 2

Now that we have the matrix Q and vector r, we are ready to use the CVXPY function for quadratic
programming, cp.quad_form().

>>> Q = np.array([[4, 2],[2, 2]])
>>> r = np.array([1, -1])
>>> x = cp.Variable(2)
>>> prob = cp.Problem(cp.Minimize(.5 * cp.quad_form(x, Q) + r.T @ x))
>>> print(prob.solve())
[-1. 1.5]
>>> print(x.value)
-1.25

Problem 4. Find the minimizer and minimum of

g(x1, x2, x3) =
3

2
x21 + 2x1x2 + x1x3 + 2x22 + 2x2x3 +

3

2
x23 + 3x1 + x3
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(Hint: Write the function g to match the formulation given above before coding.)

So far we have only dealt with affine constraints. When working with non-affine constraints, be
aware that CVXPY comes with some Disciplined Convex Programming (DCP) rules. A minimization
problem requires a convex objective function; similarly, a maximization problem requires a concave
objective function. Equality constraints (==) must be affine. Less-than constraints (<=) must have
the left side convex and the right side concave. Greater-than constraints (>=) must have the left side
concave and the right side convex. This webpage provides a list of which of CVXPY’s functions are
concave or convex. https://www.cvxpy.org/tutorial/functions/index.html

Problem 5. Write a function that accepts a matrix A and vector b and solves the following
problem.

minimize ∥Ax− b∥2
subject to ∥x∥1 = 1

x ⪰ 0

To test your function, use the matrix A and vector b from Problem 2. The minimizer is
approximately x = [0, 1, 0, 0] with objective value 5.099. Hint: norm() is a convex function, so
you will have to think of a different way to take the 1-norm.

Unit Test

There is a file called test_cvxpy_intro.py that contains prewritten unit tests for Problem 2.
There is a place for you to add your own unit tests to test your function for Problem 5, which
will be graded.

Eating on a Budget
In 2009, the inmates of Morgan County jail convinced Judge Clemon of the Federal District Court in
Birmingham to put Sheriff Barlett in jail for malnutrition. Under Alabama law, in order to encourage
less spending, "the chief lawman could go light on prisoners’ meals and pocket the leftover change."1.
Sheriffs had to ensure a minimum amount of nutrition for inmates, but minimizing costs meant more
money for the sheriffs themselves. Judge Clemon jailed Sheriff Barlett until a plan was made to use
all allotted funds, $1.75 per inmate, to feed prisoners more nutritious meals. While this case made
national news, the controversy of feeding prisoners in Alabama continues as of 20192.

1Nossiter, Adam, 8 Jan 2009, "As His Inmates Grew Thinner, a Sheriff’s Wallet Grew Fatter", New York
Times,https://www.nytimes.com/2009/01/09/us/09sheriff.html

2Sheets, Connor, 31 January 2019, "Alabama sheriffs urge lawmakers to
get them out of the jail food business", https://www.al.com/news/2019/01/
alabama-sheriffs-urge-lawmakers-to-get-them-out-of-the-jail-food-business.html

https://www.cvxpy.org/tutorial/functions/index.html
https://www.nytimes.com/2009/01/09/us/09sheriff.html
https://www.al.com/news/2019/01/alabama-sheriffs-urge-lawmakers-to-get-them-out-of-the-jail-food-business.html
https://www.al.com/news/2019/01/alabama-sheriffs-urge-lawmakers-to-get-them-out-of-the-jail-food-business.html
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The problem of minimizing cost while reaching healthy nutritional requirements can be ap-
proached as a convex optimization problem. Rather than viewing this problem from the sheriff’s
perspective, we view it from the perspective of a college student trying to minimize food cost in
order to pay for higher education, all while meeting standard nutritional guidelines.

The file food.npy contains a dataset with nutritional facts for 18 foods that have been eaten
frequently by college students working on this text. A subset of this dataset can be found in Table
16.4, where the "Food" column contains the list of all 18 foods.

The columns of the full dataset are:

Column 1: p, price (dollars)
Column 2: s, servings per container
Column 3: c, calories per serving
Column 4: f , fat per serving (grams)
Column 5: ŝ, sugar per serving (grams)
Column 6: ĉ, calcium per serving (milligrams)

Column 7: f̂ , fiber per serving (grams)
Column 8: p̂, protein per serving (grams)

Food Price Servings Calories Fat Sugar Calcium Fiber Protein
p s c f ŝ ĉ f̂ p̂

dollars g g mg g g
Ramen 6.88 48 190 7 0 0 0 5

Potatoes 0.48 1 290 0.4 3.2 53.8 6.9 7.9
Milk 1.79 16 130 5 12 250 0 8
Eggs 1.32 12 70 5 0 28 0 6
Pasta 3.88 8 200 1 2 0 2 7

Frozen Pizza 2.78 5 350 11 5 150 2 14
Potato Chips 2.12 14 160 11 1 0 1 1

Frozen Broccoli 0.98 4 25 0 1 25 2 1
Carrots 0.98 2 52.5 0.3 6.1 42.2 3.6 1.2
Bananas 0.24 1 105 0.4 14.4 5.9 3.1 1.3
Tortillas 3.48 18 140 4 0 0 0 3
Cheese 1.88 8 110 8 0 191 0 6
Yogurt 3.47 5 90 0 7 190 0 17
Bread 1.28 6 120 2 2 60 0.01 4

Chicken 9.76 20 110 3 0 0 0 20
Rice 8.43 40 205 0.4 0.1 15.8 0.6 4.2

Pasta Sauce 3.57 15 60 1.5 7 20 2 2
Lettuce 1.78 6 8 0.1 0.6 15.5 1 0.6

Table 16.4: Subset of table containing food data



198 Lab 16. CVXPY

According to the FDA1 and US Department of Health, someone on a 2000 calorie diet should
have no more than 2000 calories, no more than 65 grams of fat, no more than 50 grams of sugar2, at
least 1000 milligrams of calcium1, at least 25 grams of fiber, and at least 46 grams of protein2 per
day.

We can rewrite this as a convex optimization problem below.

minimize
18∑
i=1

pixi,

subject to
18∑
i=1

cixi ≤ 2000,

18∑
i=1

fixi ≤ 65,

18∑
i=1

ŝixi ≤ 50,

18∑
i=1

ĉixi ≥ 1000,

18∑
i=1

f̂ixi ≥ 25,

18∑
i=1

p̂ixi ≥ 46,

xi ≥ 0.

Problem 6. Read in the file food.npy (this data is pickled, so you’ll need to pass the keyword
argument allow_pickle=True into np.load()). Use CVXPY to identify how much of each
food item a college student should each to minimize cost spent each day given these simplified
nutrition requirements. Return the minimizing vector and the total amount of money spent.

According to this problem, what is the food you should eat most each day? What are the
three foods you should eat most each week?

(Hint: Each nutritional value must be multiplied by the number of servings to get the
nutrition value of the whole product).

You can learn more about CVXPY at https://www.cvxpy.org/index.html.

1urlhttps://www.accessdata.fda.gov/scripts/InteractiveNutritionFactsLabel/pdv.html
2https://www.today.com/health/4-rules-added-sugars-how-calculate-your-daily-limit-t34731
126 Sept 2018, https://ods.od.nih.gov/factsheets/Calcium-HealthProfessional/
2https://www.accessdata.fda.gov/scripts/InteractiveNutritionFactsLabel/protein.html

https://www.cvxpy.org/index.html
https://ods.od.nih.gov/factsheets/Calcium-HealthProfessional/
https://www.accessdata.fda.gov/scripts/InteractiveNutritionFactsLabel/protein.html


17 Non-negative Matrix
Factorization

Lab Objective: Understand and implement the non-negative matrix factorization generator for
recommendation systems with CVXPY.

Introduction
Collaborative filtering is the process of filtering data for patterns using collaboration techniques.
More specifically, it refers to making prediction about a user’s interests based on other users’ interests.
These predictions can be used to recommend items and are why collaborative filtering is one of the
common methods of creating a recommendation system.

Recommendation systems look at the similarity between users to predict what item a user is
most likely to enjoy. Common recommendation systems include Netflix’s "Movies you Might Enjoy"
list, Spotify’s "Discover Weekly" playlist, and Amazon’s "Products You Might Like" suggestions.

Non-negative Matrix Factorization
Non-negative matrix factorization is one algorithm used in collaborative filtering. It can be applied
to many other cases, including image processing, text mining, clustering, and community detection.
The objective of non-negative matrix factorization is to take a non-negative matrix V and factor it
into the product of two non-negative matrices.

For V ∈ Rm×n, 0 ⪯W ,

minimize ||V −WH||
subject to 0 ⪯W, 0 ⪯ H

where W ∈ Rm×k, H ∈ Rk×n

k is the rank of the decomposition and can either be specified or found using the Root Mean
Squared Error (the square root of the MSE), SVD, Non-negative Least Squares, or cross-validation
techniques.
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For this lab, we will use the Frobenius norm, given by

||A||F =

√√√√ m∑
i=1

n∑
j=1

|a|2ij .

It is equivalent to the square root of the sum of the diagonal of AHA.

Problem 1. Create the NMFRecommender class, which will be used to implement the NMF
algorithm. Initialize the class with the following parameters: random_state defaulting to 15,
tol defaulting to 1e− 3, maxiter defaulting to 200, and rank defaulting to 3.

Add a method called initialize_matrices that takes in m and n, the dimensions of V .
Set the random seed so that initializing the matrices can be replicated:

np.random.seed(self.random_state)

Initialize W and H using randomly generated numbers between 0 and 1, where W ∈ Rm×k and
H ∈ Rk×n, where k=rank. Store W and H as attributes and return them.

CVXPY
In order to compute the NMF of a matrix we will use the convex optimization package CVXPY. CVXPY
is convex optimization package that takes a problem, converts it into standard form, calls a solver,
and processes the result. Here is a basic example of how to use CVXPY

import cvxpy as cp

# Create two scalar optimization variables.
x = cp.Variable()
y = cp.Variable()

# Create two constraints.
constraints = [x + y == 1,

x - y >= 1]

# Form objective.
obj = cp.Minimize((x - y)**2)

# Form and solve problem.
prob = cp.Problem(obj, constraints)
prob.solve() # Returns the optimal value.

# print the status of the solution
print(prob.status)

The variables x and y are updated as the problem is solved. Constraints are not required.
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Vector valued variables can be created by including the dimension of the variable as an argument
like so: x = cp.Variable(10). Similarly matrix valued variables can be created: x = cp.Variable
((5, 5)).

When initialized, variables have values of None. A value can be assigned to a variable before a
problem is solved. The value can also be extracted after the optimal solution to a problem is found.

import numpy as np

random_matrix = np.random.random((5, 5))
x = cp.Variable((5, 5))
x.value = random_matrix
'''
solve a problem using the variable x
'''
solution_matrix = x.value

Problem 2. Finish the NMF class by adding a method fit that uses CVXPY to find an optimal
W and H. It should accept V as a numpy array.

Constructing the problem so that it is known to be convex is important. Unfortunately,
optimizing over 2 matrices being multiplied together breaks the rules of disciplined convex
programming. Because of this, you must solve for W and H alternately. First solve for an
optimal W given an H, then use that W to solve for an optimal H and so on. Continue until
the difference between W and H and their previous values both have a Frobenius norm less
than tol.

Finally, add a method called reconstruct that reconstructs and returns V by multiplying
W and H.

HINT: You can build non-negativity into a CVXPY variable with x = cp.Variable(n,
nonneg=True). You can check if the solution is optimal by checking the status of your problem
object with prob.status.

Using NMF for Recommendations

Consider the following marketing problem where we have a list of five grocery store customers and
their purchases. We want to create personalized food recommendations for their next visit. We start
by creating a matrix representing each person and the number of items they purchased in different
grocery categories. So from the matrix, we can see that John bought two fruits and one sweet.

V =

John Alice Mary Greg Peter Jennifer


0 1 0 1 2 2 V egetables

2 3 1 1 2 2 Fruits

1 1 1 0 1 1 Sweets

0 2 3 4 1 1 Bread

0 0 0 0 1 0 Coffee
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After performing NMF on V , we’ll get the following W and H.

W =

Component1 Component2 Component3


2.19 0. 0.03 V egetables

1.53 3.13 0.11 Fruits

0.61 1.58 0. Sweets

0.01 0. 1.88 Bread

0.47 0. 0. Coffee

H =

John Alice Mary Greg Peter Jennifer 0. 0.43 0. 0.42 0.96 0.86 Component1

0.64 0.66 0.34 0. 0.18 0.22 Component2

0. 1.06 1.58 2.12 0.52 0.53 Component3

W represents how much each grocery feature contributes to each component; a higher weight
means it’s more important to that component. For example, component 1 is heavily determined by
vegetables followed by fruit, then sweets, coffee and finally bread. Component 2 is represented almost
entirely by fruits, while component 3 is based on fruits and bread, with a small amount of vegetables.
H is similar, except instead of showing how much each grocery category affects the component, it
shows a much each person belongs to the component, again with a higher weight indicating that the
person belongs more in that component. We can see the John belongs in component 2, while Jennifer
mostly belongs in component 1.

To get our recommendations, we reconstruct V by multiplying W and H.

WH =

John Alice Mary Greg Peter Jennifer


0. 0.9735 0.0474 0.9834 2.118 1.8993 V egetables

2.0032 2.8403 1.238 0.8758 2.0894 2.0627 Fruits

1.0112 1.3051 0.5372 0.2562 0.87 0.8722 Sweets

0. 1.9971 2.9704 3.9898 0.9872 1.005 Bread

0. 0.2021 0. 0.1974 0.4512 0.4042 Coffee

Most of the zeros from the original V have been filled in. This is the collaborative filtering
portion of the algorithm. By sorting each column by weight, we can predict which items are more
attractive to the customers. For instance, Mary has the highest weight for bread at 2.9704, followed
by fruit at 1.238 and then sweets at 0.5372. So we would recommend bread to Mary.

Another way to interpret WH is to look at a feature and determine who is most likely to buy
that item. So if we were having a sale on sweets but only had funds to let three people know, using
the reconstructed matrix, we would want to target Alice, John, and Jennifer in that order. This gives
us more information that V alone, which says that everyone except Greg bought one sweet.

Problem 3. Use the NMFRecommender class to run NMF on V , defined above, with 2 compo-
nents. Return W , H, and the number of people who have higher weights in component 2 than
in component 1.
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Sklearn NMF
We also can compute the NMF using SkLearn. SkLearn uses a similar process as our class above.
Here rank is represented by the parameter n_components.

from sklearn.decomposition import NMF

model = NMF(n_components=2, init='random', random_state=0)
W = model.fit_transform(V)
H = model.components_

SkLearn’s NMF has other parameters that can also be included and adjusted. The l1_ratio is
a value between 0 and 1 that gives a ratio of how much to weigh the l1 and l2 norms. When
l1_ratio = 1, the l1 norm is used. When l1_ratio = 0, the l2 norm (Frobenius norm) is used.
Any value between 0 and 1 is a weighted combination of the l1 and l2 norms. This ratio helps to
prevent the model from over-fitting. The alpha_W and alpha_H parameters are floats that represent
regularization constants; the default of 0 means that W and H are not regularized. If alpha_H is
not specified, it will take on the value of alpha_W by default.

Endmember Detection using NMF
NMF can be used for analysis and identification of images. If each image corresponds to a j×k array
of pixel intensities, then the data matrix is constructed by flattening the image into a vector of length
jk and using these vectors as the columns of V , so V has dimensions jk × n, where n is the number
of images to analyze. Typically the materials in an image are referred to as the endmembers, which
can be thought of as basis images which can be combined to reconstruct any image in the dataset. In
the NMF decomposition H[k, j] represents the abundance of the kth endmember or basis face in the
jth image. W [:, k] represents the spectral signature of the kth endmember. Then V [:, j] ≊WH[:, j].

Example

This example exhibits how to use SkLearn’s NMF class. The example begins with augmenting and
reformatting the images; this will be done for you in the problems following the example. Pay special
attention to last two blocks of code which demonstrate using NMF with properly formatted images
and plotting the results.

from sklearn.datasets import load_sample_images
import numpy as np

# function to convert colored image to gray scale image
def gray_convert(rgb):

r, g, b = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
return gray

# load in sample images
dataset = load_sample_images()
# grab the first image
image = dataset.images[0]
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# convert image to gray scale
image = gray_convert(image)

# get augmentations for additional images
flipLR = np.fliplr(image)
flipUP = np.flipud(image)

# create matrix V
images = [np.ravel(image), np.ravel(flipLR), np.ravel(flipUP)]
images = np.transpose(images)

# decompose using NMF
model = NMF(n_components = 5, max_iter = 1000)
W = model.fit_transform(images)
H = model.components_

# plot basis images
plt.subplots_adjust(wspace = .02, hspace = .05)
plt.figure(figsize=(20, 8))
for i in range(W.shape[1]):

plt.subplot(1, 5, i+1)
plt.xticks([], [])
plt.yticks([], [])
plt.imshow(np.reshape(W[:, i], (427, 640)), cmap = 'gray')

The following three flattened images now make up the columns of V .

Figure 17.1: Original Images

Using a rank 5 reconstruction we see that the features used to reconstruct each image deal with
the orientation of the building as well as the positive and negative space in each building.

Figure 17.2: Basis images for a rank 5 deconstruction. Each basis image comes from a column of W .
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For the next two problems we will be using a dataset of facial images that we can load in with
the code below. Notice that get_faces formats the faces and returns the V matrix for the face
images.

def get_faces(path="./faces94"):
"""Traverse the specified directory to obtain one image per subdirectory.

Flatten and convert each image to grayscale.

Parameters:
path (str): The directory containing the dataset of images.

Returns:
((mn, k) ndarray) An array containing one column vector per

subdirectory. k is the number of people, and each original
image is mxn.

"""

# Traverse the directory and get one image per subdirectory.
faces = []
for (dirpath, dirnames, filenames) in os.walk(path):

for fname in filenames:
if fname[-3:]=="jpg": # Only get jpg images.

# Load the image, convert it to grayscale,
# and flatten it into a vector.
faces.append(np.ravel(imread(dirpath+"/"+fname, mode="F")))
break

# Put all the face vectors column-wise into a matrix.
return np.transpose(faces)

def show(image, m=200, n=180, plt_show=False):
"""Plot the flattened grayscale 'image' of width 'w' and height 'h'.

Parameters:
image ((mn,) ndarray): A flattened image.
m (int): The original number of rows in the image.
n (int): The original number of columns in the image.
plt_show (bool): if True, call plt.show() at the end

"""
#scale image
image = image / 255
#reshape image
image = np.reshape(image, (m, n))
#show image
plt.imshow(image, cmap = "gray")

if plt_show:
plt.show()
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Similar to the example, we have basis faces that are used to reconstruct the images in the original
dataset. A sample of basis faces for a rank 75 reconstruction of the faces dataset seem to correspond
to the following endmembers: forehead, glasses, hair.

Figure 17.3: A sample of basis faces. Each basis face comes from a column of W .

Problem 4. Load in the facial dataset. SkLearn has the option to add regularization terms,
alpha_W and l1_ratio, to the objective function ||V −WH||. Reconstruct the third face in
the dataset using SkLearn’s NMF. Perform a grid search over the following: n_components =
[75], alpha_W = [0, .2, .5], and l1_ratio = [0, 10−5, 1].

A grid search is a way to hone in on the best parameters by looping through a "grid"
of values. It involves running the process for each combination of parameters in the grid. For
example, a grid search will run NMF with n_components = 75, alpha_W = 0, and l1_ratio
= 0, then again with n_components = 75, alpha_W = 0, and l1_ratio = 10−5, and so on,
with all combinations of values. Note this will take a while to run (approximately 10 minutes)
since it will run and fit the NMF model 9 total times. In the NMF function, make sure to set
init = "random" or else the function won’t converge correctly.

Determine which set of parameters best reconstructs the face. These are the parameters
that most closely approximate the third face with W and H. (Hint: For each set of parame-
ters, find the norm of faces[:,2] - W @ H[:,2] and see which is the smallest. Due to the
randomness of the algorithm, answers may vary. Additionally, notice how we only look at the
third face to avoid large matrix multiplication, which is computationally expensive.)

Plot all reconstructions of the third face and put the parameters in the title; use subplots.

Problem 5. Run NMF on the facial dataset again, using the best parameters from the problem
above. Next, for the second and twelfth faces in the dataset, find the 10 basis faces with the
largest coefficients. Plot these basis faces along with the original image using subplots. In a
markdown block write a sentence or two about differences you notice in the features of the basis
faces (look closely).



18 Interior Point 1: Linear
Programs

Lab Objective: For decades after its invention, the Simplex algorithm was the only competitive
method for linear programming. The past 30 years, however, have seen the discovery and widespread
adoption of a new family of algorithms that rival–and in some cases outperform–the Simplex algo-
rithm, collectively called Interior Point methods. One of the major shortcomings of the Simplex
algorithm is that the number of steps required to solve the problem can grow exponentially with the
size of the linear system. Thus, for certain large linear programs, the Simplex algorithm is simply
not viable. Interior Point methods offer an alternative approach and enjoy much better theoretical
convergence properties. In this lab we implement an Interior Point method for linear programs, and
in the next lab we will turn to the problem of solving quadratic programs.

Introduction

Recall that a linear program is a constrained optimization problem with a linear objective function
and linear constraints. The linear constraints define a set of allowable points called the feasible
region, the boundary of which forms a geometric object known as a polytope. The theory of convex
optimization ensures that the optimal point for the objective function can be found among the
vertices of the feasible polytope. The Simplex Method tests a sequence of such vertices until it finds
the optimal point. Provided the linear program is neither unbounded nor infeasible, the algorithm
is certain to produce the correct answer after a finite number of steps, but it does not guarantee an
efficient path along the polytope toward the minimizer. Interior point methods do away with the
feasible polytope and instead generate a sequence of points that cut through the interior (or exterior)
of the feasible region and converge iteratively to the optimal point. Although it is computationally
more expensive to compute such interior points, each step results in significant progress toward
the minimizer. See Figure 18.1 for an example of a path using an Interior Point algorithm. In
general, the Simplex Method requires many more iterations (though each iteration is less expensive
computationally).

207
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Figure 18.1: A path traced by an Interior Point algorithm.

Primal-Dual Interior Point Methods
Some of the most popular and successful types of Interior Point methods are known as Primal-Dual
Interior Point methods. Consider the following linear program:

minimize cTx

subject to Ax = b

x ⪰ 0.

Here, x, c ∈ Rn, b ∈ Rm, and A ∈ Rm×n with full row rank. This is the primal problem, and its
dual takes the form:

maximize bTλ

subject to ATλ+ µ = c

µ,λ ⪰ 0,

where λ ∈ Rm and µ ∈ Rn.

KKT Conditions

The theory of convex optimization gives us necessary and sufficient conditions for the solutions to
the primal and dual problems via the Karush-Kuhn-Tucker (KKT) conditions. The Lagrangian for
the primal problem is as follows:

L(x,λ,µ) = cTx+ λT(b−Ax)− µTx
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The KKT conditions are

ATλ+ µ = c

Ax = b

xiµi = 0, i = 1, 2, . . . , n,

x,µ ⪰ 0.

It is convenient to write these conditions in a more compact manner, by defining an almost-linear
function F and setting it equal to zero:

F (x,λ,µ) :=

ATλ+ µ− c

Ax− b

Mx

 = 0,

(x,µ ⪰ 0),

whereM = diag(µ1, µ2, . . . , µn). Note that the first row of F is the KKT condition for dual feasibility,
the second row of F is the KKT condition for the primal problem, and the last row of F accounts
for complementary slackness.

Problem 1. Define a function interiorPoint() that will be used to solve the complete in-
terior point problem. This function should accept A, b, and c as parameters, along with the
keyword arguments niter=20 and tol=1e-16. The keyword arguments will be used in a later
problem.

In the next few problems, you will be writing functions within this function to solve the
interior point problem one step at a time.

For this problem, within the interiorPoint() function, write a function for the vector-
valued function F described above. This function should accept x, λ, and µ as parameters and
return a 1-dimensional NumPy array with 2n+m entries.

Search Direction

A Primal-Dual Interior Point method is a line search method that starts with an initial guess
(xT

0 ,λ
T
0 ,µ

T
0 ) and produces a sequence of points that converge to (x∗T,λ∗T,µ∗T), the solution to

the KKT equations and hence the solution to the original linear program. The constraints on the
problem make finding a search direction and step length a little more complicated than for the
unconstrained line search we have studied previously.

In the spirit of Newton’s Method, we can form a linear approximation of the system F (x,λ,µ) =

0 centered around our current point (x,λ,µ), and calculate the direction (△xT,△λT,△µT) in which
to step to set the linear approximation equal to 0. This equates to solving the linear system:

DF (x,λ,µ)

△x

△λ

△µ

 = −F (x,λ,µ) (18.1)



210 Lab 18. Interior Point 1: Linear Programs

Here DF (x,λ,µ) denotes the total derivative matrix of F . We can calculate this matrix block-wise
by obtaining the partial derivatives of each block entry of F (x,λ,µ) with respect to x, λ, and µ,
respectively. We thus obtain:

DF (x,λ,µ) =

 0 AT I

A 0 0

M 0 X


where X = diag(x1, x2, . . . , xn).

Unfortunately, solving Equation 18.1 often leads to a search direction that is too greedy. Even
small steps in this direction may lead the iteration out of the feasible region by violating one of the
constraints. To remedy this, we define the duality measure ν1 of the problem:

ν =
xTµ

n

The idea is to use Newton’s method to identify a direction that strictly decreases ν. Thus instead of
solving Equation 18.1, we solve:

DF (x,λ,µ)

△x

△λ

△µ

 = −F (x,λ,µ) +

 0

0

σνe

 (18.2)

where e = (1, 1, . . . , 1)T and σ ∈ [0, 1) is called the centering parameter. The closer σ is to 0, the
more similar the resulting direction will be to the plain Newton direction. The closer σ is to 1, the
more the direction points inward to the interior of the of the feasible region.

Problem 2. Within interiorPoint(), write a subroutine to compute the search direction
(△xT,△λT,△µT) by solving Equation 18.2. Use σ = 1

10 for the centering parameter.
Note that only the last block row of DF will need to be changed at each iteration (since

M and X depend on µ and x, respectively). Use the functions lu_factor() and lu_solve()
from the scipy.linalg module to solving the system of equations efficiently.

Step Length

Now that we have our search direction, it remains to choose our step length. We wish to step nearly
as far as possible without violating the problem’s constraints, thus remaining in the interior of the
feasible region. First, we calculate the maximum allowable step lengths for x and µ, respectively:

αmax = min{−µi/△µi | △µi < 0}
δmax = min{−xi/△xi | △xi < 0}

If all values of △µ are nonnegative, let αmax = 1. Likewise, if all values of △x are nonnegative, let
δmax = 1. Next, we back off from these maximum step lengths slightly:

α = min(1, 0.95αmax)

δ = min(1, 0.95δmax).

1ν is the Greek letter for n, pronounced “nu.”
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These are our final step lengths. Thus, the next point in the iteration is given by:

xk+1 = xk + δ△xk

(λk+1,µk+1) = (λk,µk) + α(△λk,△µk).

Problem 3. Within interiorPoint(), write a subroutine to compute the step size after the
search direction has been computed. Avoid using loops when computing αmax and δmax (use
masking and NumPy functions instead).

Initial Point

Finally, the choice of initial point (x0,λ0,µ0) is an important, nontrivial one. A naïvely or randomly
chosen initial point may cause the algorithm to fail to converge. The following function will calculate
an appropriate initial point.

def starting_point(A, b, c):
"""Calculate an initial guess to the solution of the linear program
min c\trp x, Ax = b, x>=0.
Reference: Nocedal and Wright, p. 410.
"""
# Calculate x, lam, mu of minimal norm satisfying both
# the primal and dual constraints.
B = la.inv(A @ A.T))
x = A.T @ B @ b
lam = B @ A @ c
mu = c - (A.T @ lam)

# Perturb x and s so they are nonnegative.
dx = max((-3./2)*x.min(), 0)
dmu = max((-3./2)*mu.min(), 0)
x += dx*np.ones_like(x)
mu += dmu*np.ones_like(mu)

# Perturb x and mu so they are not too small and not too dissimilar.
dx = .5*(x*mu).sum()/mu.sum()
dmu = .5*(x*mu).sum()/x.sum()
x += dx*np.ones_like(x)
mu += dmu*np.ones_like(mu)

return x, lam, mu

Problem 4. Complete the implementation of interiorPoint().
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Use the function starting_point() provided above to select an initial point, then run
the iteration niter times, or until the duality measure is less than tol. Return the optimal
point x∗ and the optimal value cTx∗.

The duality measure ν tells us in some sense how close our current point is to the mini-
mizer. The closer ν is to 0, the closer we are to the optimal point. Thus, by printing the value
of ν at each iteration, you can track how your algorithm is progressing and detect when you
have converged.

To test your implementation, use the following code to generate a random linear program,
along with the optimal solution.

def randomLP(j, k):
"""Generate a linear program min c\trp x s.t. Ax = b, x>=0.
First generate m feasible constraints, then add
slack variables to convert it into the above form.
Inputs:

j (int >= k): number of desired constraints.
k (int): dimension of space in which to optimize.

Outputs:
A ((j, j+k) ndarray): Constraint matrix.
b ((j,) ndarray): Constraint vector.
c ((j+k,), ndarray): Objective function with j trailing 0s.
x ((k,) ndarray): The first 'k' terms of the solution to the LP.

"""
A = np.random.random((j, k))*20 - 10
A[A[:, -1]<0] *= -1
x = np.random.random(k)*10
b = np.zeros(j)
b[:k] = A[:k, :] @ x
b[k:] = A[k:, :] @ x + np.random.random(j-k)*10
c = np.zeros(j+k)
c[:k] = A[:k, :].sum(axis=0)/k
A = np.hstack((A, np.eye(j)))
return A, b, -c, x

>>> j, k = 7, 5
>>> A, b, c, x = randomLP(j, k)
>>> point, value = interiorPoint(A, b, c)
>>> np.allclose(x, point[:k])
True

Unit Test
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There is a file called test_interior_point_linear.py that contains a place for you to write
unit tests to test your function from Problems 1-4. Use the randomLP() function to create test
cases to use in your function. The tests you write will be graded.

Least Absolute Deviations (LAD)

We now return to the familiar problem of fitting a line (or hyperplane) to a set of data. We have
previously approached this problem by minimizing the sum of the squares of the errors between the
data points and the line, an approach known as least squares. The least squares solution can be
obtained analytically when fitting a linear function, or through a number of optimization methods
(such as Conjugate Gradient) when fitting a nonlinear function.

The method of least absolute deviations (LAD) also seeks to find a best fit line to a set of data,
but the error between the data and the line is measured differently. In particular, suppose we have a
set of data points (y1,x1), (y2,x2), . . . , (ym,xm), where yi ∈ R, xi ∈ Rn for i = 1, 2, . . . ,m. Here, the
xi vectors are the explanatory variables and the yi values are the response variables, and we assume
the following linear model:

yi = βTxi + b, i = 1, 2, . . . ,m,

where β ∈ Rn and b ∈ R. The error between the data and the proposed linear model is given by

n∑
i=1

|βTxi + b− yi|,

and we seek to choose the parameters β, b so as to minimize this error.

Advantages of LAD

The most prominent difference between this approach and least squares is how they respond to
outliers in the data. Least absolute deviations is robust in the presence of outliers, meaning that one
(or a few) errant data points won’t severely affect the fitted line. Indeed, in most cases, the best fit
line is guaranteed to pass through at least two of the data points. This is a desirable property when
the outliers may be ignored (perhaps because they are due to measurement error or corrupted data).
Least squares, on the other hand, is much more sensitive to outliers, and so is the better choice when
outliers cannot be dismissed. See Figure 18.2.

While least absolute deviations is robust with respect to outliers, small horizontal perturbations
of the data points can lead to very different fitted lines. Hence, the least absolute deviations solution
is less stable than the least squares solution. In some cases there are even infinitely many lines that
minimize the least absolute deviations error term. However, one can expect a unique solution in
most cases.

The least absolute deviations solution arises naturally when we assume that the residual terms
βTxi+b−yi have a particular statistical distribution (the Laplace distribution). Ultimately, however,
the choice between least absolute deviations and least squares depends on the nature of the data at
hand, as well as your own good judgment.
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Figure 18.2: Fitted lines produced by least absolute deviations (top) and least squares (bottom).
The presence of an outlier accounts for the stark difference between the two lines.

LAD as a Linear Program

We can formulate the least absolute deviations problem as a linear program, and then solve it using
our interior point method. For i = 1, 2, . . . ,m we introduce the artificial variable ui to take the place
of the error term |βTxi + b − yi|, and we require this variable to satisfy ui ≥ |βTxi + b − yi|. This
constraint is not yet linear, but we can split it into an equivalent set of two linear constraints:

ui ≥ βTxi + b− yi,

ui ≥ yi − βTxi − b.

The ui are implicitly constrained to be nonnegative.

Our linear program can now be stated as follows:

minimize
m∑
i=1

ui

subject to ui ≥ βTxi + b− yi,

ui ≥ yi − βTxi − b.

Now for each inequality constraint, we bring all variables (ui,β, b) to the left hand side and introduce
a nonnegative slack variable to transform the constraint into an equality:

ui − βTxi − b− s2i−1 = −yi,

ui + βTxi + b− s2i = yi,

s2i−1, s2i ≥ 0.
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Notice that the variables β, b are not assumed to be nonnegative, but in our interior point
method, all variables are assumed to be nonnegative. We can fix this situation by writing these
variables as the difference of nonnegative variables:

β = β1 − β2,

b = b1 − b2,
β1,β2 ⪰ 0; b1, b2 ≥ 0.

Substituting these values into our constraints, we have the following system of constraints:

ui − βT
1xi + βT

2xi − b1 + b2 − s2i−1 = −yi,

ui + βT
1xi − βT

2xi + b1 − b2 − s2i = yi,

β1,β2 ⪰ 0;ui, b1, b2, s2i−1, s2i ≥ 0.

Writing y = (−y1, y1,−y2, y2, . . . ,−ym, ym)T and βi = (βi,1, . . . , βi,n)
T for i = {1, 2}, we can aggre-

gate all of our variables into one vector as follows:

v = (u1, . . . , um, β1,1, . . . , β1,n, β2,1, . . . , β2,n, b1, b2, s1, . . . , s2m)T.

Defining c = (1, 1, . . . , 1, 0, . . . , 0)T (where only the first m entries are equal to 1), we can write our
objective function as

m∑
i=1

ui = cTv.

Hence, the final form of our linear program is:

minimize cTv

subject to Av = y,

v ⪰ 0,

where A is a matrix containing the coefficients of the constraints. Our constraints are now equalities,
and the variables are all nonnegative, so we are ready to use our interior point method to obtain the
solution.

LAD Example

Consider the following example. We start with an array data, each row of which consists of the
values yi, xi,1, . . . , xi,n, where xi = (xi,1, xi,2, . . . , xi,n)

T. We will have 3m+2(n+1) variables in our
linear program. Below, we initialize the vectors c and y.

>>> m = data.shape[0]
>>> n = data.shape[1] - 1
>>> c = np.zeros(3*m + 2*(n + 1))
>>> c[:m] = 1
>>> y = np.empty(2*m)
>>> y[::2] = -data[:, 0]
>>> y[1::2] = data[:, 0]
>>> x = data[:, 1:]
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The hardest part is initializing the constraint matrix correctly. It has 2m rows and 3m+2(n+1)

columns. Try writing out the constraint matrix by hand for smallm,n, and make sure you understand
why the code below is correct.

>>> A = np.ones((2*m, 3*m + 2*(n + 1)))
>>> A[::2, :m] = np.eye(m)
>>> A[1::2, :m] = np.eye(m)
>>> A[::2, m:m+n] = -x
>>> A[1::2, m:m+n] = x
>>> A[::2, m+n:m+2*n] = x
>>> A[1::2, m+n:m+2*n] = -x
>>> A[::2, m+2*n] = -1
>>> A[1::2, m+2*n+1] = -1
>>> A[:, m+2*n+2:] = -np.eye(2*m, 2*m)

Now we can calculate the solution by calling our interior point function.

>>> sol = interiorPoint(A, y, c, niter=10)[0]

However, the variable sol holds the value for the vector

v = (u1, . . . , um, β1,1, . . . , β1,n, β2,1, . . . , β2,n, b1, b2, s1, . . . , s2m+1)
T.

We extract values of β = β1 − β2 and b = b1 − b2 with the following code:

>>> beta = sol[m:m+n] - sol[m+n:m+2*n]
>>> b = sol[m+2*n] - sol[m+2*n+1]

Problem 5. The file simdata.txt contains two columns of data. The first gives the values of
the response variables (yi), and the second column gives the values of the explanatory variables
(xi). Find the least absolute deviations line for this data set, and plot it together with the
data. Plot the least squares solution as well to compare the results.

>>> from scipy.stats import linregress
>>> slope, intercept = linregress(data[:,1], data[:,0])[:2]
>>> domain = np.linspace(0, 10, 200)
>>> plt.plot(domain, domain*slope + intercept)
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Quadratic Programs

Lab Objective: Interior point methods originated as an alternative to the Simplex method for
solving linear optimization problems. However, they can also be adapted to treat convex optimiza-
tion problems in general. In this lab we implement a primal-dual Interior Point method for convex
quadratic constrained optimization and explore applications in elastic membrane theory and finance.

Quadratic Optimization Problems
A quadratic constrained optimization problem differs from a linear constrained optimization problem
only in that the objective function is quadratic rather than linear. We can pose such a problem as
follows:

minimize
1

2
xTQx+ cTx

subject to Ax ⪰ b,

Gx = h.

We will restrict our attention to quadratic programs involving positive semidefinite quadratic
terms (in general, indefinite quadratic objective functions admit many local minima, complicating
matters considerably). Such problems are called convex, since the objective function is convex. To
simplify the exposition, we will also only allow inequality constraints (generalizing to include equality
constraints is not difficult). Thus, we have the problem

minimize
1

2
xTQx+ cTx

subject to Ax ⪰ b

where Q ∈ Rn×n is a positive semidefinite matrix, A ∈ Rm×n, x, c ∈ Rn, and b ∈ Rm.
The Lagrangian function for this problem is:

L(x,µ) = 1

2
xTQx+ cTx− µT(Ax− b), (19.1)

where µ ∈ Rm is the Lagrange multiplier.
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We also introduce a nonnegative slack vector y ∈ Rm to change the inequality Ax−b ⪰ 0 into
the equality Ax− b− y = 0.

Then the complete set of KKT conditions are:

Qx−ATµ+ c = 0,

Ax− b− y = 0,

yiµi = 0, i = 1, 2, . . . ,m,

y,µ ⪰ 0.

Quadratic Interior Point Method
The Interior Point method we describe here is an adaptation of the method we used with linear
programming. Define Y = diag(y1, y2, . . . , ym), M = diag(µ1, µ2, . . . , µm), and let e ∈ Rm be a
vector of all ones. Then the roots of the function

F (x,y,µ) =

Qx−ATµ+ c

Ax− y − b

YMe

 = 0,

(y,µ) ⪰ 0

satisfy the KKT conditions. The derivative matrix of this function is given by

DF (x,y,µ) =

Q 0 −AT

A −I 0

0 M Y

 ,
and the duality measure ν for this problem is

ν =
yTµ

m
.

Search Direction

We calculate the search direction for this algorithm in the spirit of Newton’s Method; this is the
same way that we did in the linear programming case. That is, we solve the system:

DF (x,y,µ)

△x

△y

△µ

 = −F (x,y,µ) +

 0

0

σνe

 , (19.2)

where σ ∈ [0, 1) is the centering parameter.

Problem 1. Create a function qInteriorPoint(). It should accept the arrays Q, c, A, and
b, a tuple of arrays guess giving initial estimates for x,y, and µ (this will be explained later),
along with the keyword arguments niter=20 and tol=1e-16.

In this function, calculate the search direction. Create F and DF as described above, and
calculate the search direction (△xT,△yT,△µT) by solving Equation 19.2. Use σ = 1

10 for the
centering parameter.

(Hint: What are the dimensions of F and DF?)
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Step Length

Now that we have our search direction, we select a step length. We want to step nearly as far as
possible without violating the nonnegativity constraints. However, we back off slightly from the
maximum allowed step length because an overly greedy step at one iteration may prevent a descent
step at the next iteration. Thus, we choose our step size

α = max{a ∈ (0, 1] | τ(y,µ) + a(△y,△µ) ⪰ 0},

where τ ∈ (0, 1) controls how much we back off from the maximal step length. For now, choose
τ = 0.95. In general, τ can be made to approach 1 at each successive iteration. This may speed up
convergence in some cases.

We wish to step nearly as far as possible without violating the problem’s constraints, as to
remain in the interior of the feasible region. First, we calculate the maximum allowable step lengths
for µ and y.

βmax = min{−µi/△µi | △µi < 0}
δmax = min{−yi/△yi | △yi < 0}

If all of the entries of △µ are nonnegative, we let βmax = 1. Likewise, if all the entries of △y are
nonnegative, let δmax = 1. Next, we back off from these maximum step lengths slightly:

β = min(1, τβmax)

δ = min(1, τδmax)

α = min(β, δ)

This α is our final step length. Thus, the next point in the iteration is given by:

(xk+1,yk+1,µk+1) = (xk,yk,µk) + α(△xk,△yk,△µk).

This completes one iteration of the algorithm.

Initial Point

The starting point (x0,y0,µ0) has an important effect on the convergence of the algorithm. The
code listed below will calculate an appropriate starting point:

def startingPoint(G, c, A, b, guess):
"""
Obtain an appropriate initial point for solving the QP
.5 x\trp Gx + x\trp c s.t. Ax >= b.
Parameters:

G -- symmetric positive semidefinite matrix shape (n, n)
c -- array of length n
A -- constraint matrix shape (m, n)
b -- array of length m
guess -- a tuple of arrays (x, y, l) of lengths n, m, and m, resp.
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Returns:
a tuple of arrays (x0, y0, l0) of lengths n, m, and m, resp.

"""
m, n = A.shape
x0, y0, l0 = guess

# initialize linear system
N = np.zeros((n+m+m, n+m+m))
N[:n,:n] = G
N[:n, n+m:] = -A.T
N[n:n+m, :n] = A
N[n:n+m, n:n+m] = -np.eye(m)
N[n+m:, n:n+m] = np.diag(l0)
N[n+m:, n+m:] = np.diag(y0)
rhs = np.empty(n+m+m)
rhs[:n] = -(G.dot(x0) - A.T.dot(l0)+c)
rhs[n:n+m] = -(A.dot(x0) - y0 - b)
rhs[n+m:] = -(y0*l0)

sol = la.solve(N, rhs)
dx = sol[:n]
dy = sol[n:n+m]
dl = sol[n+m:]

y0 = np.maximum(1, np.abs(y0 + dy))
l0 = np.maximum(1, np.abs(l0+dl))

return x0, y0, l0

Notice that we still need to provide a tuple of arrays guess as an argument. Do your best to provide
a reasonable guess for the array x, and we suggest setting y and µ equal to arrays of ones. We
summarize the entire algorithm below.

1: procedure Interior Point Method for QP
2: Choose initial point (x0,y0,µ0).
3: while k < niters and ν ≥ tol: do
4: Calculate the duality measure ν.
5: Solve 19.2 for the search direction (△xk,△yk,△µk).
6: Calculate the step length α.
7: (xk+1,yk+1,µk+1) = (xk,yk,µk) + α(△xk,△yk,△µk).

Problem 2. Complete the implementation of qInteriorPoint(). Return the optimal point
x as well as the final objective function value.
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Test your algorithm on the simple problem

minimize
1

2
x21 + x22−x1x2 − 2x1 − 6x2

subject to − x1 − x2 ≥ −2,
x1 − 2x2 ≥ −2,
−2x1 − x2 ≥ −3,

x1, x2 ≥ 0.

In this case, we have for the objective function matrix Q and vector c,

Q =

[
1 −1
−1 2

]
, c =

[
−2
−6

]
.

The constraint matrix A and vector b are given by:

A =


−1 −1
1 −2
−2 −1
1 0

0 1

 , b =


−2
−2
−3
0

0

 .

Use x = [.5, .5] as the initial guess. The correct minimizer is
[
2
3 ,

4
3

]
.

(Hint: You may want to print out the duality measure ν to check the progress of the
iteration).

Note

The Interior Point methods presented in this and the preceding labs are only special cases of the
more general Interior Point algorithm. The general version can be used to solve many convex
optimization problems, provided that one can derive the corresponding KKT conditions and
duality measure ν.

Application: Optimal Elastic Membranes

The properties of elastic membranes (stretchy materials like a thin rubber sheet) are of interest in
certain fields of mathematics and various sciences. A mathematical model for such materials can
be used by biologists to study interfaces in cellular regions of an organism or by engineers to design
tensile structures. Often we can describe configurations of elastic membranes as a solution to an
optimization problem. As a simple example, we will find the shape of a large circus tent by solving
a quadratic constrained optimization problem using our Interior Point method.
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Figure 19.1: Tent pole configuration (left) and optimal elastic tent (right).

Imagine a large circus tent held up by a few poles. We can model the tent by a square two-
dimensional grid, where each grid point has an associated number that gives the height of the tent
at that point. At each grid point containing a tent pole, the tent height is constrained to be at least
as large as the height of the tent pole. At all other grid points, the tent height is simply constrained
to be greater than zero (ground height). In Python, we can store a two-dimensional grid of values
as a simple two-dimensional array. We can then flatten this array to give a one-dimensional vector
representation of the grid. If we let x be a one-dimensional array giving the tent height at each
grid point, and L be the one-dimensional array giving the underlying tent pole structure (consisting
mainly of zeros, except at the grid points that contain a tent pole), we have the linear constraint:

x ⪰ L.

The theory of elastic membranes claims that such materials tend to naturally minimize a quan-
tity known as the Dirichlet energy. This quantity can be expressed as a quadratic function of the
membrane. Since we have modeled our tent with a discrete grid of values, this energy function has
the form

1

2
xTHx+ cTx,

where H is a particular positive semidefinite matrix closely related to Laplace’s Equation, c is a
vector whose entries are all equal to −(n− 1)−2, and n is the side length of the grid. Our circus tent
is therefore given by the solution to the quadratic constrained optimization problem:

minimize
1

2
xTHx+ cTx

subject to x ⪰ L.

See Figure 19.1 for an example of a tent pole configuration and the corresponding tent.
We provide the following function for producing the Dirichlet energy matrix H.
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from scipy.sparse import spdiags
def laplacian(n):

"""Construct the discrete Dirichlet energy matrix H for an n x n grid."""
data = -1*np.ones((5, n**2))
data[2, :] = 4
data[1, n-1::n] = 0
data[3, ::n] = 0
diags = np.array([-n, -1, 0, 1, n])
return spdiags(data, diags, n**2, n**2).toarray()

Now we initialize the tent pole configuration for a grid of side length n, as well as initial guesses for
x, y, and µ.

# Create the tent pole configuration.
>>> L = np.zeros((n, n))
>>> L[n//2-1:n//2+1, n//2-1:n//2+1] = .5
>>> m = [n//6-1, n//6, int(5*(n/6.))-1, int(5*(n/6.))]
>>> mask1, mask2 = np.meshgrid(m, m)
>>> L[mask1, mask2] = .3
>>> L = L.ravel()

# Set initial guesses.
>>> x = np.ones((n, n)).ravel()
>>> y = np.ones(n**2)
>>> mu = np.ones(n**2)

We leave it to you to initialize the vector c, the constraint matrix A, and to initialize the matrix H
with the laplacian() function. We can solve and plot the tent with the following code:

>>> from matplotlib import pyplot as plt

# Calculate the solution.
>>> z = qInteriorPoint(H, c, A, L, (x, y, mu))[0].reshape((n, n))

# Plot the solution.
>>> domain = np.arange(n)
>>> X, Y = np.meshgrid(domain, domain)
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(111, projection='3d')
>>> ax1.plot_surface(X, Y, z, rstride=1, cstride=1, color='r')
>>> plt.show()

Problem 3. Solve the circus tent problem with the tent pole configuration given above, for
grid side length n = 15. Plot your solution.
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Application: Markowitz Portfolio Optimization
Suppose you have a certain amount of money saved up, with no intention of consuming it any time
soon. What will you do with this money? If you hide it somewhere in your living quarters or on
your person, it will lose value over time due to inflation, not to mention you run the risk of burglary
or accidental loss. A safer choice might be to put the money into a bank account. That way, there is
less risk of losing the money, plus you may even add to your savings through interest payments from
the bank. You could also consider purchasing bonds from the government or stocks from various
companies, which come with their own sets of risks and returns. Given all of these possibilities, how
can you invest your money in such a way that maximizes the return (i.e. the wealth that you gain over
the course of the investment) while still exercising caution and avoiding excessive risk? Economist
and Nobel laureate Harry Markowitz developed the mathematical underpinnings and answer to this
question in his work on modern portfolio theory.

A portfolio is a set of investments over a period of time. Each investment is characterized by
a financial asset (such as a stock or bond) together with the proportion of wealth allocated to the
asset. An asset is a random variable, and can be described as a sequence of values over time. The
variance or spread of these values is associated with the risk of the asset, and the percent change
of the values over each time period is related to the return of the asset. For our purposes, we will
assume that each asset has a positive risk, i.e. there are no riskless assets available.

Stated more precisely, our portfolio consists of n risky assets together with an allocation vector
x = (x1, . . . , xn)

T, where xi indicates the proportion of wealth we invest in asset i. By definition,
the vector x must satisfy

n∑
i=1

xi = 1.

Suppose the ith asset has an expected rate of return µi and a standard deviation σi. The total return
on our portfolio, i.e. the expected percent change in our invested wealth over the investment period,
is given by

n∑
i=1

µixi.

We define the risk of this portfolio in terms of the covariance matrix Q of the n assets:√
xTQx.

The covariance matrix Q is always positive semidefinite and captures the variance and correlations
of the assets.

Given that we want our portfolio to have a prescribed return R, there are many possible
allocation vectors x that make this possible. It would be wise to choose the vector minimizing the
risk. We can state this as a quadratic program:

minimize
1

2
xTQx

subject to
n∑

i=1

xi = 1

n∑
i=1

µixi = R.
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Note that we have slightly altered our objective function for convenience, as minimizing 1
2x

TQx is
equivalent to minimizing

√
xTQx. The solution to this problem will give the portfolio with least risk

having a return R. Because the components of x are not constrained to be nonnegative, the solution
may have some negative entries. This indicates short selling those particular assets. If we want to
disallow short selling, we simply include nonnegativity constraints, stated in the following problem:

minimize
1

2
xTQx

subject to
n∑

i=1

xi = 1

n∑
i=1

µixi = R

x ⪰ 0.

Each return value R can be paired with its corresponding minimal risk σ. If we plot these
risk-return pairs on the risk-return plane, we obtain a hyperbola. In general, the risk-return pair
of any portfolio, optimal or not, will be found in the region bounded on the left by the hyperbola.
The positively-sloped portion of the hyperbola is known as the efficient frontier, since the points
there correspond to optimal portfolios. Portfolios with risk-return pairs that lie to the right of the
efficient frontier are inefficient portfolios, since we could either increase the return while keeping the
risk constant, or we could decrease the risk while keeping the return constant. See Figure 19.2.

Risk

Re
tu

rn

Efficient Frontier

Inefficient Portfolios

Figure 19.2: Efficient frontier on the risk-return plane.

One weakness of this model is that the risk and return of each asset is in general unknown.
After all, no one can predict the stock market with complete certainty. There are various ways of
estimating these values given past stock prices, and we take a very straightforward approach. Suppose
for each asset, we have k previous return values of the asset. That is, for asset i, we have the data
vector

yi = [yi1, . . . , y
i
k]

T.
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We estimate the expected rate of return for asset i by simply taking the average of y1, . . . , yk, and we
estimate the variance of asset i by taking the variance of the data. We can estimate the covariance
matrix for all assets by taking the covariance matrix of the vectors y1, . . . , yn. In this way, we obtain
estimated values for each µi and Q.

Problem 4. The text file portfolio.txt contains historical stock data for several assets (U.S.
bonds, gold, S&P 500, etc). In particular, the first column gives the years corresponding to
the data, and the remaining eight columns give the historical returns of eight assets over the
course of these years. Use this data to estimate the covariance matrix Q as well as the expected
rates of return µi for each asset. Assuming that we want to guarantee an expected return of
R = 1.13 for our portfolio, find the optimal portfolio both with and without short selling.

Since the problem contains both equality and inequality constraints, use the QP solver in
CVXOPT rather than your qInteriorPoint() function.

Hint: Use numpy.cov() to compute Q.



20Dynamic
Programming

Lab Objective: Sequential decision making problems are a class of problems in which the current
choice depends on future choices. They are a subset of Markov decision processes, an important
class of problems with applications in business, robotics, and economics. Dynamic programming is a
method of solving these problems that optimizes the solution by breaking the problem down into steps
and optimizing the decision at each time period. In this lab we use dynamic programming to solve
two classic dynamic optimization problems.

The Marriage Problem
Many dynamic optimization problems can be classified as optimal stopping problems, where the goal
is to determine at what time to take an action to maximize the expected reward. For example,
how many people should you date before you get married? Or when hiring a secretary, how many
people should you interview before hiring the current interviewee? These problems try to determine
at which person t to stop in order to maximize the chance of getting the best candidate.

For instance, let N be the number of people you could date. After dating each person, you can
either marry them or move on; you can’t resume a relationship once it ends. In addition, you can
rank your current relationship to all of the previous options, but not to future ones. The goal is to
find the policy that maximizes the probability of choosing the best marriage partner. This policy
may not always choose the best candidate, but it should get an almost-best candidate most of the
time.

Let V (t− 1) be the probability that the best marriage partner is person t, assuming we didn’t
choose the first t − 1 candidates while using an optimal policy. In other words, after dating t − 1

people, you want to know the probability that the tth person is the one you should marry. Note that
the probability that the tth person is the best candidate is 1

t and the probability that they aren’t is
t−1
t . If the tth person is not the best out of the first t, then the probability they are the best overall

is 0 and the probability they are not is V (t). If the tth person is the best out of the first t, then the
probability they are the best overall is t

N and the probability they are not is V (t).

By Bellman’s optimality equations,

V (t− 1) =
t− 1

t
max {0, V (t)}+ 1

t
max

{
t

N
, V (t)

}
= max

{
t− 1

t
V (t) +

1

N
,V (t)

}
. (20.1)
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Notice that (20.1) implies that V (t−1) ≥ V (t) for all t ≤ N . Hence, the probability of selecting
the best match V (t) is non-increasing. Conversely, P (t is best overall|t is best out of the first t) =
t
N is strictly increasing. Therefore, there is some t0, called the optimal stopping point, such that
V (t) ≤ t

N for all t ≥ t0. After t0 relationships, we choose the next partner who is better than all of
the previous ones. We can write (20.1) as

V (t− 1) =

{
V (t0) t < t0,
t−1
t V (t) + 1

N t ≥ t0.

The goal of an optimal stopping problem is to find t0, which we can do by backwards induction.
We start at the final candidate, who always has probability 0 of being the best overall if they
are not the best so far, and work our way backwards, computing the expected value V (t), for
t = N,N − 1, . . . , 1.

If N = 4, we have

V (4) = 0,

V (3) = max

{
3

4
V (4) +

1

4
, 0

}
= .25,

V (2) = max

{
2

3
V (3) +

1

4
, .25

}
= .4166,

V (1) = max

{
1

2
V (2) +

1

4
, .4166

}
= .4583.

In this case, the maximum expected value is .4583 and the stopping point is t = 1. It is also useful
to look at the percent of possible candidates you should pass over before selecting a candidate. This
is called the optimal stopping percentage, which in this case is 1/4 = .25. After passing over (and
observing) the optimal percentage of candidates, the first candidate that is better than the candidates
you observed should be selected1.

Problem 1. Write a function that accepts a number of candidates N . Calculate the expected
values of choosing candidate t for t = 1, 2, . . . , N .

Return the highest expected value V (t0) and the optimal stopping point t0. (Hint: Python
starts indices at 0, so you may need to adjust your indexing before returning the optimal
stopping point.)

There is a file called test_dynamic_programming.py that contains a prewritten unit test
for this problem. You can use it to make sure your function works for N = 4.

Problem 2. Write a function that takes in an integer M and runs your function from Problem
1 for each N = 3, 4, . . . ,M . Graph the optimal stopping percentage of candidates (t0/N)
to interview and the maximum probability V (t0) against N . Return the optimal stopping
percentage for M .

The optimal stopping percentage for M = 1000 is .368.

1For examples and a more comprehensive explanation, see https://www.americanscientist.org/article/
knowing-when-to-stop.

https://www.americanscientist.org/article/knowing-when-to-stop
https://www.americanscientist.org/article/knowing-when-to-stop
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Both the stopping time and the probability of choosing the best person converge to 1
e ≈ .36788.

Then to maximize the chance of having the best marriage, you should date at least N
e people be-

fore choosing the next best person. This famous problem is also known as the secretary prob-
lem, the sultan’s dowry problem, and the best choice problem. For more information, see https:
//en.wikipedia.org/wiki/Secretary_problem.

The Cake Eating Problem

Imagine you are given a cake. How do you eat it to maximize your enjoyment? Some people may
prefer to eat all of their cake at once and not save any for later. Others may prefer to eat a little bit
at a time. If we are to consume a cake of size W over T + 1 time periods, then our consumption at
each step is represented as a vector

c =
[
c0 c1 · · · cT

]T
,

where

T∑
i=0

ci =W.

This vector is called a policy vector and describes how much cake is eaten at each time period.
The enjoyment of eating a slice of cake is represented by a utility function. For some amount of
consumption ci ∈ [0,W ], the utility gained is given by u(ci).

For this lab, we assume the utility function satisfies u(0) = 0, that W = 1, and that W is cut
into N equally-sized pieces so that each ci must be of the form i

N for some integer 0 ≤ i ≤ N .

Discount Factors

A person or firm typically has a time preference for saving or consuming. For example, a dollar
today can be invested and yield interest, whereas a dollar received next year does not include the
accrued interest. Since cake gets stale as it gets older, we assume that cake in the present yields
more utility than cake in the future. We can model this by multiplying future utility by a discount
factor β ∈ (0, 1). For example, if we were to consume c0 cake at time 0 and c1 cake at time 1, with
c0 = c1 then the utility gained at time 0 is larger than the utility at time 1:

u(c0) > βu(c1).

The total utility for eating the cake is

T∑
t=0

βtu(ct).

https://en.wikipedia.org/wiki/Secretary_problem
https://en.wikipedia.org/wiki/Secretary_problem
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Figure 20.1: Plots for various policies with u(x) =
√
x and β = 0.9. Policy 1 eats all of the cake in

the first step while policy 2 eats all of the cake in the last step. Their difference in utility demonstrate
the effect of the discount factor on waiting to eat. Policy 3 eats the same amount of cake at each
step, while policy 4 begins by eating .4 of the cake, then .3, .2, and .1.

The Value Function
The cake eating problem is an optimization problem where we maximize utility.

max
c

T∑
t=0

βtu(ct) (20.2)

subject to
T∑

t=0

ct =W

ct ≥ 0.

One way to solve it is with the value function. The value function V (a, b,W ) gives the utility
gained from following an optimal policy from time a to time b.

V (a, b,W ) = max
c

b∑
t=a

βtu(ct)

subject to
b∑

t=a

ct =W

ct ≥ 0.

V (0, T,W ) gives how much utility we gain in T days and is the same as Equation 20.2.
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Let Wt represent the total amount of cake left at time t. Observe that Wt+1 ≤ Wt for all t,
because our problem does not allow for the creation of more cake. Notice that V (t+1, T,Wt+1) can
be represented by βV (t, T − 1,Wt+1), which is the value of eating Wt+1 cake later. Then we can
express the value function as the sum of the utility of eating Wt −Wt+1 cake now and Wt+1 cake
later.

V (t, T,Wt) = max
Wt+1

(u(Wt −Wt+1) + βV (t, T − 1,Wt+1)) (20.3)

where u(Wt −Wt+1) is the value gained from eating Wt −Wt+1 cake at time t.

Let w =
[
0 1

N · · · N−1
N 1

]T
. We define the consumption matrix C by Cij = u(wi − wj).

Note that C is an (N +1)× (N +1) lower triangular matrix since we assume j ≤ i; we can’t consume
more cake than we have. The consumption matrix will help solve the value function by calculating
all possible value of u(Wt −Wt+1) at once. At each time t, Wt can only have N + 1 values, which
will be represented as wi = i

N , which is i pieces of cake remaining. For example, if N = 4, then
w = [0, .25, .5, .75, 1]T, and w3 = 0.75 represents having three pieces of cake left. In this case, we get
the following consumption matrix.


0 0 0 0 0

u(0.25) 0 0 0 0

u(0.5) u(0.25) 0 0 0

u(0.75) u(0.5) u(0.25) 0 0

u(1) u(0.75) u(0.5) u(0.25) 0

 .

Problem 3. Write a function that accepts the number of equal sized pieces N that divides the
cake and a utility function u(x). Assume W = 1. Create a partition vector w whose entries
correspond to possible amounts of cake. Return the consumption matrix.

Solving the Optimization Problem

Initially we do not know how much cake to eat at t = 0: should we eat one piece of cake (w1),
or perhaps all of the cake (wN )? It may not be obvious which option is best and that option may
change depending on the discount factor β. Instead of asking how much cake to eat at some time t,
we ask how valuable wi cake is at time t. As mentioned above, V (t, T − 1,Wt+1) in 20.3 is a new
value function problem with a = t, b = T − 1, and W = Wt+1, making 20.3 a recursion formula. By
using the optimal value of the value function in the future, V (t, T − 1,Wt+1), we can determine the
optimal value for the present, V (t, T,Wt). V (t, T,Wt) can be solved by trying each possible Wt+1

and choosing the one that gives the highest utility.
The (N+1)×(T+1) matrix A that solves the value function is called the value function matrix.

Aij is the value of having wi cake at time j. A0j = 0 because there is never any value in having w0

cake, i.e. u(w0) = u(0) = 0.
We start at the last time period. Since there is no value in having any cake left over when time

runs out, the decision at time T is obvious: eat the rest of the cake. The amount of utility gained
from having wi cake at time T is given by u(wi). So AiT = u(wi). Written in the form of (20.3),

AiT = V (0, 0, wi) = max
wj

(u(wi − wj) + βV (0,−1, wj)) = u(wi). (20.4)
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This happens because V (0,−1, wj) = 0. As mentioned, there is no value in saving cake so this
equation is maximized when wj = 0. All possible values of wi are calculated so that the value of
having wi cake at time T is known.

Achtung!

Given a time interval from t = 0 to t = T the utility of waiting until time T to eat wi cake
is actually βTu(Wi). However, through backwards induction, the problem is solved backwards
by beginning with t = T as an isolated state and calculating its value. This is why the value
function above is V (0, 0,Wi) and not V (T, T,Wi).

For example, the following matrix results with T = 3, N = 4, and β = 0.9.
0 0 0 u(0)

0 0 0 u(0.25)

0 0 0 u(0.5)

0 0 0 u(0.75)

0 0 0 u(1)

 .

Problem 4. Write a function that accepts a stopping time T , a number of equal sized pieces
N that divides the cake, a discount factor β, and a utility function u(x). Return the value
function matrix A for t = T (the matrix should have zeros everywhere except the last column).
Return a matrix of zeros for the policy matrix P .

Next, we use the fact that AjT = V (0, 0, wj) to evaluate the T −1 column of the value function
matrix, Ai(T−1), by modifying (20.4) as follows,

Ai(T−1) = V (0, 1, wi) = max
wj

(u(wi − wj) + βV (0, 0, wj)) = max
wj

(u(wi − wj) + βAjT )) . (20.5)

Remember that there is a limited set of possibilities for wj , and we only need to consider options
such that wj ≤ wi. Instead of doing these one by one for each wi, we can compute the options for
each wi simultaneously by creating a matrix. This information is stored in an (N + 1) × (N + 1)

matrix known as the current value matrix, or CV t, where the (ij)th entry is the value of eating
wi − wj pieces of cake at time t and saving j pieces of cake until the next period. For t = T − 1,

CV T−1
ij = u(wi − wj) + βAjT . (20.6)

The largest entry in the ith row of CV T−1 is the optimal value that the value function can
attain at T −1, given that we start with wi cake. The maximal values of each row of CV T−1 become
the column of the value function matrix, A, at time T − 1.

Achtung!
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The notation CV t does not mean raising the matrix to the tth power; rather, it indicates what
time period we are in. All of the CV t could be grouped together into a three-dimensional
matrix, CV , that has dimensions (N + 1) × (N + 1) × (T + 1). Although this is possible, we
will not use CV in this lab, and will instead only consider CV t for any given time t.

The following matrix is CV 2 where T = 3, β = .9, N = 4, and u(x) =
√
x. The maximum

value of each row, circled in red, is used in the 3rd column of A. Remember that A’s column index
begins at 0, so the 3rd column represents j = 2.

CV 2 =

0 0 0 0 0

0.5 0.45 0 0 0

0.707 0.95 0.636 0 0

0.866 1.157 1.136 0.779 0

1 1.316 1.343 1.279 0.9




Now that the column of A corresponding to t = T−1 has been calculated, we repeat the process

for T − 2 and so on until we have calculated each column of A. In summary, at each time step t, find
CV t and then set Ait as the maximum value of the ith row of CV t. Generalizing (20.5) and (20.6)
shows

CV t
ij = u(wi − wj) + βAj(t+1). Ait = max

j

(
CV t

ij

)
. (20.7)

The full value function matrix corresponding to the example is below. The maximum value in
the value function matrix is the maximum possible utility to be gained.

A =


0 0 0 0

0.5 0.5 0.5 0.5

0.95 0.95 0.95 0.707

1.355 1.355 1.157 0.866

1.7195 1.562 1.343 1

 .

Figure 20.2: The value function matrix where T = 3, β = .9, N = 4, and u(x) =
√
x. The bottom

left entry indicates the highest utility that can be achieved is 1.7195.

Problem 5. Complete your function from Problem 4 so it returns the entire value function
matrix. Starting from the next to last column, iterate backwards by

• calculating the current value matrix for time t using (20.7),

• finding the largest value in each row of the current value matrix, and

• filling in the corresponding column of A with these values.
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(Hint: Use axis arguments.)

Solving for the Optimal Policy

With the value function matrix constructed, the optimization problem is solved in some sense. The
value function matrix contains the maximum possible utility to be gained. However, it is not im-
mediately apparent what policy should be followed by only inspecting the value function matrix A.
The (N + 1)× (T + 1) policy matrix, P , is used to find the optimal policy. The (ij)th entry of the
policy matrix indicates how much cake to eat at time j if we have i pieces of cake. Like A and CV ,
i and j begin at 0.

The last column of P is calculated similarly to last column of A. PiT = wi, because at time T
we know that the remainder of the cake should be eaten. Recall that the column of A corresponding
to t was calculated by the maximum values of CV t. The column of P for time t is calculated by
taking wi − wj , where j is the smallest index corresponding to the maximum value of CV t,

Pit = wi − wj .

where j = {min{j} | CV t
ij ≥ CV t

ik ∀ k ∈ [0, 1, . . . , N ] }

Recall CV 2 in our example with T = 3, β = .9, N = 4, and u(x) =
√
x above.

CV 2 =

0 0 0 0 0

0.5 0.45 0 0 0

0.707 0.95 0.636 0 0

0.866 1.157 1.136 0.779 0

1 1.316 1.343 1.279 0.9




To calculate P12, we look at the second row (i = 1) in CV 2. The maximum, .5, occurs at CV 2

10,
so j = 0 and P12 = w1 − w0 = .25− 0 = .25. Similarly, P42 = w4 − w2 = 1− .5 = .5. Continuing in
this manner,

P =

0 0 0 0

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.5

0.25 0.25 0.5 0.75

0.25 0.5 0.5 1.




Given that the rows of P are the slices of cake available and the columns are the time intervals,

we find the policy by starting in the bottom left corner, PN0, where there are N slices of cake available
and t = 0. This entry tells us what percentage of the N slices of cake we should eat. In the example,
this entry is 0.25, telling us we should eat 1 slice of cake at t = 0. Thus, when t = 1 we have N − 1

slices of cake available, since we ate 1 slice of cake. We look at the entry at P(N−1)1, which has
value 0.25. So we eat 1 slice of cake at t = 1. We continue this pattern to find the optimal policy
c =

[
.25 .25 .25 .25

]
.
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Achtung!

The optimal policy will not always be a straight diagonal in the example above. For example,
if the bottom left corner had value .5, then we should eat 2 pieces of cake instead of 1. Then
the next entry we should evaluate would be P(N−2)1 in order to determine the optimal policy.

To verify the optimal policy found with P , we can use the value function matrix A. By
expanding the entires of A, we can see that the optimal policy does give the maximum value.

0 0 0 0

√
0.25

√
0.25

√
0.25

√
0.25

√
0.25 + β

√
0.25

√
0.25 + β

√
0.25

√
0.25 + β

√
0.25

√
0.5

√
0.25 + β

√
0.25 + β2√

0.25
√

0.25 + β
√

0.25 + β2√
0.25

√
0.5 + β

√
0.25

√
0.75

√
0.25 + β

√
0.25 + β2√

0.25 + β3√
0.25

√
0.5 + β

√
0.25 + β2√

0.25
√

0.5 + β
√

0.5
√

1



A =

Problem 6. Modify your function from Problem 4 to determine the policy matrix. Initialize
the matrix as zeros and fill it in starting from the last column at the same time that you
calculate the value function matrix.
(Hint: You may find np.argmax() useful.)

Unit Test

There is a file called test_dynamic_programming.py that contains a prewritten unit test for
Problem 1. There is a spot for you to add your own unit test for your function from Problem
6 to make sure it produces the correct matrices from the example. This will be graded.

Problem 7. Write a function find_policy() that will find the optimal policy for the stopping
time T , a cake of size 1 split into N pieces, a discount factor β, and the utility function u.



236 Lab 20. Dynamic Programming



21 Reinforcement
Learning 2: Markov
Decision Process

Lab Objective: We introduce the Markov decision process and its properties and connection to
model-based reinforcement learning. We demonstrate two model-free methods and use them to solve
a Markov decision process. This will connect to chapter 16 and 17 of the Volume 2 textbook. Note
that we first present a rather good amount of theory before the start of the lab. This will help you
understand the problem and the solutions better.

A Markov decision process (MDP) is a mathematical framework used to model decision-making
in situations where outcomes are partly random and partly under the control of a decision maker.
Thus, the decision maker has the ability to take actions that affect the outcome of the process but
does not have full control over the outcome. Generally, an MDP is a discrete-time stochastic1 control
process that contains at its core a Markov chain/process and follows the Markov property.

A sequence of random variables X1, X2, . . . , Xn, known as a stochastic or random process, has
the Markov property if the conditional probability distribution of future states of the process depends
only upon the present state and not on the sequence of events that preceded it. That is, a stochastic
process has the Markov property if P (Xn+1 = xn+1|Xn = xn, . . . , X1 = x1) = P (Xn+1 = xn+1|Xn =

xn). Or in simpler terms, the future only depends on the present and not the past. A Markov chain
or process is a stochastic model that describes a sequence of possible events that follow the Markov
property.

What makes an MDP different from a Markov chain is that rather than determining event
movement using only probabilities, event movement is determined based on probabilities, actions,
and rewards. They are formulated as follows:

• T is a set of discrete time-periods called decision epochs. In this lab, T = {0, 1, . . . , T}, where
T is the final time-period so that our MDP is finite, but it can also be infinite.

• S is the set of possible states, which is finite by definition of a finite MDP.

• A is a set of actions, which is also finite, where ∀s ∈ S, As ⊂ A is the set of allowable actions
that state s can take.

1By stochastic we mean probabilistic or randomly determined. Thus, there is some implied probability distribution
over the domain, so that given the same input, the outcome is not always the same. Deterministic means that the
outcome is fully predictable and always returns the same output given the same input. An MDP can be stochastic or
deterministic.

237
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• g(st, at) = st+1 is a transition function2 that determines the state st+1 at time t+ 1 based on
the previous state st and action at.

• R is a set of rewards, which also is finite. The reward can be received after an action is taken,
after several actions are taken, or at the end of the process.

• The time discount factor β ∈ [0, 1] determines how much the reward function decreases in value
with time. That is, a reward received at some time k in the future is worth βk−1 times as
much as the same reward received today, so β accounts for this decrease in value. Thus, β → 0

means we care more about immediate rewards, while β → 1 means we care more about future
rewards.

One important definition of an MDP is what is usually termed the dynamics function p given
by

p(s′, r|, s, a) = P (St+1 = s′, Rt = r|St = s,At = a). (21.1)

This function3 defines a probability distribution for each s ∈ S and for each a ∈ As (i.e. for each
choice of s and a). That is, we have

∑
s′∈S

∑
r∈R

p(s′, r|s, a) = 1,∀s ∈ S,∀a ∈ As. (21.2)

The dynamics function p tells us the probability of transitioning to state s′ and receiving reward r

after taking action a in state s at time t. Since this is an MDP, the dynamics function p is Markovian
(i.e. p satisfies the Markov property as given earlier). Furthermore, the dynamics function p gives
rise to the state-transition probability, or transition probability for short, at timestep t,

p(s′|s, a) = pt(s
′|s, a) = P (St+1 = s′|St = s,At = a) =

∑
r∈R

p(s′, r|s, a). (21.3)

This transition probability is the probability of ending up in state s′ at timestep t+1 (i.e. next state
being s′) given that the process was in state s at time step t and action a was taken.

With p, we also get the reward function of three inputs r : S ×A× S → R,

r(s′, s, a) = rt(s
′, s, a) = E[Rt|St = s,At = a, St+1 = s′] =

∑
r∈R

r
p(s′, r|s, a)
p(s′|s, a)

. (21.4)

which is the reward or expected reward for ending in state s′ at timestep t + 1 if the process is
currently in state s at timestep t and action a is taken. Note that this equation4 for the reward
function is deterministic5.

2This is also called the transition model and is usually denoted by the function of three inputs T (st, at, st+1). This
definition is exactly as we have defined above, just different notation.

3We use capital letters with a time subscript to denote random variables and lowercase letters to denote specific
values of those random variables.

4This uses the definition of conditional expectation which is very similar to normal expectation as taught in chapter
5 of the Volume 2 textbook with the difference being, roughly speaking, the use of conditional probability.

5The lone r as given in the definition of p is a stochastic function we talk about in the Additional Materials Section.
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Moreover, the dynamics of an MDP, or the properties that govern the behavior of the MDP,
are defined by the transition function g (or at least knowing the transition probabilities) and the
reward function. Once we have these functions, we can start to solve the MDP without having to
take actions in the process we are looking at since we can compute the expected reward using the
transition probabilities. The objective in an MDP is to find a “policy” that specifies which action to
take in each state that will maximize some cumulative function of the rewards, which is typically the
sum of discounted rewards (see below). Thus, the dynamic optimization problem, assuming a finite
horizon and a deterministic reward function of three variables, is

max
a

T∑
t=0

βtr(st+1, st, at) (21.5)

subject to st+1 = g(st, at) ∀t.

The cake eating problem follows this format where S consists of the possible amounts of remain-
ing cake ( i

W ), ct is the amount of cake we can eat, and the amount of cake remaining st+1 = g(st, at)

is wt − ct, where wt is the amount of cake we have left and ct is the amount of cake we eat at time
t. This is an example of a deterministic Markov process.

RL Connection & Definitions

Recall from the previous RL lab that, as a problem, RL dealt with an agent being given some task to
complete in an environment where it only knows it can take some actions but is not told what to do at
any given time. Thus, an MDP is the mathematical framework that models the environment in which
the agent operates. This is the formalization that allows us to give equations to the value functions
we attempted to estimate using model-free methods. Since an MDP follows the Markov property, we
only need to rely on the current state or state-action pairs to predict the future. This implies that
under an MDP the agent obtains a full observation of a given state so that the observation space
equals the state space. Moreover, the fact we have the dynamics of the environment allows to make
very precise estimations of the values of any state or state-action pairs. This is why we call this
model-based RL.

Before continuing, we give two more definitions that are used in RL. Refer back to the previous
RL lab for a refresh on other definitions we now assume. The new definitions are:

• For this lab6, the policy/strategy, denoted by π, is a mapping that goes from the state space
to the action space. Specifically, the policy is a deterministic rule by which the agent selects
actions as a function of states so that π(s) = a, a ∈ As. We can think of the policy as a rule
that tells the agent which action to take in each state.

• The state-value function or value function for a policy π, denoted by vπ(s) or just v(s), is a
function of states that returns the value of a state s as the expected future rewards of starting
at state s and following policy π thereafter. That is, given a state s and a policy π, the value of
a state, v(s), is the future rewards that the agent can receive by enacting π having started in
s at some period t. This is different to the action-value function qπ(s, a) as vπ(s) only returns
the value of a state and not a state with a specific action.

6We give a more general definition in the Additionals Materials Section.
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Rewriting the Optimization Problem
Recall that in model-free RL the agent mainly learned by trial and error as it responded to the
observed rewards of taken actions and then adjusted its approximation. Since we no longer have to
do that, how does modeling the environment as an MDP help the agent learn? The MDP model
allows us to use the equations of the value functions because these specify what is good in the long
run, not just in the immediate sense like the reward does. Much like in Q-learning or SARSA, we
will build estimations of the value functions, but in this case, we can now incorporate the decision-
making since we have transition probabilities and a reward function to better our estimates. Our
overall goal is to find the policy that maximizes a value function, for all of its inputs, be
it states or state-action pairs, which in turn will maximize the future rewards and lead the agent to
accomplishing the given task.

Bellman Equation

Since we now have a model for the environment, we can give proper equations to the value functions.
Given that we will be working primarily with the state value function, we will omit an equation for
the action value function qπ(s, a). For the remainder of this lab, assume we are working in the finite
horizon setting and are under one episode with a finite set of timesteps T = {1, . . . , T}.

For all s ∈ S, the state-value function vπ(s) for a deterministic policy π can be defined as

vπ(s) = v(s) = E

[
T∑

k=0

βkrk

∣∣∣∣∣S0 = s

]
(21.6a)

=
∑

s′∈S+

p(s′|s, a)
[
r(s′, s, a) + βvπ(s

′)
]
. (21.6b)

Equation 21.6b is the Bellman equation for the state-value function. Theis equation expresses
the relationship between the value of a state and the value of the next state 7. Do notice how this
uses the dynamics of the environment. Unlike in model-free RL where we literally ave to choose some
action to enact, model-based RL only needs to use the dynamics of the environment to compute an
estimate.

Bellman Optimality Equation

Since we want to maximize the value function, we are essentially trying to find a policy that maximizes
the expected future reward that the agent can receive. A policy π is defined to be better than another
policy π′ (i.e. π ≥ π′) if and only if vπ(s) ≥ vπ′(s),∀s ∈ S. There is always at least one policy that
is better than or equal to all other policies, so we call this the optimal policy, denoted by π∗. All
optimal policies have the same optimal state-value function, denoted by v∗, which is defined as
v∗(s) = max

π
vπ(s),∀s ∈ S. They also share the same optimal state-action value or optimal action-

value function, denoted by q∗, which is defined as q∗(s, a) = max
π

qπ(s, a),∀s ∈ S, ∀a ∈ As.

The optimal state-value function is still a value function for a policy, so it satisfies the Bellman
equation in 21.6b. However, the fact v∗ is the optimal state-value function allows us to rewrite it
independently of any particular policy. We have

v∗(s) = max
a∈As

∑
s′∈S+

p(s′|s, a)
[
r(s′, s, a) + βv∗(s

′)
]

(21.7)

7Note that by definition, the value of a terminal state is 0.
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Equation 21.7 is the Bellman equation for v∗ called the Bellman optimality equation for the state-
value function under a deterministic policy. The Bellman optimality equation says that the value of
a state under the optimal policy must equal the expected future rewards that the agent can receive
by taking the best action in that state and following the optimal policy thereafter.

Thus, to solve the MDP, we need only get the actions that maximize the value function for each
state. We have that the optimal policy π∗ is given by π∗ = π∗(s) = argmax

a∈As

v∗(s).

Iterative Methods and Lab Notation
Iterative methods can be powerful ways to solve dynamic optimization problems without computing
the exact solution. Often we can iterate very quickly to the true solution, or at least within some ε
error of the solution. These methods are significantly faster than computing the exact solution using
dynamic programming. When we compute the value functions with iterative methods, we typically
use capital letters to denote the approximations of the value functions, e.g. V for the state-value
function v and Q for the state-action value function q.

We let Ns,a be the set of all possible next states for a given state-action pair (s, a). That is,
Ns,a represents all possible future states that can be obtained by taking action a during state s.
Then, in the case of a deterministic Markov process, Ns,a has one element for all state-action pairs
since the transition probability is always 1. In a stochastic Markov process, there can be multiple
possible next states for a given state-action pair since the transition probability is less than or equal
to 1. As a result, Ns,a may have multiple elements for each (s, a). Note that this new notation and
assumption changes the definition of the value functions in the Bellman equations from having a sum
iterating over all states s′ in S+ to just one sum over s′ ∈ Ns,a.

Furthermore, we define a dictionary P to represent the decision process. This dictionary con-
tains all of the information about the states, actions, probabilities, and rewards. Each dictionary key
is a state-action combination and each dictionary value is a list of tuples. That is, P is a dictionary
whose keys are states and whose values are dictionaries (i.e. a nested dictionary). The keys of the
nested dictionary are actions and the values are lists of tuples. This goes as follows:

P [s][a] = [(p(s, a, s̄), s̄, r(s, a, s̄), is_terminal), ...]

Note the slight notation change from (s′|s, a) to (s, a, s̄). In the dictionary, s is the current state, a is
the action, s̄ ∈ Ns,a is the next state if action a is taken, and is_terminal indicates if s̄ is a terminal
state. In addition, p(s, a, s̄) = p(s̄) is the probability of taking action a while in state s and ending
in state s̄, and r(s, a, s̄) = r(s̄) is the reward for taking action a while in state s and ending up in
state s̄.

Lastly, we will be making the optimal policy deterministic, so that the policy will always choose
one action that maximizes the value function for a given state.

Lab Example: Moving on a Grid

The following example can be used to test all of your problems in this lab, except the last problem.
This will be our working example for the lab.

Consider anN×N grid. Assume that a robot moves around the grid, one space at a time, until it
reaches the lower right hand corner and stops. Each square is a state, so that the state space (including
the terminal state) is S+ = {0, 1, . . . , N2−1}, and the action space is A = {Left,Down,Right, Up}.
For this lab, Left = 0, Down = 1, Right = 2, and Up = 3, so that A = {0, 1, 2, 3}. If you take the
action a = 1, then you move Down on the grid. Thus, the action automatically determines the next
state, so that the transition probability is deterministic.
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Let N = 2 and label the squares as displayed below. In this example, we define the reward to
be -1 if the robot moves into state 2, -1 if the robot moves into state 0 from state 1, and 1 when it
reaches the terminal state, state 3. All other transitions have a reward of 0. We define the reward
function to be r(s̄). Since this is a deterministic model, p(s̄) = 1 for all possible state-action pairs
(s, a).

0 1
2 3

As is the set of actions that keep the robot on the grid. If the robot is in the top left hand corner,
the only allowed actions are Down and Right so A0 = {1, 2}. The transition function g(s, a) = s̄

can be explicitly defined for each s, a where s̄ is the new state after moving.

All of this information is encapsulated in P . We define P [s][a] for all states and actions, even
if they are not possible. This simplifies coding the algorithm but is not necessary.

P[0][0] = [(0, 0, 0, False)] P[2][0] = [(0, 2, -1, False)]
P[0][1] = [(1, 2, -1, False)] P[2][1] = [(0, 2, -1, False)]
P[0][2] = [(1, 1, 0, False)] P[2][2] = [(1, 3, 1, True)]
P[0][3] = [(0, 0, 0, False)] P[2][3] = [(1, 0, 0, False)]
P[1][0] = [(1, 0, -1, False)] P[3][0] = [(0, 0, 0, True)]
P[1][1] = [(1, 3, 1, True)] P[3][1] = [(0, 0, 0, True)]
P[1][2] = [(0, 0, 0, False)] P[3][2] = [(0, 0, 0, True)]
P[1][3] = [(0, 0, 0, False)] P[3][3] = [(0, 0, 1, True)]

For the sake of clarity, we will do a quick example using the above dictionary. We first assume
that we start in state 0 corresponding to the 0 in the above grid. Next, we move Down the grid to
state 2. This corresponds to taking action 1. To get the correct values from the dictionary, we look
at P [s][a] or in this case P [0][1] = [(1, 2,−1, False)]. So, when we move Down from state 0 to state
2, p(s̄) = 1, u(s̄) = −1, and s̄ = 2. As a final note, when the action is not possible p(s̄) = 0, as shown
in the dictionary above.

Foundation of Model-Based Methods: Policy Evaluation/Prediction
Policy evaluation or the prediction problem is the process of determining the value function vπ for a
given arbitrary policy π. That is, the goal is to measure how well a policy performs by predicting
the value of each state under the given policy8. Using the Bellman equation 21.6b, we can write the
iterative update rule for policy evaluation as

vk+1(s) =
∑

s′∈S+

p(s′|s, a)
[
r(s′, s, a) + βvk(s

′)
]
,∀s ∈ S. (21.8)

As we take a sequence of value functions v0, v1, . . . and update them according to the above rule (i.e.
k → ∞), the sequence will converge to vπ. This process is called iterative policy evaluation. The
convergence of the sequence is guaranteed since it can be shown that the Bellman equations follow
Blackwell’s theorem (see Volume 2 chapter 16.3).

8Note this is the same thing we did when running the equations for Q-learning or SARSA.
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Value Iteration
Value iteration is a method used to solve the optimal value function by taking an initial estimate
and updating the estimate of the optimal value function iteratively using the Bellman optimality
equation as the update rule. Using our new notation, we can write the value iteration algorithm as
follows for a given s ∈ S (note the k is the iteration number and not an exponent):

V k+1
∗ (s) = max

a∈As

 ∑
s̄∈Ns,a

p(s, a, s̄) · (r(s, a, s̄) + βV k
∗ (s))

 . (21.9)

This update rule is very similar to the iterative policy evaluation update rule in Equation 21.8 except
that we now take the maximum value over all possible actions. Much like iterative policy evaluation,
the estimated optimal value function V k

∗ will converge to the optimal value function v∗ as k → ∞.
However, we stop the update rule when the value function changes only by some small amount ε.

The summation of 21.9 occurs when it is a stochastic Markov process. For example, if the robot
is in the top left corner, and we want it to move right, we could have the probability of the robot
actually moving right as 0.5. In this case, P [0][2] = [(0.5, 1, 0, False), (0.5, 2,−1, False)]. This type
of process will occur later in the lab.

Lab Example: Value Iteration

As an example, let V 0
∗ = [0, 0, 0, 0] and β = 1, where each entry of V 0

∗ represents the maximum
value at that state, and V 0

∗ (s) = V 0
∗ [s] if we are using the array or list form of the value function.

We calculate V 1
∗ (s) from the robot example above. For V 1

∗ (0), we choose the max of the possible
outcomes, states 1 or 2, after moving. Thus, we use P [0][2] for state 1 because moving from state 0
to state 1 requires going right, action 2.

V 1
∗ (0) = max

a∈A0

 ∑
s̄∈Ns,a

p(s̄) · (r(s̄) + V 0
∗ (s̄))


= max{p(1) · (r(1) + V 0

∗ (1)), p(2) · (r(2) + V 0
∗ (2)))}

= max{1(0 + 0), 1(−1 + 0)}
= max{0,−1}
= 0

V 1
∗ (1) = max{p(0) · (r(0) + V 0

∗ (0)), p(3) · (r(3) + V 0
∗ (3))}

= max{1(−1 + 0), 1(1 + 0)}
= 1

V 1
∗ (2) = max{p(0) · (r(0) + V 0

∗ (0)), p(3) · (r(3) + V 0
∗ (3))}

= max{1(0 + 0), 1(1 + 0)}
= 1

V 1
∗ (3) = max{p(1) · (r(1) + V 0

∗ (1)), p(2) · (r(2) + V 0
∗ (2))}

= max{1(0 + 0), 1(0 + 0)}
= 0
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This calculation gives V 1
∗ = [0, 1, 1, 0]. Repeating the process yields V 2

∗ = [1, 1, 1, 0]. Repeating a
third time gives V 3

∗ = [1, 1, 1, 0], which is the same as V 2
∗ , so the process has converged. This means

that the solution is [1, 1, 1, 0]. Thus, the total maximum reward the robot can achieve by starting on
square i is the ith entry of the solution [1, 1, 1, 0].

When implementing functions in this lab, instead of only looking at possible actions a ∈ As, we
can consider all of the actions. This will not affect the results, because p(s̄) = 0 when an action is not
possible. This simplifies the coding significantly. For example, when calculating V k+1

∗ (si) consider
the following lines of code.

# Outside loop over all states s
state_action_vector = np.zeros(nA) # initial values for each action
for a in range(nA):

for tuple_info in P[s][a]:
# tuple_info is a tuple of (probability, next state, reward, done)
p, next_s, r, _ = tuple_info
# sums up the possible end states and rewards with given action
state_action_vector[a] += (p * (r + beta * V_old[next_s]))

#add the max value to the value function
V_new[s] = state_action_vector.max()

Problem 1. Write a function called value_iteration() that will accept a dictionary P rep-
resenting the decision process, an integer for the number of states, an integer for the number of
actions, a float for the discount factor β ∈ [0, 1] defaulting to 1, a float for the tolerance amount
ε defaulting to 1e-8, and an integer for the maximum number of iterations maxiter defaulting
to 3,000. Perform value iteration until ∥V k+1

∗ − V k
∗ ∥ < ε or k > maxiter. Return the final

vector representing V∗ ≈ v∗ and the number of iterations that were needed for convergence.
Test your code on the example given above.

Foundation of Model-Based Methods: Policy Improvement/Control

One reason to evaluate a policy using any of the value functions is to improve it. Assuming we have
a policy π, we want to know if we need to change the policy so that it now can choose some action
ā ̸= π(s). vπ(s) already tells us how good it is to follow the current policy π from state s, but
would it be better if we changed to some new policy π′ where we take some action ā not given by
the current policy that could potentially be better? This is where the Policy Improvement theorem
can help. The theorem states that given two policies9 π(s) and π′(s), if for all s in S, we have that
qπ(s, ā = π′(s)) ≥ vπ(s)10, then vπ′(s) ≥ vπ(s),∀s ∈ S. This means that policy π′ is at least as good
as policy π. Moreover, if there is a strict inequality for at least one state s, then π′ is strictly better
than π.

9Note that π(s) and π′(s) are very much identical except that π(s) ̸= ā = π′(s) (i.e. π does not produce ā for a
specific s whereas the other can for that same s).

10We used the relationship equation 21.16.
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Thus, to extend this process for all states and all actions, we can select at each given state the
best action a according to the action-value function qπ(s, a). That is, we consider the new greedy
policy π′ such that π′(s) = argmax

a∈As

qπ(s, a) = argmax
a∈As

∑
s′∈S+ p(s′|s, a)[r(s′, s, a) + βvπ(s

′)]. The

process of making a new policy that improves the current one by using the current policy’s value
function is called policy improvement.

This whole process of finding an optimal policy without having a fixed policy but having a fixed
value function is what is known the control problem. In the control problem, we are trying to find
the optimal policy that maximizes the value function. Whereas in the prediction problem, we are
trying to find the value function for a given policy assuming we stick to that policy (i.e. the policy
is fixed).

Achtung!

Recall that the definition of argmax is the set of all actions that maximize the value function.
Functions like np.argmax() return the index of the first occurrence of the maximum value and
not a set. Thus, we need to be careful when using these functions to find the optimal action.

Calculating the Optimal Policy with Value Iteration (Policy Improvement)

While knowing the maximum expected value is helpful, it is usually more important to know the
policy that generates the most value. Value iteration tells the robot what reward it can expect,
but not how to get it. Recall that π is the strategy the agent uses to choose an action a given a
state s as the input. Thus, the optimal deterministic policy chooses the action that maximizes the
value function. Then, by 21.20 and 21.9 we have, for a deterministic reward function (using the lab
notation),

π∗ = argmax
a∈As

 ∑
s̄∈Ns,a

p(s̄) · (r(s̄) + β · V∗(s̄))

 . (21.10)

Note that we do need to know the estimate V∗ of the optimal value function to find the optimal
policy. This is because the optimal policy is the one that maximizes the value function. Thus, we
can use the value function to find the optimal policy. This process of extracting the optimal policy
using the optimal value function is the control portion (i.e. the policy improvement step).

Lab Example: Obtaining the Optimal Deterministic Policy

Using value iteration, we found V∗ = [1, 1, 1, 0] in the example above. We find π∗(0) from the example
above with β = 1 by looking at actions 1 and 2 (since actions 0 and 3 have probability 0).

π∗(0) = argmax
{1,2}

{p(2) · (r(2) + V∗(2)), p(1) · (r(1) + V∗(1))}

= argmax{1 · (−1 + 1), 1 · (0 + 1)}
= argmax{0, 1}
= 2
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So when the robot is in state 0, it should take action 2, moving Right. This avoids the -1
penalty for moving Down into state 2. Similarly,

π∗(1) = argmax
{0,1}

{1 · (−1 + 1), 1 · (1 + 0)}

= argmax{0, 1} = 1

π∗(2) = argmax
{2,3}

{1 · (1 + 0), 1 · (0 + 1)}

= argmax{1, 1} = 2

Since state 3 is terminal, it doesn’t matter what π∗(3) is, but we’ll set it to 0 for convenience. Thus,
the optimal policy corresponding to the optimal reward is [2, 1, 2, 0]. The robot should move to state
3 if possible, avoiding state 2 because it has a negative reward.

Note

Note that π∗ gives the optimal action a to take at each state s. It does not give a sequence
of actions to take in order to maximize the policy. In other words, π∗ does not give a specific
ordering of best actions to take in order to maximize the policy. It only tells us what to do at
each state and not how to organize the actions across the whole state space.

Problem 2. Write a function called policy_improvement() that will accept a dictionary P

representing the decision process, the number of states, the number of actions, an array V

representing some value function (optimal or not), and a discount factor β ∈ [0, 1] defaulting
as before. Return the deterministic policy vector π corresponding to V .

In order to use Equation 21.10, you will need to run a similar method to the one in
Problem 1 but with the modification as shown in the equation and using the estimated value
function V rather than some old value of a previous iteration. Note this is a function that will
perform the control problem on any array V . It is not specific to V∗. You can test your code
on the example with V∗ and β = 1.

Policy Iteration
For dynamic programming problems, it can be shown that value function iteration converges relative
to the discount factor β. As β → 1, the number of iterations increases dramatically. As mentioned
earlier β is usually close to 1, which means this algorithm can converge slowly. In value iteration, we
used an initial guess, V 0

∗ , for the optimal value function, and used Equation 21.7 to make an iterative
method towards the true value function resulting in Equation 21.9. Once we achieved a good enough
approximation for v∗, we recovered the optimal policy π∗.

Instead of iterating on our value function, we can similarly make an initial guess, π0
∗ (the zero

is an iteration number not an exponent), for the optimal policy and use this to iterate toward the
true π∗. We do so by taking advantage of the definition of the value function, where we assume that
the current policy is optimal. We can then compute Vπ0

∗
and use this to find a better policy using

the policy improvement theorem. This then gives us a new policy π1
∗ so that we then repeat the

process of performing policy evaluation and policy improvement until we reach the optimal policy.
This iterative process of using policy evaluation and policy improvement is called policy iteration.
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Figure 21.1: The policy iteration process as given by [Hu23].

Policy Evaluation (Step 1)

Given any arbitrary policy πk, we can modify Equation 21.8 by assuming that the given policy
actually returns an optimal action a = πk(s). Because the policy is optimal, we have that the action
the transition probability uses is the action that the policy πk returns. Thus, p(s′|s, a) = p(s′|s, π(s)).
We then get the following equation for an iterative policy evaluation:

Vk+1(s) =
∑

s̄∈Ns,π(s)

p(s̄) · (r(s̄) + β · Vk(s̄)). (21.11)

This equation is very similar to the iterative policy evaluation equation 21.8, except that we assume
that the policy is optimal.

Then, in order to compute the iterative policy evaluation, we can do something similar to the
given code block right before Problem 1 with a few modifications. One, we no longer need to loop
over all actions since we are assuming the policy is optimal, but we still have to create a state-action
vector for all actions in the action space. Next, rather than looking at the tuple information of
P[s][a], we look at the tuple of P[s][policy[s]]. Lastly, since we are not computing V∗, we can
just add all the values of the state-action vector together to calculate the new V_new[s]. Consider
the following

for s in range(nS):
state_action_vector = np.zeros(nA)
for tuple_info in P[s][policy[s]]:

# The rest is the same as before
V_new[s] = state_action_vector.sum()

Problem 3. Write a function called iter_policy_eval() that accepts a dictionary P rep-
resenting the decision process, the number of states, the number of actions, an array called
policy representing some chosen deterministic policy, a discount factor β ∈ [0, 1], and a tol-
erance amount ε, these last two defaulting as before. Use the process above to return an
approximated value function, Vk+1 ≈ v, corresponding to some given policy. That is, return an
array called V where V [s] is the approximated value of state s.

You may want to cast the value policy[s] to an integer to avoid any indexing errors.
Note that your code should be very similar to the code in Problem 1 except for the modifications
mentioned above. Also, notice that you are not given a maximum number of iterations in this
problem.

Note you are not computing an approximation to the optimal value function v∗. You are
iteratively computing the value function for any given policy under the assumption that the
policy is optimal. Whether the actual given policy is optimal or not, it does not matter as we
only want its value function vπ. You should not be taking any maximums or argmaxes in this
problem.
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Test your code on the policy vector generated from policy_improvement() for the ex-
ample. The result should be the same value function array from value_iteration().

Policy Improvement (Step 2)

Now that we have the value function for our policy, we can take the value function and find a better
policy. This step employs the same method used in value iteration to find the policy. In other words,
this step uses the policy_improvement() method from Problem 2 with the newly computed value
function Vk+1.

Policy iteration starts with an initial estimation π0
∗ and iterates using iterative policy evaluation

and policy improvement successively until the desired tolerance is reached. The algorithm for policy
iteration, using two of the functions that you previously implemented, can be summarized as follows:

Algorithm 1 Policy Iteration
1: procedure Policy Iteration(P, nS, nA, β, tol, maxiter)
2: π0

∗ ← [π0
∗(s0), π

0
∗(s1), . . . , π

0
∗(sN )] ▷ Initialize π∗ as array of ones of length nS

3: for k = 0, 1, . . . , maxiter do ▷ Iterate only maxiter times at most
4: V k+1

∗ = iter_policy_eval(πk
∗ ) ▷ Policy evaluation step

5: πk+1
∗ = policy_improvement(V k+1

∗ ) ▷ Policy improvement step
6: if ||πk+1

∗ − πk
∗ || < ε then

7: break ▷ Stop iterating if the policy doesn’t change enough
8: return V k+1

∗ , πk+1
∗

Note that algorithm uses functions whose assumptions are that we have a deterministic opti-
mal policy and deterministic reward function. You should modify the functions when dealing with
stochastic policies and rewards.

Problem 4. Write a function called policy_iteration() that will accept a dictionary P

representing the decision process, the number of states, the number of actions, a discount factor
β ∈ [0, 1] (defaulting as before), the tolerance amount ε (defaulting as before), and the maximum
number of iterations maxiter defaulting to 200. Perform policy iteration until ∥πk+1

∗ −πk
∗∥ < ε

or k > maxiter. Return the final vector representing V k
∗ , the optimal deterministic policy πk

∗ ,
and the number of iterations required for convergence. Test your code on the example given
above and compare your answers to the results from Problems 1 and 2.

The Frozen Lake Problem
For the rest of this lab, we will be using the Gymnasium environment 'FrozenLake-v1'. Gymnasium
can be installed using the following code.

>>> pip install gymnasium
>>> # You may also need to install these dependencies
>>> pip install gymnasium[all]
>>> pip install gymnasium[classic-control]
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Figure 21.2: Default starting positions of the 4× 4 and 8× 8 versions of "FrozenLake-v1"

In the Frozen Lake problem, an elf attempts to cross a treacherous frozen lake to obtain a
present. The lake is divided into an N × N grid where the top left corner is the start, the bottom
right corner is the end, and the other squares are either frozen or holes. To retrieve the present, the
elf must successfully navigate around the melted ice without falling through a hole. The possible
actions are left, right, up, and down, but since the ice is slippery, the elf won’t always move in the
intended direction. Hence, this is a stochastic MDP (i.e. p(s′|s, a) ≤ 1). The reward for falling is 0,
and the reward for obtaining the present is 1. There are two scenarios with N = 4 and N = 8.

Using Gymnasium

The 'FrozenLake-v1' environment has 3 important attributes: P, observation_space.n, and
action_space.n. We can calculate the optimal policy of 'FrozenLake-v1' with value iteration or
policy iteration using these 3 attributes. Since the ice is slippery, this policy will not always result
in a reward of 1.

>>> import gymnasium as gym

>>> # Initialize environment for 4x4 scenario
>>> env = gym.make('FrozenLake-v1', desc=None, map_name='4x4', is_slippery=True←↩

)
>>> # Find number of states and actions
>>> env.observation_space.n
16
>>> env.action_space.n
4
>>> # Get the dictionary with all the states and actions
>>> dictionary_P = env.P

>>> env.close() # Always close the environment!
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The attribute P is similar to the dictionary we used in the previous problems. As already
mentioned, p(s′|s, a) ≤ 1, which means the set Ns,a has more than one value. NOTE if you did
not implement the functions in this lab to account for this, they will not work as intended on this
dictionary, which we will use for the remainder of this lab.

Problem 5. Note first that this problem and the next are linked so you may want to read
through both before starting.

Write a function called frozen_lake() that accepts a boolean basic_case defaulting to
True, an integer M defaulting to 1000 that indicates how many episodes of
"FrozenLake-v1" to run, and a boolean render defaulting to False. If basic_case is True,
run the 4×4 scenario. If not, run the 8×8 scenario. If render is True, render the environment
by applying the argument render_mode='human' when initializing the environment. Close the
environment at the end of the function.

For each model-based algorithm, your created frozen_lake() function will also return
the optimal value function array V∗, the optimal deterministic policy array π∗, and the average
discounted reward sum for M episodes. Thus, your output is a tuple of 6 elements. Note the
two model-based algorithms are value iteration and policy iteration. (Hint: Rendering this
environment can take a long time, so only render it with small values of M .)

Remember that policy iteration already returns both V∗ and π∗ whereas value iteration
only returns V∗. Once you have both optimal policies, use problem 6 to help you obtain the
average.

Gymnasium environments have built-in functions that allow us to simulate each step of the
scenario. Before running a simulation in Gymnasium, always revert it to the starting position by
calling the reset() function. The function step() moves the simulation to the next state.

>>> import gymnasium as gym
>>> # Initialize environment for 4x4 scenario
>>> env = gym.make('FrozenLake-v1', desc=None, map_name='4x4', is_slippery=True←↩

)

>>> # Put environment in starting state
>>> observation, info = env.reset()
>>> # Take a step in the optimal direction and update variables
>>> observation, reward, done, trunc, info = env.step(int(policy[observation]))

>>> env.close() # Always close the environment!

The function step() takes integers representing different actions and returns: observation,
reward, done, truncated, and info. When we take an action, we get a new observation, or state,
as well as the reward for taking that action. If the elf falls into a hole or reaches the present, the
simulation terminates (done=True). The truncated and info values will not be used in this lab. For
more information about this environment, visit gymnasium.farama.org/environments/toy_text/
frozen_lake/.

gymnasium.farama.org/environments/toy_text/frozen_lake/
gymnasium.farama.org/environments/toy_text/frozen_lake/
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Problem 6. Write a function run_simulation() that takes in an environment env, a deter-
ministic policy array policy, and a discount factor β. Calculate the total discounted reward
sum of the policy for one episode of the environment (i.e. step through the environment until
done=True). This function will be called by frozen_lake() in 5, which both initializes and
closes the environment, so do not call close() in this function. However, you should call
reset() at the beginning of this function, to revert the environment back to its starting posi-
tion. (Hint: When calculating the dicounted reward, use βk as shown in Equation 21.5.)

Next, modify frozen_lake() to call run_simulation() for both the value iteration and
policy iteration for M episodes. Then, modify frozen_lake() to return the actual values of the
mean total discounted reward for both policies. (Hint: Even though you run the simulation M
times, you should only calculate the policies once, because each policy depends on the dictionary
P , which does not change.)

Wrapping Up Reinforcement Learning

There a few more things to discuss before we finish this lab and move on to the last problem. We do
reserve some other important ideas to the Additional Materials section so that we can focus on the
last problem. We strongly encourage you to read through the Additional Materials section to get a
better understanding of reinforcement learning.

Value Iteration vs. Policy Iteration

An expected update is the term used to describe the single update of value of a single state s ∈ S.
A sweep is the term used to describe a complete iteration of an expected update for all states s ∈ S
(i.e. iterating through all states and updating each once). Both value iteration and policy iteration
use sweeps to find the optimal policy. Value iteration first performs various sweeps using iterative
policy evaluation. It stops once we are within a certain tolerance of the true value function. We then
perform a single sweep using policy improvement to find the optimal policy.

On the other hand, policy iteration first performs various sweeps using policy evaluation to
obtain an estimated optimal value function V∗. We then perform a single sweep using policy im-
provement to find the optimal policy. If the estimated optimal policy is within a certain tolerance of
the previous policy, we stop. Else, we repeat the process by performing more sweeps to first improve
the estimate of the optimal value function and then to improve the policy. This whole process of find-
ing the optimal policy through independent alternations of policy evaluation and policy improvement
(for value iteration or policy iteration) is called generalized policy iteration.

Given these differences, policy iteration is generally more computationally expensive than value
iteration. However, policy iteration tends to yield a better policy than what value iteration yields.
Value iteration converges faster than policy iteration and is easier to implement. Nonetheless, both
algorithms are great at solving MDPs and are used in practice.

Do keep in mind that using generalized policy iteration, employing dynamic programming as
we have done, while guaranteed to converge to the optimal policy, is not always the best method for
solving MDPs. We are required to sweep several times through the state space to find the optimal
policy.
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Model-Based vs. Model-Free

In this lab, we have used a model-based approach to solve the 'FrozenLake-v1' environment. This
means that we have used the dynamics function p to find the optimal policy as well as were able
to use a reward function. This is a great way to solve MDPs when we have access to the dynamics
function and reward function and know that the agent gets a full observation of the state. However,
in many cases, we do not have access to these functions. This is where model-free methods come in.
Model-free methods still try to solve the underlying MDP, but they do not use the dynamics function
or reward function to do so since they use experience to learn the optimal policy. However, we still
rely on the fact that the agent gets a full observation of the current state. When the observation is
not full, we have to use a different method called partially observable MDPs (POMDPs).

Moreover, both methods use what is called bootstrapping, which is the process of using estimates
of value functions to improve the estimates of the same value functions we want. These two also look
ahead to the future state, compute a value, and use that value to improve the current value we are
seeing. The two method types are best for small finite MDPs. One thing to note is that both also
are computationally expensive so that they may not be the best methods for solving large MDPs.
The methods shown in these two RL labs are collectively called tabular methods since we used tables
or arrays to store the value functions and policies.

Lastly, for these two labs, we have worked with a stationary MDP, which means that the
dynamics function and reward function do not change over time. Even when the environment is
stochastic, the probabilities do not change or at least change slow enough so that the agent can learn
the optimal policy. We also assumed that we worked with a stationary policy, which means that
the policy does not change over time. RL can get quite complicated when we have to deal with
non-stationary MDPs and policies and even more so when we have to deal with POMDPs.

Problem 7. You will be comparing the model-free Q-learning algorithm and the model-based
Value Iteration algorithm.

Write a function called model_comparison() that accepts a parameter episodes de-
faulting to 1000. Run both algorithms on the 'FrozenLake-v1' environment using the 8 × 8

grid and is_slippery=True for however many episodes model_comparison() is given. For
each algorithm, calculate the average total discounted reward sum for however many episodes
model_comparison() is given. Then, write a string of 2-4 sentences comparing the two al-
gorithms using your knowledge of RL or the lab material that explains the differences in the
results. Return a tuple of 3 elements consisting of the average total discounted reward for both
algorithms and the final element being the string that you wrote. For consistency, keep both
beta parameters at 1.0 to calculate the total discounted reward. On Q-learning, employ a
linear decaying epsilon.

To help, we have created a py file called model_free_rl.py that contains the functions
run_q_learn, run_simulation_table(), and epsilon_decay(). The first function runs Q-
learning on the 'FrozenLake-v1' environment and saves a Q-table as npy file that will be used
in the run_simulation_table() function to solve the 'FrozenLake-v1' environment. There
is no need to store anything from this function, so you can just run it. We give a breakdown
of the parameters at the end. After you execute run_q_learn, you can comment out the line
of code that executes the Q-learning algorithm since you no longer need to train it. Ensure the
npy file was created before commenting it out. The npy file is named q_table.npy.
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The run_simulation_table() function is much like the problem 6 function. It accepts
the arguments env (Gym environment) and beta a float representing the discount factor that
is defaulted to 1.0. This function will return the total discounted reward for having followed
the policy given by Q-learning for one episode of the environment. The code of the function
already loads the npy file to extract the table, so execute this function only after you have run
the Q-learning algorithm and have the npy file.

Remember that value_iteration() only returns the value function. As such, you need
to use another one of your functions to be able to extract the optimal policy from the value
function array. Lastly, you will need to run the function run_simulation(), from problem 6,
to be able to calculate the total discounted reward of the policy produced by the value iteration
algorithm. You may find ndarray.mean() and list comprehension useful to compute the two 2
floats.

You may experiment with various model hyperparameters, but when submitting the lab,
ensure that all inputs use their defaults values (except for epsilon as you will linearly decay it).
The function run_q_learn has the following 7 inputs (in order):

• env (str): The Gym environment.

• alpha (float): The learning rate. Defaulted to 0.1.

• gamma (float): The discount factor. Defaulted to 0.6.

• epsilon (float): The epsilon value for the epsilon-greedy policy. Defaulted to 0.1.

• N (int): The number of episodes to train for. Defaulted to 70_000.

• decay (bool): whether or not to decay the epsilon value. Defaulted to False.

• decay_type (str): the type of model given to epsilon_decay() in order to calculate a
decaying epsilon value ('linear' or 'exp' for exponential). Defaulted to 'linear'.

Additional Materials

We give a brief overview of some of the topics we did not cover in any of the labs that are important
to reinforcement learning.
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Stochastic Dynamic Programming

Dynamic programming, DP for short, is a method used to solve complex problems by breaking them
down into simpler subproblems over time. DP requires that a solution to the problem is able to be
constructed from solutions to its subproblems11 and that the solved subproblems are reused several
times12. Dynamic optimization, or also called dynamic programming, is the process of simplyfying
a decision-making problem by using these two principles of DP. In stochastic dynamic optimization,
or stochastic dynamic programming, we use the principles of DP to solve a decision-making problem
where the outcomes are partly random and partly under the control of a decision maker. The goal in
stochastic dynamic programming is to get a strategy on how to act in the face of uncertainty. This is
where the MDP comes in. Using any of the Bellman equations, we can see that the value functions
have both properties13, so we can use DP to solve the MDP. This is why value iteration and policy
iteration are considered DP methods.

Convergence of Value Iteration

We proof the convergence of the value iteration we used in this lab. A more general value iteration
that uses more stochastic components can also be proved in a similar fashion.

A function f that is a contraction mapping has a fixed point p such that f(p) = p. Blackwell’s
contraction theorem can be used to show that Bellman’s equation is a “fixed point” (it actually acts
more like a fixed function in this case) for an operator T : L∞(X;R)→ L∞(X;R) where L∞(X;R)
is the set of all bounded functions:

T [f ](s) = max
a∈As

 ∑
s̄∈Ns,a

p(s̄) · (r(s̄) + βf(s̄))

 (21.12)

It can be shown that Equation 21.5 is the fixed “point” of our operator T . A result of contraction
mappings is that there exists a unique solution to Equation 21.12, namely

V k+1
∗ (si) = T [V k

∗ ](si) = max
a∈As

 ∑
s̄∈Ns,a

p(s̄) ·
(
r(s̄) + βV k

∗ (s̄)
) (21.13)

where an initial guess for V 0
∗ (s) is used. As k →∞, it is guaranteed that (V k

∗ (s))→ v∗(s). Because
of the contraction mapping, if V k+1

∗ (s) = V k
∗ (s) ∀ s, we have found the true optimal value function,

v∗(s).

Stochastic vs Deterministic Policy

A deterministic policy is a function π : S → A that maps a state s to a single action a ∈ As ⊂ A

with certainty. That is, the agent will always take the same action a for a given s when using a
deterministic policy π. This is why we can write π(s) = a since only one action will be produced
time and time again for a given state. The main advantage of a deterministic policy is the easiness
in implementation and interpretation. This type of policy is best suited for environments where the
agent should take the same action for a given state every single time it comes to that state or for
tasks requiring precise control.

11This property is called the optimal substructure property.
12This property is called the overlapping subproblems property.
13Mainly, the calculation of the next state becomes the subproblem, and the fact that we can store that value for

later use when it becomes the next state for another state is what meets the criteria.
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On the other hand, a stochastic policy is a function π : S × A → [0, 1] where π(A|S = s) is a
possibly distinct probability distribution over the action space for a fixed state s. Thus, each state
can have its own probabilistic rule for selecting actions from its own action set. Hence, π(A = a|S =

s) = π(a|s)14 is a value in the interval [0, 1] denoting the probability of taking action a in state s.
The advantage of a stochastic policy is that it can capture the uncertainty of the environment but
with the downside of having to learn a probability distribution for each state. Nevertheless, this
allows us to learn tasks where randomness or exploration are more common.

Do note that although we denote an action a or the action space A as an input for a stochastic
policy, it is an output of the policy. We use it in the input to emphasize the fact the action is
uncertain as the stochastic policy can choose a completely different action. Lastly, we can think of a
deterministic policy as a stochastic policy where π(a|s) = 1.

Achtung!

Note that the transition probability is not the same as the probability given by some policy. The
former is a property of the environment that cannot be changed while the latter is a property
of the agent that can be changed.

Stochastic Processes in RL

In this lab, we worked with a stochastic environment where the outcomes of the agent’s actions are
not fully in the agent’s control. In the 'FrozenLake-v1' environment, the agent’s chosen direction
is not always the direction the agent moves. We did not consider the agent’s actions to be stochastic
nor did we consider the rewards to be stochastic. The general process that can be used for more
complex environments and tasks employs a stochastic policy and a stochastic reward function.

There can be a few different types of stochastic processes in RL:

• The environment: This gives us either a deterministic or stochastic transition probability. This
means that the next state is always the same for a given state-action pair or that there is a
probability distribution over the next states for a given state-action pair, respectively. Thus,
p(s′|s, a) = 1,∀(s, a), for deterministic, and p(s′|s, a) ≤ 1,∀(s, a), for stochastic.

• The policy π: This means that the agent can either have a fixed action for a given state which
implies π(a|s) = P (At = a|St = s) = π(s) = 1,∀(s, a). Or, there is a probability distribution
over actions for a given state so that π(a|s) = P (At = a|St = s) ≤ 1,∀s ∈ S.

• The reward function: In the deterministic case, the reward function returns the same reward
for the same input and is either dependent on just the current state-action pair (s, a) or is
dependent on the next state and current state-action pair which is the triple (s′, s, a). For
stochastic, the reward function returns a probability distribution over rewards for a given (s, a)

or (s′, s, a).

The dynamics function p is meant to capture the true stochastic nature of the world or environ-
ments we live in. That is, it works with a stochastic MDP, policy, and reward. When dealing with a
deterministic reward function, we typically use the transition probability rather than the dynamics
function.

14This probability can also be written as π(s, a).
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With a true stochastic environment, we get the following Bellman equation for vπ(s) as

vπ(s) = v(s) = E

[
T∑

k=0

βkrk

∣∣∣∣∣S0 = s

]
(21.14a)

=
∑
a∈As

π(a|s)
∑

s′∈S+

∑
r∈R

p(s′, r|s, a)
[
r + βvπ(s

′)
]
. (21.14b)

Similary, the state-action quality function qπ(s, a) can be defined as

qπ(s, a) = q(s, a) = E

[
T∑

k=0

βkrt

∣∣∣∣∣S0 = s,A0 = a

]
(21.15a)

=
∑

s′∈S+

∑
r∈R

p(s′, r|s, a)

[
r + β

∑
a′∈As′

π(a′|s′)qπ(s′, a′)

]
. (21.15b)

With these two, we can form the relationship

vπ(s) =
∑
a∈As

π(a|s)qπ(s, a). (21.16)

We can then get the Bellman optimality for v∗

v∗(s) = max
a∈As

qπ∗(s, a)

= max
a∈As

∑
s′∈S+

∑
r∈R

p(s′, r|s, a)
[
r + βv∗(s

′)
]
, (21.17)

and the action-value as

q∗(s, a) = E[r0 + β max
a′∈As

q∗(s1, a
′)|S0 = s,A0 = a]

=
∑

s′∈S+

∑
r∈R

p(s′, r|s, a)
[
r + β max

a′∈As′
q∗(s

′, a′)
]
. (21.18)

The remainder of the other functions for a stochastic process that are similar to those used in the
lab can be derived from these equations.

Deterministic Reward Function

In the lab, we assumed that the reward function was deterministic. Specifically, we worked with a
function that had a reward dependent not only on the current state-action pair (s, a) but also on the
next state s′. This was the reward function of three inputs r(s′, s, a).

In other cases, the reward function can be dependent only on the current state-action pair (s, a).
Using the dynamics function p, we can also compute the reward function of two inputs r : S×A→ R
as

r(s, a) = rt(s, a) = E[Rt|St = s,At = a] =
∑
r∈R

r
∑
s′∈S

p(s′, r|s, a). (21.19)

This tells us the expected reward for taking action a in state s at timestep t.
Do note that r(s′, s, a) and r(s, a) are not necessarily the same as they have different uses.

When we care about going to a specific state after taking a specific action, we use r(s′, s, a). When
we care about the reward for taking a specific action in a specific state, we use r(s, a).
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Solving the Optimization Problem

For each state, there may be multiple actions that maximize the value function in the Bellman opti-
mality equation (recall the definition of argmax). Thus, any policy that assigns a nonzero probability
to these actions is an optimal policy. That is, any policy that is greedy15 with respect to the optimal
value function is an optimal policy. A greedy policy only selects the action that maximizes the value
function only in the short term, specifically only optimizing the expected future rewards of the next
timestep, but the nature of v∗ already considers the long-term rewards of all possible future behavior
making it available to each state immediately. Hence, given the Bellman optimality equation for
v∗(s) (21.17), we can simply use

π∗ = π∗(s) = argmax
a∈As

v∗(s). (21.20)

When we have the optimal action-value function, we can use

π∗ = π∗(s) = argmax
a∈As

q∗(s, a). (21.21)

In this case, there is no need to perform some greedy search since the optimal action-value function
selects optimal actions without having to know anything about possible successor states and their
respective values. In general, the optimal policy is usually deterministic since we only care about
choosing one of the many optimal actions available (or the only optimal action available). Should
we have started with a stochastic policy and want it to remain stochastic, we need only assign each
optimal action any probability we want as long as the suboptimal actions are given a probability of
0. This will keep the policy stochastic but still optimal. But, we can always just choose one of the
optimal actions and assign it a probability of 1 to make the stochastic policy deterministic.

Closer Look Into Policy Improvement

In the section on policy improvement, we mentioned that policy improvement finds the optimal
policy. We had supposed that there was a new policy π′ that was better than the old policy π. But
what if there was a new policy that is just as good as the old policy but not better than the current
policy π? Then, vπ = vπ′ , so that from

π′(a|s) = argmax
a∈As

qπ(s, a) = argmax
a∈As

∑
s′∈S+

∑
r∈R

p(s′, r|s, a)[r + βvπ(s
′)]

, we have

vπ′ = max
a∈As

∑
s′∈S+

∑
r∈R

p(s′, r|s, a)[r + γvπ′(s′)].

This is the Bellman optimality equation so that π′ is an optimal policy as is π. Thus policy improve-
ment does find the optimal policy except in the case where the original policy is optimal so that we
do not have to improve the current policy.

When Should I Use RL?

Tom Mitchel defined machine learning as
15By greedy we mean any search or decision procedure that selects alternatives based on local or immediate consid-

erations without considering the possibility that such a selection may prevent future access to even better alternatives.
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A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P , if its performance at tasks in T , as measured by P ,
improves with experience E.

There are, in general, three types of learning: supervised learning, unsupervised learning, and rein-
forcement learning.

In supervised learning, the computer is given a set of inputs and outputs that have been already
been given some context of a relationship and is asked to learn the mapping between the two. Whereas
in unsupervised learning, the computer is given a set of inputs and outputs and is asked to find the
structure or patterns in the data without having any context of any sort of relationship in the data.
While these two types of learning are great for many tasks, they do not work well when the computer
has to interact with the environment to learn a task. In RL, we are concerned about finding any
structure or patterns nor are we concerned about finding a mapping between inputs and outputs. We
are strictly concerned with how the computer ought to take actions in an environment to maximize
some notion of a cumulative reward.

Typically RL is better used when the algorithm needs to make sequential decisions in an envi-
ronment. This is because RL is great at learning how to make decisions in an environment where the
agent can interact with the environment. Typically RL is best in these types of environments where
we have an existing decision-making model that we want to improve or when we have a decision-
making model that we want to learn from scratch through interaction. RL is also great when the
agent can receive feedback from the environment in the form of a reward. Thus, we need to be able
to define a reward function that tells the agent how well it is doing and not run into the reward
engineering problem.

Morever, RL is great when the agent can learn from its mistakes and improve its decision-
making process. Thus, when we can afford to have the agent make mistakes and learn from them,
online RL is a great tool to use. But when we cannot afford to have the agent make mistakes, offline
RL is a better tool to use so we must be able to have a dataset of the environment that the agent
can learn from.

Challenges in RL

We talked about the exploration-exploitation trade-off in the last lab. RL faces other problems that
must be dealt with whenever you are formulating a problem as an RL problem. Here are some of
the challenges in RL:

• Credit Assignment Problem: This is the challenge of determining which actions an agent took
that led to a particular reward. This is a problem because the agent may have taken many
actions before receiving a reward. The agent must determine which of these actions led to the
reward. It could be that the reward was due to a combination of actions or that the reward
was due to an action that was taken a long time ago. Moreover, this also does not mean that
other actions were not important as those actions could have set up the agent to receive the
reward while not directly giving the reward.

• Reward Engineering Problem: This is the process of designing a good reward function that
encourages the desired behavior in the agent. The reward should reflect the desired goal we
want the agent to achieve. The reward is not a place to give the agent new information about
the environment. It should only be used to tell the agent how well it is doing.
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• Generalization Problem: This is the ability of an agent to apply what it has learned to new and
previously unseen situations. This is a problem because the agent may have learned a policy
that works well in the training environment but does not work well in the testing environment.
It also arises when the agent has to learn a policy in an arbitrarily large state space. The agent
must be able to generalize its policy to all states in the state space but may not have visited
all states during training.

• Sample Efficiency Problem: This refers to the ability of an RL agent to learn an optimal policy
with a limited number of interactions with the environment. Many RL algorithms require a
large number of interactions with the environment (or a large dataset of the environment) to
learn an optimal policy. This is a problem because in many real-world applications, the agent
cannot interact with the environment an unlimited number of times.

Futher Reading and Resources

Reinforcement learning is a vast field with many different algorithms and techniques and applications.
The following are some resources that can help you learn more about reinforcement learning. Note
that some of these are available online for free through various universities or by the publishers or
authors themselves.

• Reinforcement Learning: An Introduction, 2nd edition, 2018, by Richard S. Sutton and Andrew
G. Barto is a classic book covering the basics of reinforcement learning and algorithms. It also
gives a good overview of the field and the math behind it. The only prerequisite knowledge is
the material you have learned in Volume 2 textbook.

• Algorithms for Reinforcement Learning, 2009, by Csaba Szepesvári is a book that covers many
different algorithms in reinforcement learning strictly and rigorously from a mathematical per-
spective. It does not contain many implementations or applications, but it does cover the
strengths and weaknesses of many algorithms as well as the math behind them and what is
known or unknown about them. The material therein is more advanced than the Sutton and
Barto book, so knowledge of Volume 1 and 2 textbooks is recommended.

• Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control,
2nd edition, 2022, by Steven L. Brunton and J. Nathan Kutz is a book that brings together
machine learning, mathematics, and physics to integrate modeling of dynamical systems. The
book contains chapters on reinforcement learning and deep reinforcement learning, as well as
many other topics in machine learning. Dr. Brunton has a YouTube channel where he covers
some of the material in the book, including a playlist on reinforcement learning.

• Reinforcement Learning and Optimal Control, 2019, by Dimitri P. Bertsekas is a book that
covers reinforcement learning and optimal control from a mathematical perspective and using
dynamic programming.

https://www.youtube.com/@Eigensteve
https://www.youtube.com/watch?v=0MNVhXEX9to&list=PLMrJAkhIeNNQe1JXNvaFvURxGY4gE9k74
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A NumPy Visual Guide

Lab Objective: NumPy operations can be difficult to visualize, but the concepts are straightforward.
This appendix provides visual demonstrations of how NumPy arrays are used with slicing syntax,
stacking, broadcasting, and axis-specific operations. Though these visualizations are for 1- or 2-
dimensional arrays, the concepts can be extended to n-dimensional arrays.

Data Access
The entries of a 2-D array are the rows of the matrix (as 1-D arrays). To access a single entry, enter
the row index, a comma, and the column index. Remember that indexing begins with 0.

A[0] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×

 A[2,1] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×



Slicing
A lone colon extracts an entire row or column from a 2-D array. The syntax [a:b] can be read as
“the ath entry up to (but not including) the bth entry.” Similarly, [a:] means “the ath entry to the
end” and [:b] means “everything up to (but not including) the bth entry.”

A[1] = A[1,:] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×

 A[:,2] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×



A[1:,:2] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×

 A[1:-1,1:-1] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×
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Stacking
np.hstack() stacks sequence of arrays horizontally and np.vstack() stacks a sequence of arrays
vertically.

A =

 × × ×
× × ×
× × ×

 B =

 ∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗



np.hstack((A,B,A)) =

 × × × ∗ ∗ ∗ × × ×
× × × ∗ ∗ ∗ × × ×
× × × ∗ ∗ ∗ × × ×



np.vstack((A,B,A)) =



× × ×
× × ×
× × ×
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
× × ×
× × ×
× × ×


Because 1-D arrays are flat, np.hstack() concatenates 1-D arrays and np.vstack() stacks them
vertically. To make several 1-D arrays into the columns of a 2-D array, use np.column_stack().

x =
[
× × × ×

]
y =

[
∗ ∗ ∗ ∗

]

np.hstack((x,y,x)) =
[
× × × × ∗ ∗ ∗ ∗ × × × ×

]

np.vstack((x,y,x)) =

 × × × ×
∗ ∗ ∗ ∗
× × × ×

 np.column_stack((x,y,x)) =


× ∗ ×
× ∗ ×
× ∗ ×
× ∗ ×


The functions np.concatenate() and np.stack() are more general versions of np.hstack() and
np.vstack(), and np.row_stack() is an alias for np.vstack().

Broadcasting
NumPy automatically aligns arrays for component-wise operations whenever possible. See http:
//docs.scipy.org/doc/numpy/user/basics.broadcasting.html for more in-depth examples and
broadcasting rules.

http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
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A =

 1 2 3

1 2 3

1 2 3

 x =
[
10 20 30

]

A + x =

 1 2 3

1 2 3

1 2 3

+[ ]
10 20 30

=

 11 22 33

11 22 33

11 22 33



A + x.reshape((1,-1)) =

 1 2 3

1 2 3

1 2 3

+

 10

20

30

 =

 11 12 13

21 22 23

31 32 33



Operations along an Axis
Most array methods have an axis argument that allows an operation to be done along a given axis.
To compute the sum of each column, use axis=0; to compute the sum of each row, use axis=1.

A =


1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4



A.sum(axis=0) =


1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

 =
[
4 8 12 16

]

A.sum(axis=1) =


1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

 =
[
10 10 10 10

]



266 Appendix A. NumPy Visual Guide



B Matplotlib Syntax and
Customization Guide

Lab Objective: The documentation for Matplotlib can be a little difficult to maneuver and basic
information is sometimes difficult to find. This appendix condenses and demonstrates some of the
more applicable and useful information on plot customizations. It is not intended to be read all at
once, but rather to be used as a reference when needed. For an interative introduction to Matplotlib,
see the Introduction to Matplotlib lab in Python Essentials. For more details on any specific function,
refer to the Matplotlib documentation at https: // matplotlib. org/ .

Matplotlib Interface
Matplotlib plots are made in a Figure object that contains one or more Axes, which themselves
contain the graphical plotting data. Matplotlib provides two ways to create plots:

1. Call plotting functions directly from the module, such as plt.plot(). This will create the plot
on whichever Axes is currently active.

2. Call plotting functions from an Axes object, such as ax.plot(). This is particularly useful for
complicated plots and for animations.

Table B.1 contains a summary of functions that are used for managing Figure and Axes objects.

Function Description
add_subplot() Add a single subplot to the current figure

axes() Add an axes to the current figure
clf() Clear the current figure

figure() Create a new figure or grab an existing figure
gca() Get the current axes
gcf() Get the current figure

subplot() Add a single subplot to the current figure
subplots() Create a figure and add several subplots to it

Table B.1: Basic functions for managing plots.
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Axes objects are usually managed through the functions plt.subplot() and plt.subplots().
The function subplot() is used as plt.subplot(nrows, ncols, plot_number). Note that if the
inputs for plt.subplot() are all integers, the commas between the entries can be omitted. For
example, plt.subplot(3,2,2) can be shortened to plt.subplot(322).

The function subplots() is used as plt.subplots(nrows, ncols), and returns a Figure
object and an array of Axes. This array has the shape (nrows, ncols), and can be accessed as any
other array. Figure B.1 demonstrates the layout and indexing of subplots.

1 2 3

4 5 6
Figure B.1: The layout of subplots with plt.subplot(2,3,i) (2 rows, 3 columns), where i is the
index pictured above. The outer border is the figure that the axes belong to.

The following example demonstrates three equivalent ways of producing a figure with two
subplots, arranged next to each other in one row:

>>> x = np.linspace(-5, 5, 100)

# 1. Use plt.subplot() to switch the current axes.
>>> plt.subplot(121)
>>> plt.plot(x, 2*x)
>>> plt.subplot(122)
>>> plt.plot(x, x**2)

# 2. Use plt.subplot() to explicitly grab the two subplot axes.
>>> ax1 = plt.subplot(121)
>>> ax1.plot(x, 2*x)
>>> ax2 = plt.subplot(122)
>>> ax2.plot(x, x**2)

# 3. Use plt.subplots() to get the figure and all subplots simultaneously.
>>> fig, axes = plt.subplots(1, 2)
>>> axes[0].plot(x, 2*x)
>>> axes[1].plot(x, x**2)
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Achtung!

Be careful not to mix up the following similarly-named functions:

1. plt.axes() creates a new place to draw on the figure, while plt.axis() or ax.axis()
sets properties of the x- and y-axis in the current axes, such as the x and y limits.

2. plt.subplot() (singular) returns a single subplot belonging to the current figure, while
plt.subplots() (plural) creates a new figure and adds a collection of subplots to it.

Plot Customization
Styles

Matplotlib has a number of built-in styles that can be used to set the default appearance of plots.
These can be used via the function plt.style.use(); for instance, plt.style.use("seaborn")
will have Matplotlib use the "seaborn" style for all plots created afterwards. A list of built-in

styles can be found at https://matplotlib.org/stable/gallery/style_sheets/style_sheets_
reference.html.

The style can also be changed only temporarily using plt.style.context() along with a with
block:

with plt.style.context('dark_background'):
# Any plots created here use the new style
plt.subplot(1,2,1)
plt.plot(x, y)
# ...

# Plots created here are unaffected
plt.subplot(1,2,2)
plt.plot(x, y)

Plot layout

Axis properties

Table B.2 gives an overview of some of the functions that may be used to configure the axes of a
plot.

The functions xlim(), ylim(), and axis() are used to set one or both of the x and y ranges
of the plot. xlim() and ylim() each accept two arguments, the lower and upper bounds, or a single
list of those two numbers. axis() accepts a single list consisting, in order, of xmin, xmax, ymin,
ymax. Passing None instead of one of the numbers to any of these functions will make it not change
the corresponding value from what it was. Each of these functions can also be called without any
arguments, in which case it will return the current bounds. Note that axis() can also be called
directly on an Axes object, while xlim() and ylim() cannot.

axis() also can be called with a string as its argument, which has several options. The most
common is axis('equal'), which makes the scale of the x- and y-scales equal (i.e. makes circles
circular).

https://matplotlib.org/stable/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/stable/gallery/style_sheets/style_sheets_reference.html
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Function Description
axis() set the x- and y-limits of the plot
grid() add gridlines
xlim() set the limits of the x-axis
ylim() set the limits of the y-axis

xticks() set the location of the tick marks on the x-axis
yticks() set the location of the tick marks on the y-axis
xscale() set the scale type to use on the x-axis
yscale() set the scale type to use on the y-axis

ax.spines[side].set_position() set the location of the given spine
ax.spines[side].set_color() set the color of the given spine

ax.spines[side].set_visible() set whether a spine is visible

Table B.2: Some functions for changing axis properties. ax is an Axes object.

To use a logarithmic scale on an axis, the functions xscale("log") and yscale("log") can
be used.

The functions xticks() and yticks() accept a list of tick positions, which the ticks on the
corresponding axis are set to. Generally, this works the best when used with np.linspace(). This
function also optionally accepts a second argument of a list of labels for the ticks. If called with no
arguments, the function returns a list of the current tick positions and labels instead.

The spines of a Matplotlib plot are the black border lines around the plot, with the left and
bottom ones also being used as the axis lines. To access the spines of a plot, call ax.spines[side],
where ax is an Axes object and side is 'top', 'bottom', 'left', or 'right'. Then, functions can
be called on the Spine object to configure it.

The function spine.set_position() has several ways to specify the position. The two simplest
are with the arguments 'center' and 'zero', which place the spine in the center of the subplot or
at an x- or y-coordinate of zero, respectively. The others are a passed as a tuple (position_type,
amount):

• 'data': place the spine at an x- or y-coordinate equal to amount.

• 'axes': place the spine at the specified Axes coordinate, where 0 corresponds to the bottom
or left of the subplot, and 1 corresponds to the top or right edge of the subplot.

• 'outward': places the spine amount pixels outward from the edge of the plot area. A negative
value can be used to move it inwards instead.

spine.set_color() accepts any of the color formats Matplotlib supports. Alternately, using
set_color('none') will make the spine not be visible. spine.set_visible() can also be used for
this purpose.

The following example adjusts the ticks and spine positions to improve the readability of a plot
of sin(x). The result is shown in Figure B.2.

>>> x = np.linspace(0,2*np.pi,150)
>>> plt.plot(x, np.sin(x))
>>> plt.title(r"$y=\sin(x)$")

#Set the ticks to multiples of pi/2, make nice labels
>>> ticks = np.pi / 2 * np.array([0,1,2,3,4])
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>>> tick_labels = ["$0$", r"$\frac{\pi}{2}$", r"$\pi$", r"$\frac{3\pi}{2}$",
... r"$2\pi$"]
>>> plt.xticks(ticks, tick_labels)

#Move the bottom spine to zero, remove the top and right ones
>>> ax = plt.gca()
>>> ax.spines['bottom'].set_position('zero')
>>> ax.spines['right'].set_color('none')
>>> ax.spines['top'].set_color('none')

>>> plt.show()

0 2
3
2

2

1.0

0.5

0.0

0.5

1.0

y = sin(x)

Figure B.2: Plot of y = sin(x) with axes modified for clarity

Plot Layout

The position and spacing of all subplots within a figure can be modified using the function plt
.subplots_adjust(). This function accepts up to six keyword arguments that change different
aspects of the spacing. left, right, top, and bottom are used to adjust the rectangle around all of
the subplots. In the coordinates used, 0 corresponds to the bottom or left edge of the figure, and 1
corresponds to the top or right edge of the figure. hspace and wspace set the vertical and horizontal
spacing, respectively, between subplots. The units for these are in fractions of the average height
and width of all subplots in the figure. If more fine control is desired, the position of individual Axes
objects can also be changed using ax.get_position() and ax.set_position().

The size of the figure can be configured using the figsize argument when creating a figure:

>>> plt.figure(figsize=(12,8))

Note that many environments will scale the figure to fill the available space. Even so, changing the
figure size can still be used to change the aspect ratio as well as the relative size of plot elements.

The following example uses subplots_adjust() to create space for a legend outside of the
plotting space. The result is shown in Figure B.3.
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#Generate data
>>> x1 = np.random.normal(-1, 1.0, size=60)
>>> y1 = np.random.normal(-1, 1.5, size=60)
>>> x2 = np.random.normal(2.0, 1.0, size=60)
>>> y2 = np.random.normal(-1.5, 1.5, size=60)
>>> x3 = np.random.normal(0.5, 1.5, size=60)
>>> y3 = np.random.normal(2.5, 1.5, size=60)

#Make the figure wider
>>> fig = plt.figure(figsize=(5,3))

#Plot the data
>>> plt.plot(x1, y1, 'r.', label="Dataset 1")
>>> plt.plot(x2, y2, 'g.', label="Dataset 2")
>>> plt.plot(x3, y3, 'b.', label="Dataset 3")

#Create a legend to the left of the plot
>>> lspace = 0.35
>>> plt.subplots_adjust(left=lspace)
#Put the legend at the left edge of the figure
>>> plt.legend(loc=(-lspace/(1-lspace),0.6))
>>> plt.show()

2 0 2 4

4

2

0

2

4Dataset 1
Dataset 2
Dataset 3

Figure B.3: Example of repositioning axes.
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Colors

The color that a plotting function uses is specified by either the c or color keyword arguments; for
most functions, these can be used interchangeably. There are many ways to specific colors. The most
simple is to use one of the basic colors, listed in Table B.3. Colors can also be specified using an
RGB tuple such as (0.0, 0.4, 1.0), a hex string such as "0000FF", or a CSS color name like "
DarkOliveGreen" or "FireBrick". A full list of named colors that Matplotlib supports can be found
at https://matplotlib.org/stable/gallery/color/named_colors.html. If no color is specified
for a plot, Matplotlib automatically assigns it one from the default color cycle.

Code Color
'b' blue
'g' green
'r' red
'c' cyan
'm' magenta

Code Color
'y' yellow
'k' black
'w' white

'C0' - 'C9' Default colors

Table B.3: Basic colors available in Matplotlib

Plotting functions also accept an alpha keyword argument, which can be used to set the
transparency. A value of 1.0 corresponds to fully opaque, and 0.0 corresponds to fully transparent.

The following example demonstrates different ways of specifying colors:

#Using a basic color
>>> plt.plot(x, y, 'r')
#Using a hexadecimal string
>>> plt.plot(x, y, color='FF0080')
#Using an RGB tuple
>>> plt.plot(x, y, color=(1, 0.5, 0))
#Using a named color
>>> plt.plot(x, y, color='navy')

Colormaps

Certain plotting functions, such as heatmaps and contour plots, accept a colormap rather than a
single color. A full list of colormaps available in Matplotlib can be found at https://matplotlib.
org/stable/gallery/color/colormap_reference.html. Some of the more commonly used ones
are "viridis", "magma", and "coolwarm". A colorbar can be added by calling plt.colorbar()
after creating the plot.

Sometimes, using a logarithmic scale for the coloring is more informative. To do this, pass a
matplotlib.colors.LogNorm object as the norm keyword argument:

# Create a heatmap with logarithmic color scaling
>>> from matplotlib.colors import LogNorm
>>> plt.pcolormesh(X, Y, Z, cmap='viridis', norm=LogNorm())

https://matplotlib.org/stable/gallery/color/named_colors.html
https://matplotlib.org/stable/gallery/color/colormap_reference.html
https://matplotlib.org/stable/gallery/color/colormap_reference.html
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Function Description Usage
annotate() adds a commentary at a given point on the plot annotate(’text’,(x,y))

arrow() draws an arrow from a given point on the plot arrow(x,y,dx,dy)
colorbar() Create a colorbar colorbar()

legend() Place a legend in the plot legend(loc=’best’)
text() Add text at a given position on the plot text(x,y,’text’)

title() Add a title to the plot title(’text’)
suptitle() Add a title to the figure suptitle(’text’)

xlabel() Add a label to the x-axis xlabel(’text’)
ylabel() Add a label to the y-axis ylabel(’text’)

Table B.4: Text and annotation functions in Matplotlib

Text and Annotations

Matplotlib has several ways to add text and other annotations to a plot, some of which are listed in
Table B.4. The color and size of the text in most of these functions can be adjusted with the color
and fontsize keyword arguments.

Matplotlib also supports formatting text with LATEX, a system for creating technical docu-
ments.1 To do so, use an r before the string quotation mark and surround the text with dollar
signs. This is particularly useful when the text contains a mathematical expression. For example,
the following line of code will make the title of the plot be 1

2 sin(x
2):

>>> plt.title(r"$\frac{1}{2}\sin(x^2)$")

The function legend() can be used to add a legend to a plot. Its optional loc keyword
argument specifies where to place the legend within the subplot. It defaults to 'best', which will
cause Matplotlib to place it in whichever location overlaps with the fewest drawn objects. The other
locations this function accepts are 'upper right', 'upper left', 'lower left', 'lower right',
'center left', 'center right', 'lower center', 'upper center', and 'center'. Alternately,
a tuple of (x,y) can be passed as this argument, and the bottom-left corner of the legend will be
placed at that location. The point (0,0) corresponds to the bottom-left of the current subplot, and
(1,1) corresponds to the top-right. This can be used to place the legend outside of the subplot,
although care should be taken that it does not go outside the figure, which may require manually
repositioning the subplots.

The labels the legend uses for each curve or scatterplot are specified with the label keyword
argument when plotting the object. Note that legend() can also be called with non-keyword argu-
ments to set the labels, although it is less confusing to set them when plotting.

The following example demonstrates creating a legend:

>>> x = np.linspace(0,2*np.pi,250)

# Plot sin(x), cos(x), and -sin(x)
# The label argument will be used as its label in the legend.
>>> plt.plot(x, np.sin(x), 'r', label=r'$\sin(x)$')
>>> plt.plot(x, np.cos(x), 'g', label=r'$\cos(x)$')
>>> plt.plot(x, -np.sin(x), 'b', label=r'$-\sin(x)$')

1See http://www.latex-project.org/ for more information.

http://www.latex-project.org/
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# Create the legend
>>> plt.legend()

Line and marker styles

Matplotlib supports a large number of line and marker styles for line and scatter plots, which are
listed in Table B.5.

character description
- solid line style
-- dashed line style
-. dash-dot line style
: dotted line style
. point marker
, pixel marker
o circle marker
v triangle_down marker
ˆ triangle_up marker
< triangle_left marker
> triangle_right marker
1 tri_down marker
2 tri_up marker

character description
3 tri_left marker
4 tri_right marker
s square marker
p pentagon marker
* star marker
h hexagon1 marker
H hexagon2 marker
+ plus marker
x x marker
D diamond marker
d thin_diamond marker
| vline marker
_ hline marker

Table B.5: Available line and marker styles in Maplotlib.

The function plot() has several ways to specify this argument; the simplest is to pass it as the
third positional argument. The marker and linestyle keyword arguments can also be used. The
size of these can be modified using markersize and linewidth. Note that by specifying a marker
style but no line style, plot() can be used to make a scatter plot. It is also possible to use both a
marker style and a line style. To set the marker using scatter(), use the marker keyword argument,
with s being used to change the size.

The following code demonstrates specifying marker and line styles. The results are shown in
Figure B.4.

#Use dashed lines:
>>> plt.plot(x, y, '--')
#Use only dots:
>>> plt.plot(x, y, '.')
#Use dots with a normal line:
>>> plt.plot(x, y, '.-')
#scatter() uses the marker keyword:
>>> plt.scatter(x, y, marker='+')

#With plot(), the color to use can also be specified in the same string.
#Order usually doesn't matter.
#Use red dots:
>>> plt.plot(x, y, '.r')
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#Equivalent:
>>> plt.plot(x, y, 'r.')

#To change the size:
>>> plt.plot(x, y, 'v-', linewidth=1, markersize=15)
>>> plt.scatter(x, y, marker='+', s=12)

plt.plot(x, y, '--') plt.plot(x, y, '.') plt.plot(x, y, '.-') plt.scatter(x, y, marker='+')

plt.plot(x, y, '.r') plt.plot(x, y, 'r.') plt.plot(x, y, 'v-',
linewidth=1, markersize=15)

plt.scatter(x, y,
marker='+', s=12)

Figure B.4: Examples of setting line and marker styles.

Plot Types

Matplotlib has functions for creaing many different types of plots, many of which are listed in Table
B.6. This section gives details on using certain groups of these functions.
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Function Description Usage
bar makes a bar graph bar(x,height)
barh makes a horizontal bar graph barh(y,width)
boxplots makes one or more boxplots boxplots(data)
contour makes a contour plot contour(X,Y,Z)
contourf makes a filled contour plot contourf(X,Y,Z)
imshow shows an image imshow(image)
fill plots lines with shading under the curve fill(x,y)
fill_between plots lines with shading between two given y values fill_between(x,y1, y2=0)
hexbin creates a hexbin plot hexbin(x,y)
hist plots a histogram from data hist(data)
pcolormesh makes a heatmap pcolormesh(X,Y,Z)
pie makes a pie chart pie(x)
plot plots lines and data on standard axes plot(x,y)
plot_surface plot a surface in 3-D space plot_surface(X,Y,Z)
polar plots lines and data on polar axes polar(theta,r)
loglog plots lines and data on logarithmic x and y axes loglog(x,y)
scatter plots data in a scatterplot scatter(x,y)
semilogx plots lines and data with a log scaled x axis semilogx(x,y)
semilogy plots lines and data with a log scaled y axis semilogy(x,y)
specgram makes a spectogram from data specgram(x)
spy plots the sparsity pattern of a 2D array spy(Z)
triplot plots triangulation between given points triplot(x,y)

Table B.6: Some basic plotting functions in Matplotlib.

Line plots

Line plots, the most basic type of plot, are created with the plot() function. It accepts two lists of
x- and y-values to plot, and optionally a third argument of a string of any combination of the color,
line style, and marker style. Note that this method only works with the single-character color codes;
to use other colors, use the color argument. By specifying only a marker style, this function can
also be used to create scatterplots.

There are a number of functions that do essentially the same thing as plot() but also change
the axis scaling, including loglog(), semilogx(), semilogy(), and polar. Each of these functions
is used in the same manner as plot(), and has identical syntax.

Bar Plots

Bar plots are a way to graph categorical data in an effective way. They are made using the bar()
function. The most important arguments are the first two that provide the data, x and height. The
first argument is a list of values for each bar, either categorical or numerical; the second argument is
a list of numerical values corresponding to the height of each bar. There are other parameters that
may be included as well. The width argument adjusts the bar widths; this can be done by choosing
a single value for all of the bars, or an array to give each bar a unique width. Further, the argument
bottom allows one to specify where each bar begins on the y-axis. Lastly, the align argument can
be set to ’center’ or ’edge’ to align as desired on the x-axis. As with all plots, you can use the color
keyword to specify any color of your choice. If you desire to make a horizontal bar graph, the syntax
follows similarly using the function barh(), but with argument names y, width, height and align.
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Box Plots

A box plot is a way to visualize some simple statistics of a dataset. It plots the minimum, maximum,
and median along with the first and third quartiles of the data. This is done by using boxplot()
with an array of data as the argument. Matplotlib allows you to enter either a one dimensional
array for a single box plot, or a 2-dimensional array where it will plot a box plot for each column of
the data in the array. Box plots default to having a vertical orientation but can be easily laid out
horizontally by setting vert=False.

Scatter and hexbin plots

Scatterplots can be created using either plot() or scatter(). Generally, it is simpler to use plot(),
although there are some cases where scatter() is better. In particular, scatter() allows changing
the color and size of individual points within a single call to the function. This is done by passing a
list of colors or sizes to the c or s arguments, respectively.

Hexbin plots are an alternative to scatterplots that show the concentration of data in regions
rather than the individual points. They can be created with the function hexbin(). Like plot()
and scatter(), this function accepts two lists of x- and y-coordinates.

Heatmaps and contour plots

Heatmaps and contour plots are used to visualize 3-D surfaces and complex-valued functions on a
flat space. Heatmaps are created using the pcolormesh() function. Contour plots are created using
contour() or contourf(), with the latter creating a filled contour plot.

Each of these functions accepts the x-, y-, and z-coordinates as a mesh grid, or 2-D array. To
create these, use the function np.meshgrid():

>>> x = np.linspace(0,1,100)
>>> y = np.linspace(0,1,80)
>>> X, Y = np.meshgrid(x, y)

The z-coordinate can then be computed using the x and y mesh grids.
Note that each of these functions can accept a colormap, using the cmap parameter. These

plots are sometimes more informative with a logarithmic color scale, which can be used by passing a
matplotlib.colors.LogNorm object in the norm parameter of these functions.

With pcolormesh(), it is also necessary to pass shading='auto' or shading='nearest' to
avoid a deprecation error.

The following example demonstrates creating heatmaps and contour plots, using a graph of
z = (x2 + y) sin(y). The results is shown in Figure B.5

>>> from matplotlib.colors import LogNorm

>>> x = np.linspace(-3,3,100)
>>> y = np.linspace(-3,3,100)
>>> X, Y = np.meshgrid(x, y)
>>> Z = (X**2+Y)*np.sin(Y)

#Heatmap
>>> plt.subplot(1,3,1)
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>>> plt.pcolormesh(X, Y, Z, cmap='viridis', shading='nearest')
>>> plt.title("Heatmap")

#Contour
>>> plt.subplot(1,3,2)
>>> plt.contour(X, Y, Z, cmap='magma')
>>> plt.title("Contour plot")

#Filled contour
>>> plt.subplot(1,3,3)
>>> plt.contourf(X, Y, Z, cmap='coolwarm')
>>> plt.title("Filled contour plot")
>>> plt.colorbar()

>>> plt.show()

Figure B.5: Example of heatmaps and contour plots.

Showing images

The function imshow() is used for showing an image in a plot, and can be used on either grayscale
or color images. This function accepts a 2-D n×m array for a grayscale image, or a 3-D n×m× 3

array for a color image. If using a grayscale image, you also need to specify cmap='gray', or it will
be colored incorrectly.

It is best to also use axis('equal') alongside imshow(), or the image will most likely be
stretched. This function also works best if the images values are in the range [0, 1]. Some ways to
load images will format their values as integers from 0 to 255, in which case the values in the image
array should be scaled before using imshow().

3-D Plotting

Matplotlib can be used to plot curves and surfaces in 3-D space. In order to use 3-D plotting, you
need to run the following line:
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>>> from mpl_toolkits.plot3d import Axes3D

The argument projection='3d' also must be specified when creating the subplot for the 3-D object:

>>> plt.subplot(1,1,1, projection='3d')

Curves can be plotted in 3-D space using plot(), by passing in three lists of x-, y-, and z-
coordinates. Surfaces can be plotted using ax.plot_surface(). This function can be used similar
to creating contour plots and heatmaps, by obtaining meshes of x- and y- coordinates from np.
meshgrid() and using those to produce the z-axis. More generally, any three 2-D arrays of meshes
corresponding to x-, y-, and z-coordinates can be used. Note that it is necessary to call this function
from an Axes object.

The following example demonstrates creating 3-D plots. The results are shown in Figure B.6.

#Create a plot of a parametric curve
ax = plt.subplot(1,3,1, projection='3d')
t = np.linspace(0, 4*np.pi, 160)
x = np.cos(t)
y = np.sin(t)
z = t / np.pi
plt.plot(x, y, z, color='b')
plt.title("Helix curve")

#Create a surface plot from np.meshgrid
ax = plt.subplot(1,3,2, projection='3d')
x = np.linspace(-1,1,80)
y = np.linspace(-1,1,80)
X, Y = np.meshgrid(x, y)
Z = X**2 - Y**2
ax.plot_surface(X, Y, Z, color='g')
plt.title(r"Hyperboloid")

#Create a surface plot less directly
ax = plt.subplot(1,3,3, projection='3d')
theta = np.linspace(-np.pi,np.pi,80)
rho = np.linspace(-np.pi/2,np.pi/2,40)
Theta, Rho = np.meshgrid(theta, rho)
X = np.cos(Theta) * np.cos(Rho)
Y = np.sin(Theta) * np.cos(Rho)
Z = np.sin(Rho)
ax.plot_surface(X, Y, Z, color='r')
plt.title(r"Sphere")

plt.show()
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Figure B.6: Examples of 3-D plotting.

Additional Resources
rcParams

The default plotting parameters of Matplotlib can be set individually and with more fine control than
styles by using rcParams. rcParams is a dictionary that can be accessed as either plt.rcParams or
matplotlib.rcParams.

For instance, the resolution of plots can be changed via the "figure.dpi" parameter:

>>> plt.rcParams["figure.dpi"] = 600

A list of parameters that can set via rcParams can be found at https://matplotlib.org/
stable/api/matplotlib_configuration_api.html#matplotlib.RcParams.

Animations

Matplotlib has capabilities for creating animated plots. The Animations lab in Volume 4 has detailed
instructions on how to do so.

Matplotlib gallery and tutorials

The Matplotlib documentation has a number of tutorials, found at https://matplotlib.org/
stable/tutorials/index.html. It also has a large gallery of examples, found at https://matplotlib.
org/stable/gallery/index.html. Both of these are excellent sources of additional information
about ways to use and customize Matplotlib.

https://matplotlib.org/stable/api/matplotlib_configuration_api.html#matplotlib.RcParams
https://matplotlib.org/stable/api/matplotlib_configuration_api.html#matplotlib.RcParams
https://matplotlib.org/stable/tutorials/index.html
https://matplotlib.org/stable/tutorials/index.html
https://matplotlib.org/stable/gallery/index.html
https://matplotlib.org/stable/gallery/index.html
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